JPH04248115A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH04248115A
JPH04248115A JP2409091A JP2409091A JPH04248115A JP H04248115 A JPH04248115 A JP H04248115A JP 2409091 A JP2409091 A JP 2409091A JP 2409091 A JP2409091 A JP 2409091A JP H04248115 A JPH04248115 A JP H04248115A
Authority
JP
Japan
Prior art keywords
cobalt
iron
coercive force
sputtering
partial oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2409091A
Other languages
Japanese (ja)
Inventor
Koji Saiki
幸治 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2409091A priority Critical patent/JPH04248115A/en
Priority to EP19910102259 priority patent/EP0443478A3/en
Publication of JPH04248115A publication Critical patent/JPH04248115A/en
Priority to US08/024,109 priority patent/US5326637A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve reproducibility and to increase intrasurface anisotropy of the medium by providing a base layer comprising iron or iron-cobalt alloy between a substrate and a magnetic film comprising a partial oxide of cobalt. CONSTITUTION:The magnetic film of this invention is obtained by reactive sputtering with using metal cobalt as a target in an oxygen atmosphere or by sputtering with using a mixture of metal cobalt Co and cobalt oxide CoO as a target. By providing a base layer comprising iron or iron-cobalt alloy, the magnetic film comprising a partial oxide of cobalt has >=500 intrasurface coercive force, and moreover, >=500 intrasurface coercive force and >=0.6 squareness ratio with large energy product. The intrasurface coercive force Hc (represents intrasurface direction) of the magnetic film is larger than the perpendicular coercive force Hcrt. angle, and the squareness ratio is larger than (perpendicular residual magnetization Mrrt. angle/saturation magnetization Ms). This indicates that the film is an intrasurface anisotropic film.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、高密度記録の可能な磁
気記録媒体に関する。さらに詳しくは、フレキシブルデ
ィスク、磁気テープ、ハードディスクに好適な磁気記録
媒体及びその製造法に関する。 【0002】 【従来の技術】従来、密度の高い磁気記録の可能な垂直
磁気記録媒体としてCo−Cr合金薄膜、Co部分酸化
物薄膜、Fe−Co合金の部分酸化物薄膜等が提案され
ている。これらの部分酸化物薄膜は大きな垂直磁気異方
性を持ち、高密度記録が可能で、更に酸化物から構成さ
れるために硬く、ヘッドの摺動に対して優れた耐摩耗性
を示す。これら部分酸化物薄膜は酸素雰囲気中での真空
蒸着、酸素雰囲気中での反応性スパッタリングにより作
製可能である。 【0003】ところで、従来の方法である面内記録方式
でも、保磁力を高めることにより記録密度を高めること
が可能である。コバルトの部分酸化膜では、作成条件を
選択することによりその異方性の方向を垂直にすること
もできるし、面内にすることもできる。 【0004】面内方向に異方性を持ったコバルト部分酸
化膜は、従来斜め蒸着法により作成されてきた。しかし
乍ら、得られたコバルト部分酸化膜は面内で1軸異方性
を持つため、ディスク状磁気記録媒体には使用できなか
った。そこで、本発明者らは垂直入射による面内磁化容
易なコバルト部分酸化膜の作成方法として、アルゴンガ
ス圧を下げたスパッタリング法を提案した。この方法に
より、面内保磁力1000Oe以上の磁性膜を得ること
が可能になったが、場合によって保磁力が低下する、い
わゆる再現性に問題があった。 【0005】 【発明が解決しようとする課題】本発明は、再現性の良
い、面内異方性の大きい磁気記録媒体を提供することを
目的とする。 【0006】 【課題を解決するための手段】本発明者らはかかる実情
に鑑み鋭意研究の結果、鉄または鉄・コバルト合金から
なる下地層を設けることにより上記課題が解決されるこ
とを見出し、本発明に到達したものである。すなわち、
本発明の第1は、基板と、コバルトの部分酸化物からな
る磁性膜との間に、鉄または鉄・コバルト合金からなる
下地層を設けたことを特徴とする磁気記録媒体を、本発
明の第2は、スパッタリング法により、基板上に鉄また
は鉄・コバルト合金からなる下地層、コバルトの部分酸
化物からなる磁性膜の順に堆積することを特徴とする磁
気記録媒体の製造法を、それぞれ内容とするものである
。 【0007】本発明に使用される基板としては、厚み1
0μm〜数mmの、ポリエステル、ポリイミドなどの有
機高分子製の板、シートもしくはフィルム、アルミニウ
ム、ステンレスなどの金属板、ガラス板等が使用できる
。 【0008】本発明におけるコバルト部分酸化物からな
る磁性膜は、金属コバルトをターゲットとした酸素雰囲
気中反応性スパッタリング、または金属コバルトCoと
酸化コバルトCoOの混合物をターゲットとしたスパッ
タリングにより得られる。実用的なスパッタリング法と
しては、直流マグネトロンスパッタリング法と高周波マ
グネトロンスパッタリング法がある。本発明の面内保磁
力の大きなコバルト部分酸化物からなる磁性膜、即ち面
内保磁力並びに面内角型比の大きい磁性膜は、高周波ス
パッタリング法により好適に得られる。さらにスパッタ
リングガス圧が低い方が面内保磁力の大きな磁性膜が得
られる。したがって、特に低アルゴンガス圧、高周波マ
グネトロンスパッタリング法で面内保磁力の大きな磁性
膜が得られる。スパッタリングガス圧が高いか、または
直流法を使用すると垂直磁気異方性が高まり、面内方向
保磁力は小さくなる傾向を示す。基板温度は特に制限を
受けないが、むしろ室温で高い面内保磁力を持った磁性
膜が得られるのは本発明の特徴である。 【0009】また酸素中反応性スパッタリング法、部分
酸化物ターゲットのスパッタリングいずれの方法でもほ
ぼ同等の面内異方性が得られる。飽和磁化も重要なパラ
メーターであり、酸化度により制御できる。飽和磁化は
大きいほど低密度再生出力は高まるが、記録密度は下が
る傾向があり、ノイズも増大する。また飽和磁化は適当
な値にすべきである。適当な飽和磁化は300−700
emu/cm3 の範囲にある。再生出力は厚みに比例
するが、厚すぎると媒体が硬くなりすぎヘッドタッチが
悪化するので、1000−5000Åが適当である。 【0010】ところで、前記した如く、以上の方法には
再現性が悪いという欠点がある。すなわち、同一条件で
スパッタリングを繰り返しているうちに徐々に面内保磁
力が低下し、垂直磁化膜になるという現象である。この
問題は、スパッタリングの際に薄い鉄または鉄・コバル
ト合金からなる下地層を設けることにより解消される。 鉄または鉄・コバルト合金からなる下地層を設けること
により、面内保磁力500以上、更には面内保磁力50
0以上且つ面内角型比0.6以上で、エネルギー積の大
きいコバルト部分酸化膜が得られる。図1に本発明で得
られる典型的な磁性膜の磁化曲線を示した(後述する実
施例1により得られた例)。面内保磁力Hc‖(以下、
記号「‖」は面内を意味する)の方が垂直保磁力Hc⊥
より大きく、また角型比(面内残留磁化)Mr‖/飽和
磁化Ms)が(垂直残留磁化Mr⊥/飽和磁化Ms)よ
りも大きく、この磁化膜が面内異方性膜であることを示
している。 【0011】コバルト部分酸化膜の磁気特性は下地層の
スパッタリング条件に影響される。面内異方性の大きな
膜を得るためには高周波マグネトロンスパッタリング法
が適している。さらにアルゴンガス圧は0.5ー15m
Torr が適している。鉄または鉄.コバルト合金の
組成はFe1−x Cox ( 0≦x≦0.8)、す
なわちコバルト0ー80原子%のものが好ましい。コバ
ルト単独では保磁力が低下する。これらの条件では該下
地層の厚みは10−500Åの範囲で充分効果を発揮し
、より好ましくは50−200Åの範囲である。500
Åより厚くなると、面内角型比は大きくなるものの保磁
力が極端に低下する。 【0012】スパッタリングに先立ち、スパッタリング
容器内を高真空状態にすることは非常に重要なことであ
る。真空度の悪い状態でスパッタリングを行うと垂直異
方性が発現しやすい。本発明においても真空度を上げる
ことが必要であるが、鉄または鉄・コバルト合金下地層
を設けた場合には、少々真空度が悪くても安定的に面内
異方性の大きな磁性膜が得られるという特徴がある。 【0013】前記した如く、従来、面内保磁力の大きな
コバルト部分酸化膜は斜め蒸着法で得られており、蒸着
元素の付着効率が悪いといった問題があったが、本発明
方法は実質的に垂直入射であり、これら問題が少ない。 また斜め蒸着膜は面内の1方向に異方性があり、テープ
用としては構わないもののフローピーディスク等には使
用できないという問題があったが、本発明で得られる磁
性膜は面内等方的であり、フロッピーディスク等回転型
媒体として問題無く使用できる。本発明の媒体は、部分
酸化物で硬く、ヘッドの摺動に対する耐久性も優れてい
る。しかし、さらにヘッドと媒体間のスペーシングを増
大しない範囲内で保護膜、潤滑剤をコーティングするこ
とはヘッドの走行性、耐久性を高めるので好ましい。 【0014】本発明の媒体はリング型ヘッドにより好適
に記録再生が行われる。リングヘッドを用いて記録再生
する場合、再生出力は磁性膜の保磁力・飽和磁化・角型
比・厚みの積の0.5乗に比例し、記録密度は保磁力の
0.5乗に比例することが知られている。したがって、
本発明の媒体は記録密度が高く、再生出力の高い媒体を
提供するものである。なお、コバルト部分酸化膜中にN
i,Cr,Al,Nb,Mn,Ta,W,Mo,Zr,
Ti,V,Si等の第3元素を添加し耐食性等を向上せ
しめた媒体、また鉄または鉄・コバルト合金下地層中に
その結晶性向、磁性を変えない程度にNi等を添加した
媒体も当然本発明の範囲に包合される。 【0015】 【実施例】以下、実施例によって本発明を更に具体的に
説明するが、本発明はこれらにより何ら制限されるもの
ではない。 【0016】実施例1 高周波マグネトロンスパッタリング法により鉄・コバル
ト(Fe40Co60)合金下地層、コバルト部分酸化
膜の順にスパッタリングした。スパッタリング装置は、
同一真空槽内に直径6インチのFe40Co60ならび
にCo:CoOが6:4(モル比)からなるターゲット
を備えているものを用いた。基板としては、厚み30ミ
クロンのポリイミドフィルムを使用した。ターゲットと
基板ホルダーは同一寸法であり、7cmの距離で対向さ
せた。この装置ではスパッタ粒子は実質的に垂直入射さ
せた。真空を破ることなくFe40Co60合金下地層
、Co部分酸化膜の順にスパッタリングした。スパッタ
リングチャンバー内の真空度が1.2×10−5Tor
rに達した段階でアルゴンガスを流量20ccm 導入
し、アルゴンガス圧2.3mTorr とした。高周波
パワー250Wで12秒スパッタリングし、厚み90Å
のFe40Co60下地層を得た。引き続き、アルゴン
ガス流量20ccm 、アルゴンガス圧5mTorr 
、高周波パワー600Wで3分間スパッタリングし、厚
み2740Åのコバルト部分酸化膜を得た。飽和磁化4
50emu/cm3 、面に平行に測定した保磁力は1
000  Oe、面内角型比0.72であった。スパッ
タリング条件を表1、表2に、磁気特性を表3に示す。 また磁化曲線を図1に示した。 【0017】実施例2ー4 Fe40Co60合金下地層のスパッタリング圧力を変
えた以外は実施例1と同様に作成した。それらの結果を
表1、表2、表3にまとめた。同表の結果から、アルゴ
ンガス圧の影響は小さいことがわかる。 【0018】比較例1、実施例5、6 Fe40Co60下地層のスパッタリングにおいて、真
空度を9×10−6Torr、アルゴンガス圧を1mT
orr とし、スパッタリング時間を変え、Fe40C
o60合金下地層の厚みを変えた以外は実施例1と同様
に作成した。それらの結果を表1、表2、表3にまとめ
た。同表の結果から、Fe40Co60合金下地層の厚
みは100Å程度が適当で、それより厚すぎると保磁力
が低下することがわかる。 【0019】比較例2、実施例7、8 スパッタリング前の到達真空度を3×10−6Torr
まで高め、下地層合金としてFe60Co40を使用し
、かつその下地層の厚みを変えた以外は実施例1と同様
にして作成した。それらの結果を表1、表2、表3にま
とめた。同表の結果から、真空度の高いほうが内面異方
性が高まることがわかる。 【0020】実施例9 鉄・コバルト合金下地層は表1の条件で作成した。続い
てコバルト部分酸化膜は酸素雰囲気中で反応性スパッタ
リングにより作成した。ターゲットとしてコバルトを使
用し、アルゴンガスを20ccm 導入し、3mTor
r とした。さらに酸素を8ccm 導入した。900
Wで1分間スパッタリングし、2240Åのコバルト部
分酸化膜を得た。その磁気特性を表1、表2、表3に示
した。同表の結果から、コバルト部分酸化膜は反応性ス
パッタリングによっても好適に得られることがわかる。 【0021】比較例3 下地層としてコバルトを使用した。アルゴンガス圧5m
Torr で、パワー500W、6秒間スパッタリング
した。 引き続き、実施例9と同様にして反応性スパッタリング
によりコバルト部分酸化膜を得た。その磁気特性を表1
、表2、表3に示した。同表の結果から、コバルト下地
層では内面異方性の大きなコバルト部分酸化膜は得られ
ないことがわかる。 【0022】実施例10 下地層として鉄を使用した。アルゴンガス圧5mTor
r で、パワー500W、6秒間スパッタリングした。 引き続き、実施例9と同様にして反応性スパッタリング
によりコバルト部分酸化膜を得た。その磁気特性を表1
、表2、表3に示した。同表の結果から、鉄下地層でも
内面異方性の大きなコバルト部分酸化膜が得られること
がわかる。 【0023】 【表1】 【0024】 【表2】 【0025】 【表3】       【0026】 【発明の効果】コバルト部分酸化膜をスパッタリング法
で得るに際し、鉄・コバルト合金下地層を設けることに
より、面内異方性の大きなコバルト部分酸化膜を安定的
に得ることができる。得られた磁気記録媒体は再生出力
が高く、記録密度が高く、耐久性に優れている。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium capable of high-density recording. More specifically, the present invention relates to a magnetic recording medium suitable for flexible disks, magnetic tapes, and hard disks, and a method for manufacturing the same. [0002] Conventionally, Co--Cr alloy thin films, Co partial oxide thin films, Fe-Co alloy partial oxide thin films, etc. have been proposed as perpendicular magnetic recording media capable of high-density magnetic recording. . These partial oxide thin films have large perpendicular magnetic anisotropy, enable high-density recording, and are hard because they are composed of oxides, exhibiting excellent wear resistance against head sliding. These partial oxide thin films can be produced by vacuum evaporation in an oxygen atmosphere or reactive sputtering in an oxygen atmosphere. By the way, even in the conventional longitudinal recording method, it is possible to increase the recording density by increasing the coercive force. In a cobalt partial oxide film, the anisotropy direction can be made vertical or in-plane by selecting the formation conditions. A cobalt partial oxide film having anisotropy in the in-plane direction has conventionally been produced by an oblique evaporation method. However, since the obtained cobalt partial oxide film had in-plane uniaxial anisotropy, it could not be used for disk-shaped magnetic recording media. Therefore, the present inventors proposed a sputtering method in which the argon gas pressure is lowered as a method for forming a cobalt partial oxide film that is easily magnetized in-plane by perpendicular incidence. Although this method has made it possible to obtain a magnetic film with an in-plane coercive force of 1000 Oe or more, there is a problem in so-called reproducibility, in which the coercive force decreases in some cases. SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic recording medium with good reproducibility and large in-plane anisotropy. [Means for Solving the Problems] In view of the above-mentioned circumstances, the present inventors have conducted intensive research and found that the above-mentioned problems can be solved by providing a base layer made of iron or an iron-cobalt alloy. This has led to the present invention. That is,
A first aspect of the present invention provides a magnetic recording medium characterized in that an underlayer made of iron or an iron-cobalt alloy is provided between a substrate and a magnetic film made of a partial oxide of cobalt. The second describes a method for producing a magnetic recording medium, which is characterized by depositing an underlayer made of iron or an iron-cobalt alloy and a magnetic film made of a cobalt partial oxide on a substrate in that order by sputtering. That is. The substrate used in the present invention has a thickness of 1
A plate, sheet or film made of an organic polymer such as polyester or polyimide, a metal plate such as aluminum or stainless steel, or a glass plate having a size of 0 μm to several mm can be used. The magnetic film made of cobalt partial oxide in the present invention can be obtained by reactive sputtering in an oxygen atmosphere using metallic cobalt as a target, or by sputtering using a mixture of metallic cobalt Co and cobalt oxide CoO as a target. Practical sputtering methods include DC magnetron sputtering and high frequency magnetron sputtering. The magnetic film of the present invention made of a cobalt partial oxide having a large in-plane coercive force, that is, a magnetic film having a large in-plane coercive force and in-plane squareness ratio, can be suitably obtained by a high-frequency sputtering method. Furthermore, the lower the sputtering gas pressure, the greater the in-plane coercive force that can be obtained. Therefore, a magnetic film with a large in-plane coercive force can be obtained especially by low argon gas pressure and high frequency magnetron sputtering method. When the sputtering gas pressure is high or the direct current method is used, the perpendicular magnetic anisotropy increases and the in-plane coercive force tends to decrease. Although the substrate temperature is not particularly limited, it is rather a feature of the present invention that a magnetic film having a high in-plane coercive force can be obtained at room temperature. [0009]Also, substantially the same in-plane anisotropy can be obtained by either the reactive sputtering method in oxygen or the sputtering method using a partial oxide target. Saturation magnetization is also an important parameter and can be controlled by the degree of oxidation. The larger the saturation magnetization, the higher the low-density reproduction output, but the recording density tends to decrease and noise also increases. Also, the saturation magnetization should be set to an appropriate value. Appropriate saturation magnetization is 300-700
It is in the emu/cm3 range. The reproduction output is proportional to the thickness, but if it is too thick, the medium becomes too hard and head touch deteriorates, so a thickness of 1000 to 5000 Å is appropriate. However, as mentioned above, the above method has the drawback of poor reproducibility. That is, as sputtering is repeated under the same conditions, the in-plane coercive force gradually decreases, resulting in a perpendicularly magnetized film. This problem can be solved by providing a thin underlayer of iron or iron-cobalt alloy during sputtering. By providing an underlayer made of iron or iron-cobalt alloy, in-plane coercive force of 500 or more, and even in-plane coercive force of 50
With an in-plane squareness ratio of 0 or more and an in-plane squareness ratio of 0.6 or more, a cobalt partial oxide film with a large energy product can be obtained. FIG. 1 shows a magnetization curve of a typical magnetic film obtained by the present invention (an example obtained by Example 1, which will be described later). In-plane coercive force Hc‖ (hereinafter,
The symbol “‖” means in-plane) has a higher vertical coercive force Hc⊥
and the squareness ratio (in-plane residual magnetization Mr‖/saturation magnetization Ms) is larger than (perpendicular residual magnetization Mr⊥/saturation magnetization Ms), indicating that this magnetized film is an in-plane anisotropic film. It shows. The magnetic properties of the cobalt partial oxide film are influenced by the sputtering conditions of the underlying layer. High frequency magnetron sputtering is suitable for obtaining films with large in-plane anisotropy. Furthermore, the argon gas pressure is 0.5-15m.
Torr is suitable. iron or iron. The composition of the cobalt alloy is preferably Fe1-x Cox (0≦x≦0.8), that is, 0 to 80 atomic percent of cobalt. Cobalt alone reduces coercive force. Under these conditions, the thickness of the underlayer is sufficiently effective in the range of 10-500 Å, more preferably in the range of 50-200 Å. 500
When the thickness becomes thicker than Å, the in-plane squareness ratio increases, but the coercive force decreases extremely. [0012] Prior to sputtering, it is very important to bring the inside of the sputtering container to a high vacuum state. If sputtering is performed in a poor vacuum state, vertical anisotropy is likely to occur. Although it is necessary to increase the degree of vacuum in the present invention, when an iron or iron-cobalt alloy underlayer is provided, a magnetic film with large in-plane anisotropy can be stably produced even if the degree of vacuum is slightly poor. It has the characteristic of being obtained. As mentioned above, conventionally, a cobalt partial oxide film with a large in-plane coercive force has been obtained by an oblique evaporation method, which has had the problem of poor adhesion efficiency of evaporated elements, but the method of the present invention substantially improves Since the incidence is perpendicular, these problems are less likely to occur. In addition, the obliquely deposited film has anisotropy in one in-plane direction, and although it may be used for tapes, it cannot be used for floppy disks, etc. However, the magnetic film obtained by the present invention has anisotropy in one in-plane direction It can be used as a rotating medium such as a floppy disk without any problem. The medium of the present invention is a partial oxide, is hard, and has excellent durability against head sliding. However, it is preferable to coat the head with a protective film or lubricant within a range that does not increase the spacing between the head and the medium, since this improves the running performance and durability of the head. [0014] In the medium of the present invention, recording and reproduction are suitably performed using a ring-type head. When recording and reproducing using a ring head, the reproduction output is proportional to the 0.5th power of the product of the coercive force, saturation magnetization, squareness ratio, and thickness of the magnetic film, and the recording density is proportional to the 0.5th power of the coercive force. It is known to do. therefore,
The medium of the present invention provides a medium with high recording density and high reproduction output. Note that N is present in the cobalt partial oxide film.
i, Cr, Al, Nb, Mn, Ta, W, Mo, Zr,
Of course, there are also media with added third elements such as Ti, V, and Si to improve corrosion resistance, and media with Ni etc. added to the iron or iron-cobalt alloy base layer to an extent that does not change the crystal orientation or magnetism. It is within the scope of the present invention. EXAMPLES The present invention will now be explained in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 An iron-cobalt (Fe40Co60) alloy base layer and a cobalt partial oxide film were sputtered in this order by high-frequency magnetron sputtering. The sputtering equipment is
A vacuum chamber equipped with a target of Fe40Co60 having a diameter of 6 inches and a Co:CoO ratio of 6:4 (mole ratio) was used. A polyimide film with a thickness of 30 microns was used as the substrate. The target and substrate holder had the same dimensions and were opposed to each other at a distance of 7 cm. In this apparatus, the sputtered particles were substantially perpendicularly incident. The Fe40Co60 alloy base layer and the Co partial oxide film were sputtered in this order without breaking the vacuum. The degree of vacuum in the sputtering chamber is 1.2 x 10-5 Tor
When the temperature reached r, argon gas was introduced at a flow rate of 20 ccm, and the argon gas pressure was set at 2.3 mTorr. Sputtered for 12 seconds with high frequency power of 250W to a thickness of 90Å.
A Fe40Co60 underlayer was obtained. Subsequently, the argon gas flow rate was 20 ccm, and the argon gas pressure was 5 mTorr.
Sputtering was performed for 3 minutes at a high frequency power of 600 W to obtain a cobalt partial oxide film with a thickness of 2740 Å. Saturation magnetization 4
50 emu/cm3, coercive force measured parallel to the plane is 1
000 Oe, and the in-plane squareness ratio was 0.72. The sputtering conditions are shown in Tables 1 and 2, and the magnetic properties are shown in Table 3. Moreover, the magnetization curve is shown in FIG. Example 2-4 A film was prepared in the same manner as in Example 1 except that the sputtering pressure of the Fe40Co60 alloy underlayer was changed. The results are summarized in Table 1, Table 2, and Table 3. From the results in the same table, it can be seen that the influence of argon gas pressure is small. Comparative Example 1, Examples 5 and 6 In sputtering the Fe40Co60 underlayer, the degree of vacuum was 9 x 10-6 Torr, and the argon gas pressure was 1 mT.
orr, change the sputtering time, and Fe40C
It was produced in the same manner as in Example 1 except that the thickness of the O60 alloy base layer was changed. The results are summarized in Table 1, Table 2, and Table 3. From the results in the same table, it can be seen that the appropriate thickness of the Fe40Co60 alloy underlayer is about 100 Å, and that if it is too thick, the coercive force decreases. Comparative Example 2, Examples 7 and 8 The ultimate vacuum level before sputtering was 3×10-6 Torr.
Example 1 was prepared in the same manner as in Example 1, except that Fe60Co40 was used as the base layer alloy and the thickness of the base layer was changed. The results are summarized in Table 1, Table 2, and Table 3. From the results in the same table, it can be seen that the higher the degree of vacuum, the higher the internal anisotropy. Example 9 An iron/cobalt alloy base layer was prepared under the conditions shown in Table 1. Subsequently, a cobalt partial oxide film was formed by reactive sputtering in an oxygen atmosphere. Using cobalt as a target, introduce 20ccm of argon gas and set the temperature to 3mTor.
It was set as r. Furthermore, 8 ccm of oxygen was introduced. 900
Sputtering was performed with W for 1 minute to obtain a cobalt partial oxide film with a thickness of 2240 Å. The magnetic properties are shown in Table 1, Table 2, and Table 3. From the results in the same table, it can be seen that a cobalt partial oxide film can also be suitably obtained by reactive sputtering. Comparative Example 3 Cobalt was used as the underlayer. Argon gas pressure 5m
Sputtering was performed at a power of 500 W for 6 seconds at Torr. Subsequently, a cobalt partial oxide film was obtained by reactive sputtering in the same manner as in Example 9. Table 1 shows its magnetic properties.
, shown in Tables 2 and 3. From the results in the same table, it can be seen that a cobalt partial oxide film with large inner surface anisotropy cannot be obtained with a cobalt underlayer. Example 10 Iron was used as the base layer. Argon gas pressure 5mTor
Sputtering was performed for 6 seconds at a power of 500 W. Subsequently, a cobalt partial oxide film was obtained by reactive sputtering in the same manner as in Example 9. Table 1 shows its magnetic properties.
, shown in Tables 2 and 3. From the results in the same table, it can be seen that a cobalt partial oxide film with large inner surface anisotropy can be obtained even with an iron base layer. [Table 1] [Table 2] [Table 3] [Table 3] [Effect of the invention] When a cobalt partial oxide film is obtained by sputtering method, by providing an iron-cobalt alloy base layer, , a cobalt partial oxide film with large in-plane anisotropy can be stably obtained. The obtained magnetic recording medium has high reproduction output, high recording density, and excellent durability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1で得られた磁気記録媒体の磁化曲線で
ある。
FIG. 1 is a magnetization curve of the magnetic recording medium obtained in Example 1.

Claims (1)

【特許請求の範囲】 【請求項1】  基板と、コバルトの部分酸化物からな
る磁性膜との間に、鉄または鉄・コバルト合金からなる
下地層を設けたことを特徴とする磁気記録媒体。 【請求項2】  鉄または鉄・コバルト合金からなる下
地層の厚みが10ー500Åである請求項1記載の磁気
記録媒体。 【請求項3】  鉄または鉄・コバルト合金の組成がF
e1−x Cox ( 0≦x≦0.8)で表される請
求項1 又は2 記載の磁気記録媒体。 【請求項4 】  面内保磁力が500 Oe以上で且
つ面内角型比が0.6以上である請求項1、2又は3記
載の磁気記録媒体。 【請求項5】  コバルトの部分酸化物からなる磁性膜
の飽和磁化が300ー700emu/cm3 である請
求項1 、2 、3 又は4 記載の磁気記録媒体。 【請求項6】  スパッタリング法により基板上に鉄ま
たは鉄・コバルト合金からなる下地層を堆積したのち、
コバルトの部分酸化物からなる磁性膜をスパッタリング
法で実質的に垂直入射しながら堆積することを特徴とす
る磁気記録媒体の製造法。
[Scope of Claims] [Claim 1] A magnetic recording medium characterized in that an underlayer made of iron or an iron-cobalt alloy is provided between a substrate and a magnetic film made of a partial oxide of cobalt. 2. The magnetic recording medium according to claim 1, wherein the underlayer made of iron or iron-cobalt alloy has a thickness of 10 to 500 Å. [Claim 3] The composition of iron or iron-cobalt alloy is F
The magnetic recording medium according to claim 1 or 2, wherein e1-xCox (0≦x≦0.8). 4. The magnetic recording medium according to claim 1, wherein the in-plane coercive force is 500 Oe or more and the in-plane squareness ratio is 0.6 or more. 5. The magnetic recording medium according to claim 1, wherein the magnetic film made of partial oxide of cobalt has a saturation magnetization of 300 to 700 emu/cm 3 . [Claim 6] After depositing a base layer made of iron or an iron-cobalt alloy on the substrate by a sputtering method,
A method for manufacturing a magnetic recording medium, characterized in that a magnetic film made of a partial oxide of cobalt is deposited by a sputtering method with substantially perpendicular incidence.
JP2409091A 1990-02-19 1991-01-23 Magnetic recording medium and its production Withdrawn JPH04248115A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2409091A JPH04248115A (en) 1991-01-23 1991-01-23 Magnetic recording medium and its production
EP19910102259 EP0443478A3 (en) 1990-02-19 1991-02-18 Magnetic recording medium and method for preparing the same
US08/024,109 US5326637A (en) 1990-02-19 1993-02-23 Magnetic recording medium having a Co-O magnetic layer, and specified in-plane properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2409091A JPH04248115A (en) 1991-01-23 1991-01-23 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPH04248115A true JPH04248115A (en) 1992-09-03

Family

ID=12128689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2409091A Withdrawn JPH04248115A (en) 1990-02-19 1991-01-23 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPH04248115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544672B1 (en) 1994-11-11 2003-04-08 Hitachi, Ltd. Magnetic recording medium and magnetic storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544672B1 (en) 1994-11-11 2003-04-08 Hitachi, Ltd. Magnetic recording medium and magnetic storage

Similar Documents

Publication Publication Date Title
US5326637A (en) Magnetic recording medium having a Co-O magnetic layer, and specified in-plane properties
JP3809418B2 (en) Magnetic recording medium and magnetic recording apparatus
JP2002208129A (en) Magnetic recording medium, its manufacturing method and magnetic recording device
JP4585214B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP3666853B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP2006185489A (en) Magnetic recording medium and magnetic storage device
JP2625169B2 (en) Method of manufacturing magnetic disk medium
JPH11110732A (en) Magnetic recording medium
JPH04248115A (en) Magnetic recording medium and its production
JPH04232613A (en) Magnetic recording medium and its manufacture
JP2001189006A (en) Magnetic recording medium, method of producing the same and magnetic recording reproducing device
JP3437024B2 (en) Magnetic recording media
JPH0827927B2 (en) Magnetic recording media
JPH0817032A (en) Magnetic recording medium and its production
JPH04119517A (en) Magnetic recording medium and production thereof
JPH05325163A (en) Magnetic recording medium
JP2006040410A (en) Method for manufacturing magnetic recording medium
JPH0315245B2 (en)
JPH03165315A (en) Magnetic recording medium and production thereof
JPH0757237A (en) Magnetic recording medium and its production
CA2036496A1 (en) Magnetic recording medium and method for preparing the same
JPH04311809A (en) Perpendicular magnetic recording medium and production thereof
JPH03241517A (en) Perpendicular magnetic recording medium and recording/ reproducing method
JPH11175944A (en) Magnetic recording medium and magnetic recording device
JPS63249926A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514