JPH0680419A - Production of oxide superconductor thin film and superconducting tunnel junction and superconducting element - Google Patents

Production of oxide superconductor thin film and superconducting tunnel junction and superconducting element

Info

Publication number
JPH0680419A
JPH0680419A JP4228575A JP22857592A JPH0680419A JP H0680419 A JPH0680419 A JP H0680419A JP 4228575 A JP4228575 A JP 4228575A JP 22857592 A JP22857592 A JP 22857592A JP H0680419 A JPH0680419 A JP H0680419A
Authority
JP
Japan
Prior art keywords
layer
thin film
superconducting
amount
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4228575A
Other languages
Japanese (ja)
Inventor
Yoshiaki Terajima
喜昭 寺島
Toshie Sato
利江 佐藤
Tadao Miura
忠男 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4228575A priority Critical patent/JPH0680419A/en
Publication of JPH0680419A publication Critical patent/JPH0680419A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a method for producing an oxide superconductor thin film having an infinite layer structure of good quality without using a high- pressure process and a method for producing a superconducting tunnel junction of good quality in a simple production process. CONSTITUTION:Atoms or molecules in an amount of a nearly one atomic layer expressed by the formula A1-xRExOz [A denotes alkaline earth element; RE denotes rare earth element; (x) denote 0<=(x)<1; (z) denotes the amount of oxygen] and atoms or molecules in an amount of one atomic layer of Cuz are alternately deposited by a method for forming a thin film satisfying conditions of T>=500, 0.1<=P<1 and P>=0.005T-2.9 when the substrate temperature in forming the film is T ( deg.C) and the oxygen partial pressure in an atmospheric gas in forming the film is P (Pa). Thereby, the objective oxide superconductor layer having an infinite layer structure is formed. A nonsuperconductor layer composed of the elements of the same construction is formed according to a method for forming the thin film satisfying the conditions of T>=500, P<0.1 and P<0.005T-2.9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶構造が単純なACuO
2 型の酸化物超電導体薄膜の製造方法、それを用いた超
電導トンネル接合の製造方法、および超電導素子に関す
る。
The present invention relates to ACuO having a simple crystal structure.
The present invention relates to a method for producing a 2- type oxide superconductor thin film, a method for producing a superconducting tunnel junction using the thin film, and a superconducting element.

【0002】[0002]

【従来の技術】ジョセフソン接合として知られる超電導
トンネル接合は、一般的には 2層の超電導体の間に、膜
厚10nm〜 100nm程度の薄い非超電導体層(トンネル層)
を介在させた構造を有している。この接合は、超高速か
つ低消費電力型のスイッチング素子や、磁場、マイクロ
波、放射線等の超高感度センサ等として応用が期待され
ている。
2. Description of the Related Art A superconducting tunnel junction known as a Josephson junction is generally a thin non-superconducting layer (tunnel layer) with a film thickness of about 10 nm to 100 nm between two layers of superconductors.
Has a structure in which is interposed. This junction is expected to be applied as an ultra-high-speed and low-power-consumption switching element, an ultra-sensitive sensor for magnetic fields, microwaves, radiation, etc.

【0003】また、超電導体としては、従来、金属系材
料例えばNb3 Snが用いられてきたが、金属系超電導体は
臨界温度が低いことから、冷媒として液体ヘリウムを用
いる必要があり、コストが高いという問題を有してい
た。これに対して、銅酸化物系超電導体の発見以降、液
体窒素温度を超える臨界温度を有する超電導材料が実現
され、エレクトロニクス分野への応用の可能性が大幅に
広がっている。
Conventionally, a metallic material such as Nb 3 Sn has been used as the superconductor. However, since the metallic superconductor has a low critical temperature, it is necessary to use liquid helium as a refrigerant, which is costly. Had the problem of being expensive. On the other hand, since the discovery of the copper oxide superconductor, a superconducting material having a critical temperature higher than the temperature of liquid nitrogen has been realized, and the possibility of application to the electronics field has greatly expanded.

【0004】上記したような臨界温度が液体窒素温度を
超える酸化物超電導体としては、超電導の臨界温度Tc
が約 90Kの Y系超電導体(Y1 Ba2 Cu3 O 7-α(0<α<
1))、同約110KのBi系酸化物超電導体(Bi2 Sr2 Ca2 Cu
3 O z )等が知られている。しかし、これらの酸化物超
電導体の結晶構造は複雑で、例えば Y系超電導体の場
合、単位結晶は BaO層、 CuO層、 BaO層、 CuO2 層、 Y
層、 CuO2 層の 6層からなっており、またBi系超電導体
ではそれ以上の数の層からなっている。
As an oxide superconductor whose critical temperature exceeds the liquid nitrogen temperature as described above, the critical temperature T c of superconductivity is
Y-based superconductor (Y 1 Ba 2 Cu 3 O 7-α (0 <α <
1)), about 110K of Bi-based oxide superconductor (Bi 2 Sr 2 Ca 2 Cu
3 O z ), etc. are known. However, the crystal structure of these oxide superconductors is complicated. For example, in the case of Y-based superconductors, the unit crystals are BaO layer, CuO layer, BaO layer, CuO 2 layer, YO
It consists of 6 layers, CuO 2 layer, and more layers in Bi-based superconductors.

【0005】ところで、酸化物超電導体を電子デバイス
へ応用するためには、薄膜化する必要がある。しかし、
Y系やBi系等の酸化物超電導体では、上記したように結
晶構造が複雑であることから、良質な薄膜を作製するこ
とが困難で、膜中に結晶欠陥が生じ易く、また膜表面が
粗くなり易いという欠点があった。このような欠点は、
電子デバイスに応用する際に大きな障害となっている。
By the way, in order to apply an oxide superconductor to an electronic device, it is necessary to make it thin. But,
In Y-based and Bi-based oxide superconductors, since the crystal structure is complicated as described above, it is difficult to produce a good quality thin film, crystal defects are likely to occur in the film, and the film surface is It had a drawback that it became coarse. Such drawbacks are
It is a big obstacle when applied to electronic devices.

【0006】これに対して、 CuO2 層と(A1-x REx )層
( Aはアルカリ土類元素、REは希土類元素を示す)とが
交互に重なっただけの簡単な結晶構造を有する、ACuO2
型(以下、無限レイアー構造と記す)の酸化物超電導体
((A1-x REx )Cu1 O y )が知られている。しかし、上
記結晶構造の酸化物超電導体は、 25000気圧というよう
な高圧中でのみ合成されており、高圧合成以外では組成
が(A1-x REx )Cu1 Oy であっても、無限レイアー構造
とは異なる、例えば 2重の CuOチェーンを持つ結晶構造
をとり、超電導体とはならなかったり、また上記非超電
導相が無限レイアー構造の超電導体中に混入して、十分
な超電導特性が得られないという問題があった。
On the other hand, it has a simple crystal structure in which CuO 2 layers and (A 1-x RE x ) layers (A is an alkaline earth element and RE is a rare earth element) are alternately stacked. , ACuO 2
An oxide superconductor ((A 1-x RE x ) Cu 1 O y ) of a type (hereinafter referred to as an infinite layer structure) is known. However, the oxide superconductor having the above crystal structure is synthesized only under high pressure such as 25000 atm, and even if the composition is (A 1-x RE x ) Cu 1 O y , it is infinite. For example, it has a crystal structure with a double CuO chain different from the layer structure and does not become a superconductor, or the above non-superconducting phase is mixed in a superconductor with an infinite layer structure and sufficient superconducting properties are obtained. There was a problem that I could not get it.

【0007】一方、超電導トンネル接合を形成する場
合、トンネル層としては、例えば MgO等の絶縁体やAg等
の常電導体を用いることができる。ただし、トンネル層
上に良質な超電導体層を形成するためには、エピタキシ
ャル成長させることが好ましい。このため、例えば Y系
酸化物超電導体に対しては、結晶構造や格子定数が近似
する非超電導体としてPr1 Ba2 Cu3 O 7-α等が用いられ
ている。しかし、このように超電導体層と非超電導体層
とに、異なる構成元素からなる膜を用いることは、製造
工程を複雑にするという問題があった。
On the other hand, when forming a superconducting tunnel junction, an insulator such as MgO or a normal conductor such as Ag can be used as the tunnel layer. However, in order to form a high-quality superconductor layer on the tunnel layer, it is preferable to perform epitaxial growth. For this reason, for example, for Y-based oxide superconductors, Pr 1 Ba 2 Cu 3 O 7-α is used as a non-superconductor whose crystal structure and lattice constant are similar. However, using films made of different constituent elements for the superconducting layer and the non-superconducting layer as described above has a problem that the manufacturing process is complicated.

【0008】[0008]

【発明が解決しようとする課題】上述したように、無限
レイアー構造のACuO2 型酸化物超電導体は、結晶構造的
には電子デバイスへの応用に有利と考えられているもの
の、従来の製造方法では数万気圧以上の高圧中でのみ合
成されており、高圧合成以外では高品質の超電導体が得
難いという問題を有していた。
As described above, the ACuO 2 type oxide superconductor having an infinite layer structure is considered to be advantageous for application to electronic devices in terms of crystal structure, but the conventional manufacturing method. Has been synthesized only in a high pressure of tens of thousands of atmospheres, and there is a problem that it is difficult to obtain a high-quality superconductor except for high pressure synthesis.

【0009】一方、超電導トンネル接合を形成する場合
には、トンネル層上に酸化物超電導体層をエピタキシャ
ル成長させることが、良質な超電導体層を得る上で必要
となるが、従来の酸化物超電導体と非超電導体との組み
合せでは、これらの構成元素が異なるため、製造工程が
複雑になるという問題があった。
On the other hand, when forming a superconducting tunnel junction, it is necessary to epitaxially grow an oxide superconductor layer on the tunnel layer in order to obtain a good quality superconductor layer. There is a problem in that the manufacturing process becomes complicated in the combination of the non-superconductor with the above because the constituent elements are different.

【0010】本発明は、このような課題に対処してなさ
れたもので、高圧プロセスを用いることなく、良質な無
限レイアー構造の酸化物超電導体を製造することを可能
にした酸化物超電導体薄膜の製造方法を提供することを
目的としており、また他の目的は、簡易な製造工程で、
エピタキシャル成長させた超電導体層とトンネル層とが
得られる超電導トンネル接合の製造方法を提供すること
にある。さらには、各層の結晶性が高く、信頼性に優れ
た例えばトンネル接合が安定して得られる超電導素子を
提供することを目的としている。
The present invention has been made in view of the above problems, and it is possible to manufacture an oxide superconductor thin film having a good infinite layer structure without using a high-pressure process. Another object of the present invention is to provide a simple manufacturing process.
It is an object of the present invention to provide a method of manufacturing a superconducting tunnel junction in which a superconductor layer and a tunnel layer which are epitaxially grown can be obtained. Furthermore, it is an object of the present invention to provide a superconducting element in which each layer has a high crystallinity and is highly reliable, for example, a tunnel junction can be stably obtained.

【0011】[0011]

【課題を解決するための手段】本発明の酸化物超電導体
薄膜の製造方法は、基板上に、(A1-x REx 1-δCu1Oy
(ただし、 Aはアルカリ土類元素から選ばれる少なくと
も 1種の元素を、REは希土類元素から選ばれる少なくと
も 1種の元素を示し、 xは 0≦ x< 1を満足するRE元素
による A元素の置換量を、δは 0≦δ≦ 0.3を満足する
Aサイトイオンの欠損量を、 yは 2程度の酸素量を表
す。以下同じ)で表される酸化物超電導体薄膜を成膜す
るにあたり、成膜時の前記基板温度をT(℃)、成膜時
の雰囲気ガス中の酸素分圧をP(Pa)としたとき、T≧
500、 0.1≦P< 1、かつP≧0.005T-2.9の条件を満
足させた薄膜形成法により、 A1-x REx O z (zは酸素量
を表す。以下同じ)の略 1原子層分の原子あるいは分子
と、 CuOz の 1原子層分の原子あるいは分子とを、交互
に堆積させることを特徴としている。
The method for producing an oxide superconductor thin film according to the present invention comprises: (A 1-x RE x ) 1-δ Cu 1 O y
(However, A represents at least one element selected from alkaline earth elements, RE represents at least one element selected from rare earth elements, and x represents an A element of RE element satisfying 0 ≦ x <1. The amount of substitution, δ is the amount of A site ion deficiency satisfying 0 ≦ δ ≦ 0.3, and y is the amount of oxygen of about 2. The same shall apply hereinafter) when forming an oxide superconductor thin film. When the substrate temperature during film formation is T (° C.) and the oxygen partial pressure in the atmosphere gas during film formation is P (Pa), T ≧
Approximately 1 atomic layer of A 1-x RE x O z (z represents the amount of oxygen. The same applies hereinafter) by a thin film forming method satisfying the conditions of 500, 0.1 ≦ P <1, and P ≧ 0.005T-2.9. It is characterized by alternately depositing a minute atom or molecule and one atomic layer or molecule of CuO z .

【0012】また、本発明の超電導トンネル接合の製造
方法は、基板上に、成膜時の前記基板温度をT(℃)、
成膜時の雰囲気ガス中の酸素分圧をP(Pa)としたと
き、T≧ 500、 0.1≦P< 1、かつP≧ 0.005T-2.9の
条件を満足させた薄膜形成法により、 A1-x REx O z
略 1原子層分の原子あるいは分子と、 CuOz の 1原子層
分の原子あるいは分子とを交互に堆積させ、(A1-x R
Ex 1-δCu1 O y で表される酸化物超電導体層を形成
する第1の工程と、前記酸化物超電導体層上に、T≧50
0、かつP< 0.1またはP< 0.005T-2.9の条件を満足
させた薄膜形成法により、斜方晶の(A1-x REx 1-δCu
1 O y または(A1-x REx 2 Cu1 O 3 からなる非超電導
体層を形成する第2の工程と、前記非超電導体層上に、
前記第1の工程と同様にして、(A1-x REx 1-δCu1 O
y で表される酸化物超電導体層を形成する第3の工程と
を有することを特徴としている。
In the method for manufacturing a superconducting tunnel junction according to the present invention, the substrate temperature during film formation is T (° C.) on the substrate,
When the oxygen partial pressure in the atmosphere gas at the time of film formation is P (Pa), A 1 is formed by a thin film forming method that satisfies the conditions of T ≧ 500, 0.1 ≦ P <1, and P ≧ 0.005T-2.9. -x RE x O z About one atomic layer of atoms or molecules and CuO z of one atomic layer of atoms or molecules are alternately deposited, and (A 1-x R
E x ) 1-δ Cu 1 O y The first step of forming an oxide superconductor layer represented by: and T ≧ 50 on the oxide superconductor layer.
The orthorhombic (A 1-x RE x ) 1-δ Cu was formed by the thin film formation method satisfying the conditions of 0 and P <0.1 or P <0.005T-2.9.
A second step of forming a non-superconductor layer made of 1 O y or (A 1-x RE x ) 2 Cu 1 O 3, and on the non-superconductor layer,
Similar to the first step, (A 1-x RE x ) 1-δ Cu 1 O
and a third step of forming an oxide superconductor layer represented by y .

【0013】さらに、本発明の超電導素子は、正方晶の
(A1-x REx 1-δCu1 O y からなる超電導体層と、斜方
晶の(A1-x REx 1-δCu1 O y または(A1-x REx 2 Cu
1 O3 からなる非超電導体層との積層構造を有すること
を特徴としている。
Furthermore, the superconducting element of the present invention is a tetragonal crystal.
(A 1-x RE x ) 1-δ Cu 1 O y Superconductor layer and orthorhombic (A 1-x RE x ) 1-δ Cu 1 O y or (A 1-x RE x ) 2 Cu
It is characterized by having a laminated structure with a non-superconductor layer made of 1 O 3 .

【0014】[0014]

【作用】本発明の酸化物超電導体薄膜の製造方法におい
ては、成膜時の基板温度をT(℃)、成膜時の雰囲気ガ
ス中の酸素分圧をP(Pa)としたとき、図1の領域A
(斜線部分)に示すように、T≧ 500、 0.1≦P< 1、
かつP≧ 0.005T-2.9の条件を満足させたスパッタリン
グ法や蒸着法等の薄膜形成法によって、 A1-x RExOz
略 1原子層分の原子あるいは分子と、 CuOz の 1原子層
分の原子あるいは分子とを交互に堆積させている。上記
した成膜条件を満足させることにより、隣接する 2種の
酸化物層が互いに良好に反応して、基板面に対して垂直
方向に、(A1-x REx 1-δ層と CuO2 層が交互に並ん
だ、無限レイアー構造の(A1-x REx1-δCu1 O y 薄膜
が形成され、c軸が膜面に垂直に配向した酸化物超電導
体薄膜となる。
In the method for producing an oxide superconductor thin film of the present invention, when the substrate temperature during film formation is T (° C.) and the oxygen partial pressure in the atmosphere gas during film formation is P (Pa), Area A of 1
As shown in the shaded area, T ≧ 500, 0.1 ≦ P <1,
A thin film forming method such as a sputtering method or a vapor deposition method satisfying the condition of P ≧ 0.005T-2.9 and the atoms or molecules of about 1 atomic layer of A 1-x RE x O z and 1 atom of CuO z . Layers of atoms or molecules are deposited alternately. By satisfying the above-mentioned film forming conditions, the two adjacent oxide layers react well with each other, and the (A 1-x RE x ) 1-δ layer and the CuO layer are perpendicular to the substrate surface. An infinite layer structure (A 1-x RE x ) 1-δ Cu 1 O y thin film in which two layers are alternately arranged is formed, and an oxide superconductor thin film in which the c-axis is oriented perpendicular to the film surface is formed.

【0015】ここで、成膜時の基板温度Tが 500℃未満
では、成膜後の膜は非晶質となる。また、酸素分圧Pが
0.1Pa未満(図1の領域C)では、絶縁体である(A1-x
REx2 Cu1 O 3 となり、酸素分圧Pが 1.0Pa以上では
無限レイアー構造となるが、半導体的な電気特性を示す
物質しか得られない。さらに、成膜時の基板温度Tと酸
素分圧Pとの関係がP< 0.005T-2.9であると(図1の
領域B)、非超電導体である斜方晶の(A1-x REx 1-δ
Cu1 O y が混入したり、あるいは斜方晶(A1-xREx
1-δCu1 O y のみしか得られない。すなわち、T≧ 50
0、 0.1≦P< 1、かつP≧ 0.005T-2.9の条件を満足
させた薄膜形成法によって初めて、 2重のCuOチェーン
を有する非超電導相の(A1-x REx 1-δCu1 O y や(A
1-x REx 2Cu1 O 3 の混入がなく、良質な無限レイア
ー構造の(A1-x REx 1-δCu1 O y 超電導薄膜を得るこ
とができる。
Here, when the substrate temperature T during film formation is less than 500 ° C., the film after film formation becomes amorphous. Also, the oxygen partial pressure P is
Below 0.1 Pa (region C in Figure 1), it is an insulator (A 1-x
RE x ) 2 Cu 1 O 3 and an oxygen partial pressure P of 1.0 Pa or more results in an infinite layer structure, but only substances exhibiting semiconductor-like electrical characteristics can be obtained. Furthermore, if the relationship between the substrate temperature T and the oxygen partial pressure P during film formation is P <0.005T-2.9 (region B in FIG. 1), the non-superconductor orthorhombic (A 1-x RE x ) 1-δ
Cu 1 O y is mixed or orthorhombic (A 1-x RE x )
Only 1-δ Cu 1 O y can be obtained. That is, T ≧ 50
For the first time, a non-superconducting phase (A 1-x RE x ) 1-δ Cu with a double CuO chain will be produced by a thin film formation method satisfying the conditions of 0, 0.1 ≦ P <1, and P ≧ 0.005T-2.9. 1 O y or (A
It is possible to obtain a high-quality (A 1-x RE x ) 1-δ Cu 1 O y superconducting thin film having no infinite layer structure without mixing 1-x RE x ) 2 Cu 1 O 3 .

【0016】また、上述したように成膜時の条件を、T
≧ 500かつP< 0.1、またはT≧500かつP< 0.005T-
2.9とすると、これら以外の条件は上記した酸化物超電
導体薄膜の製造と同一条件で、いずれも格子定数が無限
レイアー構造の(A1-x REx1-δCu1 Oy とほぼ等し
い、非超電導相の斜方晶(A1-x REx 1-δCu1 O y や、
(A1-x REx 2 Cu1 O 3 を形成することができる。従っ
て、上記した酸化物超電導体層の製造工程に引き続い
て、上記非超電導体層を形成すると共に、その上に再度
無限レイアー構造の酸化物超電導体層を形成すれば、成
膜パラメータを変化させるだけの簡単な工程で、各層の
結晶性に優れ、かつ各層をエピタキシャル成長させた、
信頼性の高い超電導トンネル接合を作製することができ
る。
As described above, the conditions for film formation are
≧ 500 and P <0.1, or T ≧ 500 and P <0.005T-
2.9, the other conditions are the same as those of the above oxide superconductor thin film production, and the lattice constants are almost equal to (A 1-x RE x ) 1-δ Cu 1 O y of infinite layer structure. , Orthorhombic (A 1-x RE x ) 1-δ Cu 1 O y of the non-superconducting phase,
(A 1-x RE x ) 2 Cu 1 O 3 can be formed. Therefore, following the manufacturing process of the oxide superconductor layer described above, if the non-superconductor layer is formed and an oxide superconductor layer having an infinite layer structure is formed thereon again, the film formation parameters are changed. The crystallinity of each layer is excellent and each layer is epitaxially grown by a simple process.
A highly reliable superconducting tunnel junction can be manufactured.

【0017】さらに、上記した無限レイアー構造の正方
晶(A1-x REx 1-δCu1 O y からなる超電導体層と、斜
方晶(A1-x REx 1-δCu1 O y または(A1-x REx 2 Cu
1 O3 からなる非超電導体層との積層構造を有する超電
導素子は、上述したように各層の結晶性に優れることか
ら、信頼性に優れた例えばトンネル接合等を再現性よく
得ることが可能となる。
Further, a superconductor layer made of tetragonal (A 1-x RE x ) 1-δ Cu 1 O y having the above-mentioned infinite layer structure and an orthorhombic (A 1-x RE x ) 1-δ Cu 1 O y or (A 1-x RE x ) 2 Cu
Since the superconducting element having a laminated structure with the non-superconducting layer made of 1 O 3 has excellent crystallinity of each layer as described above, it is possible to obtain highly reliable, for example, tunnel junction with good reproducibility. Become.

【0018】[0018]

【実施例】次に、本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0019】図2は、本発明の酸化物超電導体薄膜の製
造方法を実施するためのスパッタリング装置の一構成例
を示す図である。同図において、1は成膜室であり、こ
の成膜室1内には、基板2を保持する基板ホルダ3と、
マグネトロンスパッタ用の円板ターゲット4、5、6と
が対向配置されている。基板ホルダ3はヒータ7を有し
ており、また各円板ターゲット4、5、6の前方にはそ
れぞれシャッタ8、9、10が設置されている。各円板
ターゲット4、5、6には、それぞれスパッタ用電源1
1、12、13が接続されている。なお、符号14、1
5はガス供給系、16は排気系である。
FIG. 2 is a diagram showing an example of the construction of a sputtering apparatus for carrying out the method for producing an oxide superconductor thin film of the present invention. In the figure, 1 is a film forming chamber, and in this film forming chamber 1, a substrate holder 3 for holding a substrate 2
Disc targets 4, 5 and 6 for magnetron sputtering are arranged to face each other. The substrate holder 3 has a heater 7, and shutters 8, 9, and 10 are installed in front of the disk targets 4, 5, and 6, respectively. Each of the disk targets 4, 5 and 6 has a power supply 1 for sputtering.
1, 12, 13 are connected. Note that reference numerals 14 and 1
Reference numeral 5 is a gas supply system, and 16 is an exhaust system.

【0020】実施例1 図1に示すスパッタリング装置を用いて、 x=0の無限レ
イアー構造を有する酸化物超電導体薄膜として、Sr1-δ
Cu1 O y の薄膜を作製した。基板2としては、20mmφ×
0.3mmtの SrTiO3 の (100)面を使用した。この基板2を
基板ホルダ3に設置し、ヒータ7により基板温度を 500
℃〜 620℃とした後、ガス供給系14、15から純度 9
9.999%のArガスおよび O2 ガスを同量供給し、成膜室1
内のガス圧力を 0.9Pa(酸素分圧:0.45Pa)とした。タ
ーゲット4、6としては、SrCO3焼結体、Cu金属を用
い、それぞれにRF電力、DC電力を各電源11、13から
供給し、以下の手順で成膜した。
Example 1 Using the sputtering apparatus shown in FIG. 1, as an oxide superconductor thin film having an infinite layer structure with x = 0, Sr 1-δ
A thin film of Cu 1 O y was prepared. As the substrate 2, 20 mmφ ×
A 0.3 mmt SrTiO 3 (100) plane was used. This substrate 2 is set on the substrate holder 3 and the substrate temperature is set to 500 by the heater 7.
After the temperature is set to ℃ ~ 620 ℃, the purity from the gas supply system 14, 15
The same amount of 9.999% Ar gas and O 2 gas are supplied, and the film formation chamber 1
The gas pressure inside was 0.9 Pa (oxygen partial pressure: 0.45 Pa). As the targets 4 and 6, a SrCO 3 sintered body and Cu metal were used, and RF power and DC power were supplied from the power supplies 11 and 13, respectively, and a film was formed by the following procedure.

【0021】まず、SrCO3 ターゲット4のシャッタ8を
開け、上記 SrTiO3 (100)基板2上に SrOz を 0.9原子
層分堆積した。次いで、上記SrCO3 ターゲット4のシャ
ッタ8を閉じた後、Cuターゲット6上のシャッター10
を開け、 CuOz を 1原子層分堆積した。以上の操作を 1
00回繰り返し、膜厚約35nmの薄膜を成膜した。
First, the shutter 8 of the SrCO 3 target 4 was opened, and 0.9 atomic layer of SrO z was deposited on the SrTiO 3 (100) substrate 2. Next, after closing the shutter 8 of the SrCO 3 target 4, the shutter 10 on the Cu target 6 is closed.
Opened and deposited CuO z for one atomic layer. The above operation 1
This was repeated 00 times to form a thin film with a thickness of about 35 nm.

【0022】なお、約 1原子層ずつ成膜するスパッタ条
件の 1例としては、SrCO3 ターゲット4にRF電力を110W
供給しつつシャッタ8の開放時間を 110秒間とし、Cuタ
ーゲット6にDC電力を 51W供給しつつシャッタ10の開
放時間を13秒間とした。
As an example of the sputtering conditions for depositing one atomic layer at a time, an RF power of 110 W is applied to the SrCO 3 target 4.
The shutter 8 was opened for 110 seconds while being supplied, and the shutter 10 was opened for 13 seconds while supplying DC power of 51 W to the Cu target 6.

【0023】このようにして得た薄膜の結晶構造をX線
回折により評価し、膜の表面状態をSEMで評価した。
また、電気抵抗の温度依存性は、通常の 4端子法により
測定した。図3に、一例として、基板温度 580℃、酸素
分圧0.45Paで作製した薄膜の成膜直後のX線回折パター
ンを示す。 SrTiO3 の回折ピーク以外は、無限レイアー
構造の (001)と (002)の回折ピークだけが観測され、こ
の実施例で作製した薄膜はc軸が基板面に対して垂直に
配向した、無限レイアー構造のSr0.9 Cu1 O yの単相膜
であることが判明した。また、膜面は鏡面で、 2万倍の
SEM像でも表面に析出物や凹凸は観測されなかった。
この薄膜の臨界温度Tc はオンセットが103Kで、ゼロ抵
抗は 92Kであった。
The crystal structure of the thin film thus obtained was evaluated by X-ray diffraction, and the surface condition of the film was evaluated by SEM.
The temperature dependence of electrical resistance was measured by the usual four-terminal method. As an example, FIG. 3 shows an X-ray diffraction pattern immediately after film formation of a thin film formed at a substrate temperature of 580 ° C. and an oxygen partial pressure of 0.45 Pa. Except for the diffraction peak of SrTiO 3, only the diffraction peaks of (001) and (002) of the infinite layer structure were observed. The thin film prepared in this example had an infinite layer whose c-axis was oriented perpendicular to the substrate surface. It was found that the structure was a single-phase film of Sr 0.9 Cu 1 O y . In addition, the film surface was a mirror surface, and no precipitate or unevenness was observed on the surface even in a SEM image of 20,000 times.
The critical temperature Tc of this thin film was 103K onset and 92K zero resistance.

【0024】なお、酸素分圧0.45Paで、基板温度を 500
℃〜 620℃とした場合には、前述の無限レイアー構造単
相の薄膜がいずれも得られた。
The substrate temperature is 500 at an oxygen partial pressure of 0.45 Pa.
When the temperature was from ℃ to 620 ℃, all of the above-mentioned single-phase infinite layer structure thin films were obtained.

【0025】実施例2 実施例1で堆積した SrOz 層に代えて、SrCO3 ターゲッ
ト4とNdターゲット5上のシャッタ8、9を同時に開
け、 2元同時スパッタリング法によってSr0.9 Nd0.1 O
z 層を堆積する以外は、実施例1と同様にして、(Sr
0.9 Nd0.1 )Cu1 Oy 薄膜を成膜した。このようにして
得た薄膜も、c軸が基板面に対して垂直に配向した、無
限レイアー構造の単相膜であり、Tc はオンセットが 4
0Kで、ゼロ抵抗は 26Kであった。また、膜面も実施例1
と同様に、 2万倍のSEM像でも表面に析出物や凹凸は
観測されなかった。
Example 2 Instead of the SrO z layer deposited in Example 1, shutters 8 and 9 on the SrCO 3 target 4 and the Nd target 5 were simultaneously opened, and Sr 0.9 Nd 0.1 O 2 was formed by a binary co-sputtering method.
As in Example 1, except that the z layer is deposited, (Sr
A 0.9 Nd 0.1 ) Cu 1 O y thin film was formed. The thin film thus obtained is also a single-phase film having an infinite layer structure in which the c-axis is oriented perpendicular to the substrate surface, and T c has an onset of 4
At 0K, the zero resistance was 26K. In addition, the film surface is also as in Example
Similarly to the above, no precipitate or unevenness was observed on the surface even in a SEM image of 20,000 times.

【0026】比較例1 成膜時の酸素分圧を0.25Pa(全圧 0.5Pa)とし、また基
板温度を代える以外は、実施例1と同様にして Sr-Cu-O
系薄膜を成膜した。その結果、基板温度が 640℃〜 680
℃ではb軸配向した非超電導体の斜方晶Sr1 Cu1 O 2
混在し、 700℃以上ではb軸配向した非超電導体の斜方
晶Sr1 Cu1 O 2 の単相膜となった。この相の格子定数
a、cは、それぞれ0.39nm、0.36nmである。これらの膜
の電気抵抗の温度異存性は半導体的で超電導にはならな
かったが、表面性は良好であった。 比較例2 成膜時の酸素分圧を0.02Pa(全圧 0.9Pa)とし、また基
板温度を 580℃として、実施例1と同様にして Sr-Cu-O
系薄膜を成膜した。この膜のX線回折パターンを図4に
示す。無限レイアー構造の回折ピークは観測されず、絶
縁体であるa軸配向したSr2 Cu1 O 3 の単相膜であっ
た。この相の格子定数b、cはそれぞれ0.39nm、0.35nm
である。この膜の表面性も良好であった。
Comparative Example 1 Sr-Cu-O was prepared in the same manner as in Example 1 except that the oxygen partial pressure during film formation was 0.25 Pa (total pressure 0.5 Pa) and the substrate temperature was changed.
A system thin film was formed. As a result, the substrate temperature is 640 ℃ ~ 680
At 700 ° C, b-axis oriented non-superconductor orthorhombic Sr 1 Cu 1 O 2 is mixed, and at 700 ° C or higher, it becomes a single-phase film of b-axis oriented non-superconductor orthorhombic Sr 1 Cu 1 O 2. It was The lattice constants a and c of this phase are 0.39 nm and 0.36 nm, respectively. The temperature dependence of the electric resistance of these films was semiconductor-like and did not result in superconductivity, but the surface properties were good. Comparative Example 2 Sr-Cu-O was used in the same manner as in Example 1 except that the oxygen partial pressure during film formation was 0.02 Pa (total pressure 0.9 Pa) and the substrate temperature was 580 ° C.
A system thin film was formed. The X-ray diffraction pattern of this film is shown in FIG. No diffraction peak of the infinite layer structure was observed, and the film was a single-phase film of Sr 2 Cu 1 O 3 that was an a-axis oriented insulator. The lattice constants b and c of this phase are 0.39 nm and 0.35 nm, respectively.
Is. The surface property of this film was also good.

【0027】比較例3 成膜時の酸素分圧を 1.5Pa(全圧 3.0Pa)とし、また基
板温度を 580℃として、実施例1と同様にして Sr-Cu-O
系薄膜を成膜した。この膜のX線回折パターンは、図3
と同様に無限レイアー構造のものであったが、電気抵抗
は半導体的に温度の低下と共に増大し、 10Kまで超電導
になることはなかった。
Comparative Example 3 Sr-Cu-O was used in the same manner as in Example 1 except that the oxygen partial pressure during film formation was 1.5 Pa (total pressure 3.0 Pa) and the substrate temperature was 580 ° C.
A system thin film was formed. The X-ray diffraction pattern of this film is shown in FIG.
Although it had an infinite layer structure as well, the electric resistance increased semiconductingly as the temperature decreased, and it did not become superconducting up to 10K.

【0028】実施例3 次に、超電導−絶縁体−超電導体(S-I-S)タイプの超電
導トンネル接合を有する超電導素子を形成した例につい
て、図5を参照して説明する。
Example 3 Next, an example of forming a superconducting element having a superconducting-insulator-superconductor (SIS) type superconducting tunnel junction will be described with reference to FIG.

【0029】基板21としては SrTiO3 の (100)面を用
い、これを 580℃に加熱した後、酸素ガス分圧を0.45Pa
(全圧 0.9Pa)で、実施例1と同様にして、Sr0.9 Cu1
O y超電導体層22を厚さ35nmで形成した。続いて、こ
の下部超電導体層22上に、酸素ガス分圧を0.02Paとす
ること以外は、上記Sr0.9 Cu1 Oy 超電導体層22の形
成と同様にして、比較例2に示したSr2 Cu1 O 3 絶縁体
の 5ユニットセル層23を形成した。この相の格子定数
b、cはそれぞれ0.39nm、0.35nmで、下部超電導体層2
2としてのSr0.9 Cu1 Oy の格子定数(a=b=0.39nm)にほ
ぼ一致するため、Sr2 Cu1 O 3 絶縁体層23はa軸配向
してエピタキシャルに成長しており、この層を積層後
も、その表面は鏡面を呈していた。このようにして積層
した膜を成膜室から取り出すことなく、酸素ガス分圧を
0.45Paに戻し、下部超電導体層22と同じくc軸配向さ
せたSr0.9 Cu1 Oy 超電導体層24を、厚さ35nmでさら
に積層した。この上部のSr0.9 Cu1 Oy 超電導体層24
の積層後も表面性は良好であった。また、下部超電導体
層22および上部超電導体層24に、それぞれ電極2
5、26を設け、電気的特性を測定したところ、 80K以
下の温度領域においてジョセフソン特性が観測された。
As the substrate 21, a (100) plane of SrTiO 3 was used, which was heated to 580 ° C. and then the oxygen gas partial pressure was 0.45 Pa.
(Total pressure 0.9 Pa), in the same manner as in Example 1, Sr 0.9 Cu 1
The O y superconductor layer 22 was formed with a thickness of 35 nm. Subsequently, the Sr 0.9 Cu 1 O y superconducting layer 22 shown in Comparative Example 2 was formed in the same manner as the Sr 0.9 Cu 1 O y superconducting layer 22 except that the oxygen gas partial pressure was set to 0.02 Pa on the lower superconducting layer 22. A 5 unit cell layer 23 of 2 Cu 1 O 3 insulator was formed. The lattice constants b and c of this phase are 0.39 nm and 0.35 nm, respectively.
Since it substantially coincides with the lattice constant (a = b = 0.39 nm) of Sr 0.9 Cu 1 O y as 2 , the Sr 2 Cu 1 O 3 insulator layer 23 is epitaxially grown with the a-axis oriented. Even after laminating the layers, the surface thereof had a mirror surface. The oxygen gas partial pressure can be controlled without taking out the film thus laminated from the film formation chamber.
After returning to 0.45 Pa, a Sr 0.9 Cu 1 O y superconductor layer 24, which was c-axis oriented like the lower superconductor layer 22, was further laminated with a thickness of 35 nm. Sr 0.9 Cu 1 O y superconductor layer 24 on this
The surface property was good even after the lamination. Further, the electrodes 2 are formed on the lower superconducting layer 22 and the upper superconducting layer 24, respectively.
When Nos. 5 and 26 were provided and the electrical characteristics were measured, Josephson characteristics were observed in the temperature range of 80K or lower.

【0030】なお、上記した各実施例においては、本発
明の製造方法をスパッタリング法により実施した例につ
いて説明したが、本発明はこれに限定されるものではな
く、蒸着法、クラスターイオンビーム法、CVD法等の
各種の薄膜形成法を適用することが可能である。
In each of the above-mentioned embodiments, an example in which the manufacturing method of the present invention is carried out by the sputtering method has been described, but the present invention is not limited to this, and the vapor deposition method, cluster ion beam method, Various thin film forming methods such as the CVD method can be applied.

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、数
万気圧以上の高圧プロセスを用いることなく、超電導特
性や膜表面の平滑性に優れた無限レイアー構造の酸化物
超電導体薄膜を再現性よく作製することが可能となる。
また、成膜プロセスを変えるだけの簡単な工程で、各層
の結晶性に優れた、信頼性の高い超電導トンネル接合を
得ることができる。さらに、本発明の超電導素子によれ
ば、各層の結晶性に優れることから、信頼性が高い超電
導体/非超電導体の接合、例えばトンネル接合を安定し
て得ることが可能となる。よって、本発明の超電導素子
は、上記したような接合を有する素子、例えばジョセフ
ソン素子や超電導トランジスタ等に好適である。
As described above, according to the present invention, an infinite layered oxide superconductor thin film having excellent superconducting properties and film surface smoothness can be reproduced without using a high pressure process of tens of thousands of atmospheric pressure or more. It is possible to manufacture with good performance.
In addition, it is possible to obtain a highly reliable superconducting tunnel junction in which each layer has excellent crystallinity by a simple process of changing the film forming process. Further, according to the superconducting element of the present invention, since the crystallinity of each layer is excellent, it becomes possible to stably obtain a highly reliable superconductor / non-superconductor junction, for example, a tunnel junction. Therefore, the superconducting element of the present invention is suitable for an element having the above-described junction, such as a Josephson element or a superconducting transistor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸化物超電導体薄膜の製造方法におけ
る基板温度および酸素分圧と形成される相との関係を示
す図である。
FIG. 1 is a diagram showing a relationship between a substrate temperature and an oxygen partial pressure and a phase to be formed in the method for producing an oxide superconductor thin film of the present invention.

【図2】本発明の実施例で用いたスパッタ装置の構成を
模式的に示す図である。
FIG. 2 is a diagram schematically showing a configuration of a sputtering apparatus used in an example of the present invention.

【図3】本発明の一実施例で得られた酸化物超電導体薄
膜のX線回折パターンを示す図である。
FIG. 3 is a diagram showing an X-ray diffraction pattern of an oxide superconductor thin film obtained in one example of the present invention.

【図4】本発明との比較として作製した非超電導体薄膜
のX線回折パターンを示す図である。
FIG. 4 is a diagram showing an X-ray diffraction pattern of a non-superconductor thin film produced as a comparison with the present invention.

【図5】本発明の一実施例の超電導トンネル接合を有す
る超電導素子の構成を模式的に示す断面図である。
FIG. 5 is a cross-sectional view schematically showing the configuration of a superconducting element having a superconducting tunnel junction according to an example of the present invention.

【符号の説明】[Explanation of symbols]

21……基板 22……超電導体層 23……絶縁体層 24……超電導体層 21 ... Substrate 22 ... Superconductor layer 23 ... Insulator layer 24 ... Superconductor layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA J 9276−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 39/24 ZAA J 9276-4M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、(A1-x REx 1-δCu1 O
y (ただし、 Aはアルカリ土類元素から選ばれる少なく
とも 1種の元素を、REは希土類元素から選ばれる少なく
とも 1種の元素を示し、 xは 0≦ x< 1を満足するRE元
素による A元素の置換量を、δは 0≦δ≦ 0.3を満足す
るAサイトイオンの欠損量を、 yは 2程度の酸素量を表
す)で表される酸化物超電導体薄膜を成膜するにあた
り、 成膜時の前記基板温度をT(℃)、成膜時の雰囲気ガス
中の酸素分圧をP(Pa)としたとき、T≧ 500、 0.1≦
P< 1、かつP≧ 0.005T-2.9の条件を満足させた薄膜
形成法により、 A1-x REx O z (zは酸素量を表す)の略
1原子層分の原子あるいは分子と、 CuOz (zは酸素量を
表す)の 1原子層分の原子あるいは分子とを、交互に堆
積させることを特徴とする酸化物超電導体薄膜の製造方
法。
1. An (A 1-x RE x ) 1-δ Cu 1 O film is formed on a substrate.
y (However, A is at least one element selected from alkaline earth elements, RE is at least one element selected from rare earth elements, and x is an element of the RE element satisfying 0 ≦ x <1. , Δ is the amount of A-site ion deficiency that satisfies 0 ≦ δ ≦ 0.3, and y is the oxygen content of about 2). When the substrate temperature at the time is T (° C.) and the oxygen partial pressure in the atmosphere gas at the time of film formation is P (Pa), T ≧ 500, 0.1 ≦
Abbreviation of A 1-x RE x O z (z represents the oxygen amount) by the thin film forming method satisfying the conditions of P <1 and P ≧ 0.005T-2.9.
A method for producing an oxide superconductor thin film, which comprises alternately depositing one atomic layer of atoms or molecules and one atomic layer of CuO z (z represents the amount of oxygen).
【請求項2】 基板上に、成膜時の前記基板温度をT
(℃)、成膜時の雰囲気ガス中の酸素分圧をP(Pa)と
したとき、T≧ 500、 0.1≦P< 1、かつP≧0.005T-
2.9の条件を満足させた薄膜形成法により、 A1-x REx O
z (ただし、Aはアルカリ土類元素から選ばれる少なく
とも 1種の元素を、REは希土類元素から選ばれる少なく
とも 1種の元素を示し、 xは 0≦ x< 1を満足するRE元
素による A元素の置換量を、 zは酸素量を表す)の略 1
原子層分の原子あるいは分子と、 CuOz の 1原子層分の
原子あるいは分子とを交互に堆積させ、(A1-x REx
1-δCu1 O y (δは 0≦δ≦ 0.3を満足するAサイトイ
オンの欠損量を、 yは 2程度の酸素量を表す)で表され
る酸化物超電導体層を形成する第1の工程と、 前記酸化物超電導体層上に、T≧ 500、かつP< 0.1ま
たはP< 0.005T-2.9の条件を満足させた薄膜形成法に
より、斜方晶の(A1-x REx 1-δCu1 O y または(A1-x
REx 2 Cu1 O 3 からなる非超電導体層を形成する第2
の工程と、 前記非超電導体層上に、前記第1の工程と同様にして、
(A1-x REx 1-δCu1Oy で表される酸化物超電導体層を
形成する第3の工程とを有することを特徴とする超電導
トンネル接合の製造方法。
2. The temperature of the substrate during film formation is set to T on the substrate.
(° C.), where P (Pa) is the oxygen partial pressure in the atmosphere gas during film formation, T ≧ 500, 0.1 ≦ P <1, and P ≧ 0.005T-
By the thin film formation method that satisfies the condition of 2.9, A 1-x RE x O
z (provided that A is at least one element selected from alkaline earth elements, RE is at least one element selected from rare earth elements, and x is an RE element satisfying 0 ≦ x <1) , Z is the amount of oxygen) 1
Atomic layers of atoms or molecules and CuO z of one atomic layer of atoms or molecules are alternately deposited, and (A 1-x RE x )
1-δ Cu 1 O y (δ represents the amount of A-site ion deficiency satisfying 0 ≦ δ ≦ 0.3, and y represents the amount of oxygen of about 2) First forming the oxide superconductor layer And a thin film formation method on the oxide superconductor layer satisfying the conditions of T ≧ 500 and P <0.1 or P <0.005T-2.9, the orthorhombic (A 1-x RE x ) 1-δ Cu 1 O y or (A 1-x
RE x ) 2 Cu 1 O 3 second layer forming non-superconductor layer
On the non-superconductor layer, in the same manner as the first step,
(A 1-x RE x ) 1-δ Cu 1 O y A third step of forming an oxide superconductor layer, the method for producing a superconducting tunnel junction.
【請求項3】 正方晶の(A1-x REx 1-δCu1 O y (た
だし、 Aはアルカリ土類元素から選ばれる少なくとも 1
種の元素を、REは希土類元素から選ばれる少なくとも 1
種の元素を示し、 xは 0≦ x< 1を満足するRE元素によ
る A元素の置換量を、δは 0≦δ≦ 0.3を満足するAサ
イトイオンの欠損量を、 yは 2程度の酸素量を表す)か
らなる超電導体層と、斜方晶の(A1-x REx 1-δCu1 O
y または(A1-x REx 2 Cu1 O 3 からなる非超電導体層
との積層構造を有することを特徴とする超電導素子。
3. A tetragonal (A 1-x RE x ) 1-δ Cu 1 O y (where A is at least 1 selected from alkaline earth elements).
RE is at least 1 selected from rare earth elements
X represents the element of the species, x is the substitution amount of A element by RE element satisfying 0 ≦ x <1, δ is the amount of A site ion deficiency satisfying 0 ≦ δ ≦ 0.3, and y is about 2 oxygen. (A 1-x RE x ) 1-δ Cu 1 O
A superconducting element having a laminated structure with a non-superconducting layer made of y or (A 1-x RE x ) 2 Cu 1 O 3 .
JP4228575A 1992-08-27 1992-08-27 Production of oxide superconductor thin film and superconducting tunnel junction and superconducting element Withdrawn JPH0680419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4228575A JPH0680419A (en) 1992-08-27 1992-08-27 Production of oxide superconductor thin film and superconducting tunnel junction and superconducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4228575A JPH0680419A (en) 1992-08-27 1992-08-27 Production of oxide superconductor thin film and superconducting tunnel junction and superconducting element

Publications (1)

Publication Number Publication Date
JPH0680419A true JPH0680419A (en) 1994-03-22

Family

ID=16878518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4228575A Withdrawn JPH0680419A (en) 1992-08-27 1992-08-27 Production of oxide superconductor thin film and superconducting tunnel junction and superconducting element

Country Status (1)

Country Link
JP (1) JPH0680419A (en)

Similar Documents

Publication Publication Date Title
US5151408A (en) Process for preparing a-axis oriented high-temperature superconducting thin films
EP0406126B2 (en) Substrate having a superconductor layer
US5061971A (en) Bi-based oxide superconducting tunnel junctions and manufacturing method for the same
JP3188358B2 (en) Method for producing oxide superconductor thin film
JP2740260B2 (en) Josephson element
JPS63242532A (en) Super conductor and its manufacture
KR930008648B1 (en) Perovskite super conductor readiness process
JPH0680419A (en) Production of oxide superconductor thin film and superconducting tunnel junction and superconducting element
EP0494830B1 (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
US5240904A (en) Process for preparing a-axis oriented superconducting oxide thin films
US5747427A (en) Process for forming a semiconductive thin film containing a junction
EP0624910B1 (en) Method of fabricating a Hg-based superconducting thin film
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JP3061627B2 (en) Manufacturing method of oxide superconducting tape conductor
JPS63236794A (en) Production of superconductive thin film of oxide
US5362709A (en) Superconducting device
JPH06196760A (en) Superconductive lamination thin film
JPH09260733A (en) Oxide superconducting thin film laminated body and manufacture thereof
JP2666978B2 (en) Superconducting element
JP2781331B2 (en) Manufacturing method of thin film superconductor
JPH03275504A (en) Oxide superconductor thin film and its production
JPH05170437A (en) Production of oxide superconductor
JPH0812937B2 (en) Method for producing multi-layer film including superconductor film
JP2866476B2 (en) Laminated superconductor and manufacturing method thereof
JP3315737B2 (en) Ferroelectric thin film and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102