JPH0678894B2 - Surface shape measuring instrument - Google Patents

Surface shape measuring instrument

Info

Publication number
JPH0678894B2
JPH0678894B2 JP3118474A JP11847491A JPH0678894B2 JP H0678894 B2 JPH0678894 B2 JP H0678894B2 JP 3118474 A JP3118474 A JP 3118474A JP 11847491 A JP11847491 A JP 11847491A JP H0678894 B2 JPH0678894 B2 JP H0678894B2
Authority
JP
Japan
Prior art keywords
light beam
light
test
prism
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3118474A
Other languages
Japanese (ja)
Other versions
JPH0650732A (en
Inventor
正彦 加藤
修利 関口
裕之 栗田
隆 川島
一雄 川上
敏文 植竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3118474A priority Critical patent/JPH0678894B2/en
Publication of JPH0650732A publication Critical patent/JPH0650732A/en
Publication of JPH0678894B2 publication Critical patent/JPH0678894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カメラ等に用いられる
レンズ、特に非球面レンズの面形状を非接触で測定する
面形状測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface shape measuring instrument for contactlessly measuring the surface shape of a lens used in a camera or the like, particularly an aspherical lens.

【0002】[0002]

【従来の技術】ミラーと被検物の回転駆動を組み合わせ
て被検物の全面を走査しその形状を測定する装置として
は、例えばAppl.Opt.20 NO.19,1981 pp.3367〜3377に記
載の“Aspheric surface caliblator (非球面測定
器)”がある。
2. Description of the Related Art Appl.Opt.20 NO.19,1981 pp.3367-3377 is an example of an apparatus for scanning the entire surface of an object to be measured by combining a mirror and a rotational drive of the object to be inspected. There is a description of "Aspheric surface calibrator".

【0003】図6にその概要を示すと、光源1から放出
された光ビームlはビームエクスパンダ2により光束が
広げられ、ビームスプリッタ3により参照鏡4に向かう
光束と対物レンズ5,回転ミラー6を経て被検物7の表
面に集束する光束とに分けられる。回転ミラー6及び被
検物7は図示されていない回転駆動機構により各々矢印
のように回転せしめられ、集束された光束が被検物7の
全面を走査する。この場合、回転ミラー6と被検物7と
の距離は被検物7の表面の曲率半径とほぼ一致させてお
く。被検物7の表面で反射された光束は同じ道を逆行
し、回転ミラー6,対物レンズ5を経て平行光束に変換
され、ビームスプリッタ3において参照鏡4から反射さ
れた光束と重ね合わせられ、干渉縞計数部8に入射す
る。この干渉縞計数部8では被検物7の表面の球面から
のずれ量に応じた干渉縞の移動が計数され、被検物7の
非球面量が測定される。
The outline thereof is shown in FIG. 6. The light beam 1 emitted from the light source 1 is expanded by the beam expander 2 and is directed by the beam splitter 3 toward the reference mirror 4, the objective lens 5, and the rotating mirror 6. And a light flux that is focused on the surface of the object 7 to be inspected. The rotating mirror 6 and the test object 7 are rotated as shown by arrows by a rotation driving mechanism (not shown), and the focused light flux scans the entire surface of the test object 7. In this case, the distance between the rotating mirror 6 and the object 7 to be inspected is made to substantially match the radius of curvature of the surface of the object 7 to be inspected. The light beam reflected on the surface of the object 7 travels backward along the same path, is converted into a parallel light beam through the rotating mirror 6 and the objective lens 5, and is superposed on the light beam reflected from the reference mirror 4 in the beam splitter 3. It enters the interference fringe counting unit 8. The interference fringe counting unit 8 counts the movement of the interference fringes according to the amount of deviation of the surface of the test object 7 from the spherical surface, and measures the amount of aspherical surface of the test object 7.

【0004】ところが、この装置の場合、原理的に凸面
の測定が出来ないことや非球面量の大きなものの測定が
困難であることなどの欠点がある。
However, in the case of this device, there are drawbacks such that the convex surface cannot be measured in principle and it is difficult to measure a large amount of aspherical surface.

【0005】そこで、光束が被検物上に常に集光するよ
うに対物レンズをオートフォーカス方式に構成し、非球
面量の大きいものや凸面のものも計測できるように改良
された装置として、例えば第25回自動制御連合会講演
会予稿4042(P.593〜594)に記載のものが
ある。
Therefore, as an improved device, the objective lens is constructed so that the light beam is always focused on the object to be inspected, and an object lens having a large amount of aspherical surface or a convex surface can be measured. There is one described in the proceedings of the 25th automatic control federation conference lecture 4042 (P.593 to 594).

【0006】その概要を図7に示すと、ゼーマンレーザ
ー10から放出された光束lはビームスプリッタ3によ
り参照鏡4に向かう光束とビームスプリッタ11,対物
レンズ5を経て被検物7上に集束される光束とに分けら
れる。被検物7上で反射された光は対物レンズ5で平行
光束に変換され、ビームスプリッタ11によりビームス
プリッタ3に向かう光束と光検知器12に向かう光束に
分割される。対物レンズ5は公知技術を用いることによ
り光検知器12からの信号に応じて矢印aの方向に移動
せしめられて入射光束を被検物7上に常に集光させる機
能即ちオートフォーカス機能を有している。被検物7は
矢印bで示されたように平面的(X−Y面とする)に走
査される。
The outline thereof is shown in FIG. 7. The light beam 1 emitted from the Zeeman laser 10 is focused on the object 7 through the beam splitter 3, the light beam toward the reference mirror 4, the beam splitter 11, and the objective lens 5. Light flux. The light reflected on the object 7 is converted into a parallel light flux by the objective lens 5, and is split by the beam splitter 11 into a light flux toward the beam splitter 3 and a light flux toward the photodetector 12. The objective lens 5 has a function of being moved in the direction of the arrow a in accordance with a signal from the photodetector 12 by using a known technique so that the incident light beam is always focused on the test object 7, that is, an autofocus function. ing. The object 7 is scanned in a plane (as an XY plane) as indicated by an arrow b.

【0007】入射光束の主光線が被検物7の表面に垂直
に入射しない場合には、入射光束と被検物7からの反射
光束は別の光路をたどり、横ずれした平行光束となって
対物レンズ5からビームスプリッタ11に向かう。この
横ずれ量は光検知器12により計測され、対物レンズ5
を光束に対して直交する方向(矢印c方向)に移動させ
て入射光束と反射光束とが重なるようにする。尚、これ
と共に被検物7を対応する量だけ移動させる。ビームス
プリッタ3に向かった光束はこのビームスプリッタ3に
おいて参照鏡4からの反射光と重ね合わせられて干渉縞
を形成し、干渉縞計数部8により計数される。
When the principal ray of the incident light beam does not enter the surface of the object 7 to be inspected perpendicularly, the incident light beam and the reflected light beam from the object 7 follow different optical paths and become laterally offset parallel light beams. From the lens 5 toward the beam splitter 11. This lateral shift amount is measured by the photodetector 12, and the objective lens 5
Is moved in a direction orthogonal to the light flux (direction of arrow c) so that the incident light flux and the reflected light flux overlap. Along with this, the test object 7 is moved by a corresponding amount. The light beam directed to the beam splitter 3 is superposed on the reflected light from the reference mirror 4 in the beam splitter 3 to form an interference fringe, which is counted by the interference fringe counter 8.

【0008】この装置の特徴は、オートフォーカス機能
を有しているため、非球面量の大きいものや凹面だけで
なく凸面の測定が可能なことにあるが、高精度を維持す
るためには参照鏡4と被検物7との相対的振動を抑制す
る必要があり、そのため参照鏡4を被検物7と同じ振動
系に固定する必要を生じる。
The feature of this device is that it has an autofocus function, so that it can measure not only a large amount of aspherical surface or a concave surface, but also a convex surface. However, in order to maintain high accuracy, refer to It is necessary to suppress the relative vibration between the mirror 4 and the object 7 to be inspected. Therefore, it is necessary to fix the reference mirror 4 to the same vibration system as the object 7 to be inspected.

【0009】[0009]

【発明が解決しようとする課題】しかし、振動条件とア
ッベの誤差とを同時に満足させることは困難が多く、干
渉光学系の剛性や振動系の精度に厳しいものが要求され
るので高価になると共に、振動等の機械的擾乱による影
響を軽減するための環境条件が必要になる。
However, it is often difficult to satisfy both the vibration condition and the Abbe's error at the same time, and the rigidity of the interference optical system and the accuracy of the vibration system are required to be strict. Environmental conditions are required to reduce the effects of mechanical disturbances such as vibration.

【0010】又、前述のように主光線が被検物7に垂直
に入射するように対物レンズ5を矢印cの方向に横移動
させると主光線が被検物7にあたる位置もずれるため、
このずれに対応した量だけ被検物7を適当なサーボ機構
を用いて平行移動させることが必要となり、その結果被
検物7を駆動するのに高精度のサーボ機構を必要とする
と共に測定時間も長くなるという欠点があった。
Further, as described above, when the objective lens 5 is laterally moved in the direction of arrow c so that the principal ray is vertically incident on the object to be inspected 7, the position where the principal ray hits the object to be inspected 7 also shifts.
It is necessary to move the test object 7 in parallel by using an appropriate servo mechanism by an amount corresponding to this deviation, and as a result, a high precision servo mechanism is required to drive the test object 7 and the measurement time is increased. It also had the drawback of becoming longer.

【0011】又、被検物7を平面的に移動させているた
め、深いR(曲率半径が小さく且つ開き角が大きいこ
と)の凸面又は凹面については反射光束が対物レンズ5
のNAを越えることとなり、測定ができないという欠点
も有していた。
Further, since the object to be inspected 7 is moved in a plane, the reflected light beam is reflected by the objective lens 5 for a deep R convex surface (having a small radius of curvature and a large opening angle) or a concave surface.
However, it also had a drawback that measurement was impossible.

【0012】本発明は、上記問題点に鑑み、非球面量の
大きいもの或いは曲率半径の小さいものを、凹面及び凸
面の両方について高精度に且つ短時間に測定し得る面形
状測定器を提供することを目的とする。
In view of the above problems, the present invention provides a surface shape measuring instrument which can measure a large amount of aspherical surface or a small radius of curvature on both concave and convex surfaces with high accuracy and in a short time. The purpose is to

【0013】[0013]

【課題を解決するための手段】本発明による面形状測定
器は、可干渉性の光束を発する光源と、この光束を参照
光束と試験光束とに一旦分離した後これらを結合させる
分離結合光学系と、試験光束を光軸に垂直な方向に移動
させる傾き補正光学系と、この試験光束を被検面に集束
する集束光学系と、被検面の傾きによって生ずる光束の
横ずれを検出する光検出器と、参照光束を反射する参照
鏡と、参照光束と試験光束とを結合させて生ずる干渉縞
を計数する干渉縞計数部と、から構成されていることを
特徴とするものである。又、集束光学系の光源側に、試
験光束を相異なる2つの偏光成分に分離する複屈折素子
が設けられている。又、試験光束の経路の途中にファラ
ディローテータが設けられている。
A surface shape measuring instrument according to the present invention comprises a light source which emits a coherent light beam, and a separating / coupling optical system for temporarily separating the light beam into a reference light beam and a test light beam and then combining them. And an inclination correction optical system that moves the test light beam in a direction perpendicular to the optical axis, a focusing optical system that focuses the test light beam on the surface to be inspected, and a light detection that detects the lateral deviation of the light beam caused by the inclination of the surface to be inspected. And a reference mirror that reflects the reference light beam, and an interference fringe counting unit that counts interference fringes generated by combining the reference light beam and the test light beam. A birefringent element that separates the test light beam into two different polarization components is provided on the light source side of the focusing optical system. Further, a Faraday rotator is provided in the path of the test light beam.

【0014】[0014]

【作用】傾き補正光学系により光束を光軸に垂直な方向
に移動させるようにしているため、被検面が曲面である
場合でも、被検面に対する入射位置を移動させることな
く被検面に光束を垂直に入射させることができ、従っ
て、対物レンズや測定対象物を移動させる必要がないの
で、短時間に精度良く測定を行うことができる。
Since the light beam is moved in the direction perpendicular to the optical axis by the tilt correction optical system, even if the surface to be inspected is a curved surface, it can be moved to the surface to be inspected without moving the incident position with respect to the surface to be inspected. Since the light flux can be made to enter perpendicularly, and therefore it is not necessary to move the objective lens or the object to be measured, it is possible to perform accurate measurement in a short time.

【0015】[0015]

【実施例】以下、図1乃至図4に示した本発明の一実施
例を、上述の従来技術と同一の部材には同一符号を付し
て説明する。図1は本実施例の基本式な構成を示してお
り、光源1は可視,赤外或いは紫外の光ビームlを発す
る光源であって、He−Neレーザーのように可干渉性
の光束を発するものが用いられる。15,16,17は
偏光プリズムで、p,s両偏光を分離又は結合する。1
8は1/2波長板で、軸のまわりに回転可能となってい
る。19,20はファラディローテータで、ガラス又は
結晶が用いられ、例えば光ビームの進行方向に磁場が印
加されていて入射するp,s両偏光の偏光面を45°だ
け回転する機能を持つ。尚、ガラスとしては保谷硝子株
式会社製のFR−5等を用いることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention shown in FIGS. 1 to 4 will be described below by assigning the same reference numerals to the same members as those in the above-mentioned prior art. FIG. 1 shows a basic configuration of the present embodiment. A light source 1 is a light source that emits a visible, infrared or ultraviolet light beam 1 and emits a coherent light beam like a He-Ne laser. Things are used. Polarizing prisms 15, 16 and 17 separate or combine both p and s polarized lights. 1
Reference numeral 8 is a half-wave plate, which is rotatable about its axis. Faraday rotators 19 and 20 are made of glass or crystal and have a function of rotating the polarization planes of both p and s polarized lights which are incident by applying a magnetic field in the traveling direction of the light beam by 45 °. As the glass, FR-5 manufactured by Hoya Glass Co., Ltd. can be used.

【0016】21,22はπ/4ローテータで、入射光
ビームの偏光面を右又は左に45°回転せしめる。ビー
ムスプリッタ11は、被検物7からの反射光束を分割し
て一方を後述の干渉縞計数部の方へ送り、他方を光検知
器12に向ける。30,31は直角プリズムで、プリズ
ム30は矢印で示したように紙面内で光軸に垂直な方向
に、図示されていないプリズム移動機構により駆動でき
るように保持され、プリズム31は固定されている。2
3は複屈折プリズムで、例えばロションプリズム等が用
いられ、対物レンズ5の焦点位置に固定され、対物レン
ズ5へプリズムの楔角により定まる一定の開き角をもっ
た正常光束と異常光束を供給する。これらの光束は対物
レンズ5により平行な二つの光束となって被検物7上の
例えば60μmだけ横ずれした二点に集束せしめられ
る。
Reference numerals 21 and 22 are π / 4 rotators, which rotate the plane of polarization of the incident light beam by 45 ° to the right or left. The beam splitter 11 splits the reflected light beam from the test object 7, sends one to the interference fringe counting unit described later, and directs the other to the photodetector 12. Reference numerals 30 and 31 denote right-angled prisms. The prism 30 is held in a direction perpendicular to the optical axis within the plane of the drawing so as to be driven by a prism moving mechanism (not shown), and the prism 31 is fixed. . Two
Reference numeral 3 is a birefringent prism, for example, a Rochon prism or the like is used, which is fixed at the focal position of the objective lens 5 and supplies the normal light beam and the abnormal light beam having a constant opening angle determined by the wedge angle of the prism to the objective lens 5. To do. These light fluxes are converted into two parallel light fluxes by the objective lens 5 and are focused on two points on the test object 7 which are laterally displaced by, for example, 60 μm.

【0017】又、複屈折プリズム23は対物レンズ5と
組になって図示しない回転防止機構を具備した無摩擦の
直線案内装置に保持され、やはり図示しない直線駆動装
置により被検物7と対物レンズ5との間隔が常に対物レ
ンズ5の焦点距離に等しくなるように駆動される。光検
知器12は対物レンズ5と被検物7の間隔の対物レンズ
5の焦点距離からのずれ量(でフォーカス量)及び光ビ
ームの横ずれ量を公知の手段を用いて検出し、前述の直
線駆動機構及びプリズム移動機構へ誤差信号として送
る。
The birefringent prism 23 is held together with the objective lens 5 by a frictionless linear guide device having a rotation preventing mechanism (not shown), and the object 7 and the objective lens are also held by a linear driving device (not shown). The objective lens 5 is driven so that the distance from the objective lens 5 is always equal to the focal length of the objective lens 5. The photodetector 12 detects the deviation amount (the focus amount) of the distance between the objective lens 5 and the object 7 to be inspected from the focal length of the objective lens 5 and the lateral deviation amount of the light beam by using a known means, and the above-described straight line is detected. The error signal is sent to the drive mechanism and the prism moving mechanism.

【0018】24,25,26,27は鏡である。参照
鏡4には直角プリズムを用いる。従って、p,s両偏光
成分に対応した参照光束は丁度共通の光路を逆行する形
になる。28,29は干渉縞計数部であり、例えば特公
昭51−47344号公報に開示されている偏光を利用
した可逆計数のできる光波干渉計を用いることができ
る。尚、被検物7はガラス或いはプラスチックのレンズ
又は金型等が対象となり、光軸のまわり或いは図1の矢
印方向へ回転駆動せしめられる。
Reference numerals 24, 25, 26 and 27 are mirrors. A rectangular prism is used for the reference mirror 4. Therefore, the reference light flux corresponding to both the p and s polarization components has a shape in which the reference light flux just goes backward in the common optical path. Reference numerals 28 and 29 are interference fringe counting units, and for example, a light wave interferometer capable of reversible counting utilizing polarized light disclosed in Japanese Patent Publication No. 51-47344 can be used. The object 7 to be inspected is a glass or plastic lens or metal mold, and is driven to rotate around the optical axis or in the direction of the arrow in FIG.

【0019】本実施例による面形状測定器は上述のよう
に構成されているから、光ビームlが直線偏光であって
紙面内の偏光(p偏光)から45°傾いた偏光面をもつ
ように設定されているとすれば、光ビームlは偏光プリ
ズム15によりp偏光とs偏光成分に分離され、前者は
1/2波長板18を通り楕円偏光に変換される。この偏
光状態は1/2波長板18を回転することにより変える
ことができる。この回転角は、被検物7の反射率が低い
場合例えばガラス面での反射のように4%程度の反射率
となる場合には、偏光プリズム16に入射する光をp偏
光に近い楕円偏光とし、被検物7からの反射光と参照鏡
4からの反射光量とがなるべく同程度となるように選
ぶ。逆に、被検物7が一部の金型のように反射率の高い
ものの場合には、偏光プリズム16に対し45°の方向
に偏光面を選び、なるべく等量の光が被検物7及び参照
鏡4に向かうようにする。
Since the surface shape measuring instrument according to the present embodiment is constructed as described above, the light beam 1 is linearly polarized and has a plane of polarization inclined by 45 ° from the polarized light (p polarized light) in the plane of the drawing. If set, the light beam 1 is separated into p-polarized light and s-polarized light component by the polarization prism 15, and the former passes through the half-wave plate 18 and is converted into elliptically polarized light. This polarization state can be changed by rotating the half-wave plate 18. When the reflectance of the test object 7 is low, for example, when the reflectance is about 4% such as reflection on a glass surface, this rotation angle makes the light incident on the polarization prism 16 elliptically polarized light close to p-polarized light. And the amount of reflected light from the object 7 and the amount of reflected light from the reference mirror 4 are selected to be as similar as possible. On the contrary, when the object to be inspected 7 has a high reflectance like some molds, the plane of polarization is selected in the direction of 45 ° with respect to the polarizing prism 16, and as much light as possible is inspected. And toward the reference mirror 4.

【0020】次に、偏光プリズム16では、楕円偏光の
p偏光成分がファラディローテータ19に向かい、s偏
光成分は反射されて参照鏡4に向かう。最初にp偏光成
分について述べると、ファラディローテータ19により
45°だけ偏光面が回転せしめられる。この様子を図2
に示す。p偏光を図2のIで表すと、ファラディローテ
ータ19を通過することにより例えばIIの状態に変わ
り、π/4ローテータ21に左旋性のものを用いるなら
ばこれを通過することによりIのp偏光に戻り、偏光プ
リズム17を通過してプリズム30,31を経て複屈折
プリズム23に至る。
Next, in the polarization prism 16, the p-polarized component of the elliptically polarized light is directed to the Faraday rotator 19, and the s-polarized component is reflected and directed to the reference mirror 4. First, the p-polarized component will be described. The Faraday rotator 19 rotates the plane of polarization by 45 °. Figure 2
Shown in. When the p-polarized light is represented by I in FIG. 2, it changes to the state of, for example, II by passing through the Faraday rotator 19, and if the π / 4 rotator 21 is a left-handed rotator, the p-polarized light by passing through it. Then, the light passes through the polarizing prism 17, passes through the prisms 30 and 31, and reaches the birefringent prism 23.

【0021】この複屈折プリズム23にロションプリズ
ムを用いた時にはp偏光は方向を変化させずに進み、対
物レンズ5により被検物7の表面に集束される。そし
て、p偏光は被検物7の形状による位相変化を受けた後
再び同じ光路を逆行し、対物レンズ5,複屈折プリズム
23,プリズム31,30,偏光プリズム17を通過す
る。更に、π/4ローテータ21を通過して図2のIか
らIIの状態に偏光面が変わり、更にファラディローテー
タ19を通過することによりIIからIIIの状態即ちs偏
光に変換され、偏光プリズム16で反射してビームスプ
リッタ11に至る。ここで、反射された光束は光検知器
12に入射するので、デフォーカス量及びビームの横ず
れ量が検知される。ビームスプリッタ11を通過した光
は干渉縞計数部28に向かう。
When a Rochon prism is used as the birefringent prism 23, the p-polarized light proceeds without changing its direction and is focused on the surface of the object 7 to be inspected by the objective lens 5. Then, the p-polarized light undergoes a phase change due to the shape of the object 7 to be examined, then goes back through the same optical path again, and passes through the objective lens 5, the birefringent prism 23, the prisms 31 and 30, and the polarizing prism 17. Further, the plane of polarization changes from the I to II state of FIG. 2 through the π / 4 rotator 21, and further passes through the Faraday rotator 19 to be converted from the II state to the III state, that is, s-polarized light. It is reflected and reaches the beam splitter 11. Here, since the reflected light flux enters the photodetector 12, the defocus amount and the lateral displacement amount of the beam are detected. The light that has passed through the beam splitter 11 is directed to the interference fringe counter 28.

【0022】又、偏光プリズム16に左から入射した楕
円偏光のもう一つのs偏光成分について述べると、これ
は偏光プリズム16で反射され参照鏡4への光路を左ま
わりにたどり、再び偏光プリズム16で反射され鏡25
を経て干渉縞計数部29に入射する。
The other s-polarized component of the elliptically polarized light that is incident on the polarizing prism 16 from the left will be described. This is reflected by the polarizing prism 16 and traces the optical path to the reference mirror 4 counterclockwise, and the polarizing prism 16 again. Reflected in the mirror 25
And enters the interference fringe counting unit 29.

【0023】要約すれば、偏光プリズム16に左から入
射した光束のp偏光成分は被検物7の形状に関する情報
を担って干渉縞計数部28に入射し、s偏光成分は参照
光束となり、干渉縞計数部29に入射する。
In summary, the p-polarized light component of the light beam incident on the polarization prism 16 from the left is incident on the interference fringe counter 28, carrying the information about the shape of the object 7, and the s-polarized light component is the reference light beam, causing interference. It enters the fringe counting unit 29.

【0024】以上、偏光プリズム15を通過したp偏光
成分について述べてきたが、偏光プリズム15で反射し
たs偏光成分についても全く同様の経過をたどる。s偏
光成分は、1/2波長板18により楕円偏光に変換さ
れ、鏡24,26を経て偏光プリズム16に下から入射
する。入射光束のうちp偏光成分は、偏光プリズム16
を通過して参照鏡4への光路を右まわりにたどり偏光プ
リズム16を経て干渉縞計数部28に入射する。s偏光
成分は、偏光プリズム16で反射された後ファラディロ
ーテータ20、π/4ローテータ22、鏡27、偏光プ
リズム17、プリズム30,31、複屈折プリズム23
を経てp偏光の光路に対して一定の開き角を有する異常
光の光路をとり、対物レンズ5によりp偏光の集束点に
対してシア量だけ横ずれした点に集束し、その点の形状
に対する情報を担って同じ光路を逆にたどり、対物レン
ズ5、複屈折プリズム23、プリズム31,30を経て
偏光プリズム17で反射され、鏡27、π/4ローテー
タ22、ファラディローテータ20を経てp偏光に変換
され、偏光プリズム16を通過して鏡25を経て干渉縞
計数部29に入射する。
The p-polarized light component that has passed through the polarization prism 15 has been described above, but the s-polarized light component reflected by the polarization prism 15 follows exactly the same process. The s-polarized light component is converted into elliptically polarized light by the half-wave plate 18, and enters the polarizing prism 16 from below through the mirrors 24 and 26. The p-polarized light component of the incident light beam is reflected by the polarization prism 16
After passing through, the light path to the reference mirror 4 is traced in the clockwise direction and is incident on the interference fringe counting section 28 via the polarization prism 16. The s-polarized light component is reflected by the polarization prism 16 and then Faraday rotator 20, π / 4 rotator 22, mirror 27, polarization prism 17, prisms 30 and 31, and birefringence prism 23.
The optical path of the extraordinary light having a constant opening angle with respect to the optical path of the p-polarized light is taken through, and is focused by the objective lens 5 to a point laterally displaced from the focusing point of the p-polarized light by the shear amount, and information on the shape of that point is obtained. The same optical path is followed in reverse, and is reflected by the polarizing prism 17 through the objective lens 5, the birefringent prism 23, the prisms 31 and 30, and is converted into p-polarized light through the mirror 27, the π / 4 rotator 22, and the Faraday rotator 20. Then, the light passes through the polarizing prism 16, passes through the mirror 25, and enters the interference fringe counting unit 29.

【0025】以上のことから、干渉縞計数部28では、
偏光プリズム15を透過した成分のうちのp成分がファ
ラディローテータ19を往復二回通過することによりs
偏光に変換されて被検物7の一場所の形状の情報を担っ
た信号光として入射し、偏光プリズム15で反射した成
分のうちのp成分が参照光として入射する。同様に、干
渉縞計数部29では、偏光プリズム15で反射した成分
のうちs偏光がファラディローテータ20を往復二回通
過することによりp偏光に変換されて被検物7のシア量
だけ横ずれした場所の形状情報を担った信号光として入
射し、偏光プリズム15を透過した成分のうちのs偏光
成分が参照光として入射する。いいかえると、被検物7
のシア量だけ離れた二点に対して偏光の異なる独立の干
渉計が二つあることになる。そして、両方の参照光路及
び信号光路は共通光路に近い配置をとっているため、振
動或いは空気の流動等の機械的擾乱や被検物7の回転駆
動系の精度の影響を受けにくい構成となっている。
From the above, in the interference fringe counting section 28,
The p component of the component transmitted through the polarization prism 15 passes through the Faraday rotator 19 twice to make s
The signal light that has been converted into polarized light and carries the information on the shape of one location of the test object 7 is incident, and the p component of the components reflected by the polarization prism 15 is incident as reference light. Similarly, in the interference fringe counter 29, the s-polarized light of the component reflected by the polarization prism 15 passes through the Faraday rotator 20 twice to be converted into the p-polarized light, which is laterally displaced by the shear amount of the test object 7. The s-polarized light component of the component transmitted through the polarization prism 15 is incident as the reference light. In other words, subject 7
There are two independent interferometers with different polarizations for two points separated by the shear amount of. Since both the reference optical path and the signal optical path are arranged close to the common optical path, the configuration is less likely to be affected by mechanical disturbance such as vibration or air flow, and accuracy of the rotary drive system of the object to be inspected 7. ing.

【0026】更に図3を用いて詳しく説明すれば、図3
は縦軸に非球面量Lを、横軸に回転角θを夫々とったも
のであり、図1に於いて被検物7をその近似曲率中心を
中心として回転させた時の回転角θと非球面量Lとの関
係を示したものである。被検物7の形状情報をシア量だ
け横ずれした偏光の異なる二つの光束を用いて取得して
いるため、同じ形状を二重に測定している。例えば、p
偏光の光束が図3のOからPまで測定したとすれば、s
偏光は同じ形状をOからPを経てシア量だけずれたQま
で測定することになる。測定の途中で振動等の機械的擾
乱や回転駆動系の不完全性等により被検物7が移動した
とすれば、例えばp偏光の測定値には図中矢印で示した
実線の擾乱が入るが、これとほぼ同じ擾乱(図中点線図
示)がs偏光の測定値にも入る。従って、測定から得ら
れた非球面曲線OPと横軸θの間の面積と非球面曲線O
PQと横軸θとの間の面積の差を求めると、擾乱等によ
るノイズ成分は打ち消されて非球面曲線PQと横軸θと
の間のノイズを含まない真の面積が求められ、これをシ
ア量で除することによりPQの中間点での非球面量の真
の値が求められる。
Further detailed description will be given with reference to FIG.
Represents the amount of aspherical surface L on the vertical axis and the rotation angle θ on the horizontal axis. In FIG. 1, the rotation angle θ is obtained when the object 7 is rotated about its approximate curvature center. It shows the relationship with the aspherical amount L. Since the shape information of the test object 7 is acquired by using two light beams having different polarizations that are laterally offset by the shear amount, the same shape is measured twice. For example, p
If the polarized light flux is measured from O to P in FIG. 3, s
As for polarized light, the same shape is measured from O to P through Q, which is shifted by a shear amount. If the object 7 moves due to mechanical disturbances such as vibrations or imperfections in the rotary drive system during the measurement, for example, the measured value of p-polarized light will have the disturbance indicated by the solid line in the figure. However, almost the same disturbance (shown by the dotted line in the figure) also enters the measurement value of s-polarized light. Therefore, the area between the aspherical curve OP and the horizontal axis θ obtained from the measurement and the aspherical curve O
When the difference in area between PQ and the horizontal axis θ is obtained, the noise component due to disturbance or the like is canceled out, and the true area that does not include noise between the aspherical curve PQ and the horizontal axis θ is obtained. By dividing by the amount of shear, the true value of the amount of aspherical surface at the midpoint of PQ can be obtained.

【0027】即ち、この面形状測定器は、p,s両偏光
について共通の参照鏡4を有していると共に各々独立の
干渉計を有しているので、被検物7の非球面量Lを各回
転角に対し誤差の積算なしに求めることができることに
特徴があり、この点が従来技術と異なるところである。
従って、振動や空気の流動等の機械的擾乱や被検物7の
回転駆動機構の精度に影響されることが少なく高精度の
測定が可能である。又、オートフォーカス機構を有して
いるので、非球面量の大きいものや凹面だけでなく凸面
の測定も可能であると共に、被検物7を回転駆動する構
成となっているので深いRのものも測定し得る。
That is, since the surface shape measuring instrument has the common reference mirror 4 for both p and s polarized lights and has independent interferometers, the aspherical amount L of the object 7 to be inspected is measured. Is characterized in that it can be obtained for each rotation angle without accumulating an error, and this point is different from the prior art.
Therefore, high-accuracy measurement is possible without being affected by mechanical disturbances such as vibration and air flow and the accuracy of the rotation drive mechanism of the object 7. In addition, since it has an autofocus mechanism, it is possible to measure not only large aspherical surfaces and concave surfaces but also convex surfaces, and it is configured to rotate the test object 7 so that it has a deep R Can also be measured.

【0028】次に、光束を被検物に垂直に入射させる作
用について説明する。図4に示すように入射光束lに対
し被検物7がβだけ傾いている場合には、反射光束は2
βだけ振られて実線で示す反射光路をとり、対物レンズ
5を通過した後では入射光束に対して平行に横ずれした
光束となって干渉計の方へ戻ってゆく。この光束の横ず
れ量は光検知器12により検知され、直角プリズム30
が光検知器12からの誤差信号が零となるように光束の
横ずれ量の半分だけ平行移動され、図4の点線で示した
光路をとり対物レンズ5により被検物7に垂直に入射す
る。従って、反射光は入射と同じ光路を逆にたどる。
Next, the operation of causing the light beam to enter the object to be examined perpendicularly will be described. As shown in FIG. 4, when the test object 7 is inclined by β with respect to the incident light beam 1, the reflected light beam is 2
After being deflected by β, the reflected light path shown by the solid line is taken, and after passing through the objective lens 5, it becomes a light beam laterally displaced parallel to the incident light beam and returns to the interferometer. The lateral deviation amount of this light beam is detected by the photodetector 12, and the right angle prism 30
Is parallel-moved by half the lateral displacement of the light flux so that the error signal from the photodetector 12 becomes zero, and the light path shown by the dotted line in FIG. Therefore, the reflected light follows the same optical path as the incident.

【0029】本実施例に示された傾き角補正光学系の、
従来の図7に示された対物レンズ5を移動させる方式に
対する利点は、図4に示されたように、入射光束lと被
検物7との交点が入射光束lを点線のように平行移動さ
せても対物レンズ5の球面収差を除いて全く同じ位置に
あるので、図7に示されたように被検物7を移動させる
必要がなく、サーボ機構が簡単になり且つ測定時間が短
縮されることにある。
In the tilt angle correction optical system shown in this embodiment,
The advantage over the conventional method of moving the objective lens 5 shown in FIG. 7 is that, as shown in FIG. 4, the intersection of the incident light beam 1 and the object 7 moves the incident light beam 1 in parallel as shown by the dotted line. Even though the objective lens 5 is located at exactly the same position except the spherical aberration, there is no need to move the object 7 as shown in FIG. 7, the servo mechanism is simplified and the measurement time is shortened. There is something to do.

【0030】図5は干渉計の構成をより簡略化した第二
実施例を示す。図中、32は光アイソレータであり、3
3は1/4波長板である。光アイソレータ32は光源1
と干渉計との間の干渉を遮断するもので公知のものであ
る。第一の実施例のファラディローテータ19,20及
びπ/4ローテータ21,22の代わりに本実施例では
1/4波長板33が挿入してある。偏光プリズム16を
通過したp偏光は1/4波長板33により円偏光に変換
され、偏光プリズム17により円偏光のうちのp偏光成
分が透過し、s偏光成分は系の外に向かう。偏光プリズ
ム17を通過したp偏光は、ビームスプリッタ11、複
屈折プリズム23、対物レンズ5を経て被検物7に収束
され、反射された後入射の光路を逆にたどり対物レンズ
5等を経て1/4波長板33に入射する。
FIG. 5 shows a second embodiment in which the structure of the interferometer is simplified. In the figure, 32 is an optical isolator,
3 is a quarter wavelength plate. The optical isolator 32 is the light source 1
It is a well-known one that cuts off the interference between the interferometer and the interferometer. Instead of the Faraday rotators 19 and 20 and the π / 4 rotators 21 and 22 of the first embodiment, a ¼ wavelength plate 33 is inserted in this embodiment. The p-polarized light that has passed through the polarization prism 16 is converted into circularly polarized light by the quarter-wave plate 33, the p-polarized light component of the circularly polarized light is transmitted by the polarization prism 17, and the s-polarized light component goes out of the system. The p-polarized light that has passed through the polarization prism 17 passes through the beam splitter 11, the birefringence prism 23, and the objective lens 5 and is converged on the object 7 to be inspected. It is incident on the quarter wave plate 33.

【0031】ここでp偏光は円偏光に変換され、そのう
ちのs偏光成分は信号光として偏光プリズム16により
反射され干渉縞計数部28に至る。又、円偏光のうちの
p偏光成分は、偏光プリズム16、1/2波長板18を
経て偏光プリズム15に入射し、光束の一部は偏光プリ
ズム15により反射され系の外に向かい、残りの光束は
これを通過して光アイソレータ32に入射し遮断され
る。1/4波長板33に左から入射するs偏光の光束も
同様にして一部は信号光として干渉縞計数部29に入射
し、残りは系外に或いは光アイソレータ32により遮断
され失われる。以上述べたことから、本実施例は、光量
の損失を除けば図1に示された第一の実施例と全く同じ
作用を示すことがわかる。
Here, the p-polarized light is converted into circularly-polarized light, of which the s-polarized light component is reflected by the polarization prism 16 as signal light and reaches the interference fringe counter 28. Further, the p-polarized component of the circularly polarized light enters the polarizing prism 15 through the polarizing prism 16 and the half-wave plate 18, and a part of the light flux is reflected by the polarizing prism 15 to go out of the system, and the remaining The light flux passes through this and enters the optical isolator 32 and is blocked. Similarly, a part of the s-polarized light beam that enters the quarter-wave plate 33 from the left enters the interference fringe counting unit 29 as signal light, and the rest is lost outside the system or by being blocked by the optical isolator 32. From the above description, it is understood that this embodiment exhibits exactly the same operation as that of the first embodiment shown in FIG. 1 except for the loss of light quantity.

【0032】尚、この実施例ではビームを横ずれさせる
光学系は省略してあるが、第一の実施例と同様に2つの
直角プリズムをビームスプリッタ11と複屈折プリズム
23との間に設ければよい。
Although the optical system for laterally shifting the beam is omitted in this embodiment, if two right angle prisms are provided between the beam splitter 11 and the birefringent prism 23 as in the first embodiment. Good.

【0033】又、以上述べた各実施例では、偏光プリズ
ム15として偏光ビームスプリッタを用いているが、普
通のビームスプリッタを用いることも可能である。又、
4或いは30として直角プリズムを用いているが、キャ
ッツアイを用いることもできる。又、被検物7の駆動機
構として回転駆動機構を用いた場合を示したが、平面駆
動機構を用いることができることはもちろんである。
又、対物レンズ5の代わりにホログラムレンズ等の他の
光収束部材を使用することもできる。
Further, in each of the embodiments described above, the polarization beam splitter is used as the polarization prism 15, but it is also possible to use an ordinary beam splitter. or,
Although a rectangular prism is used as 4 or 30, a cat's eye can also be used. Further, although the case where the rotary drive mechanism is used as the drive mechanism of the object 7 is shown, it goes without saying that a plane drive mechanism can be used.
Further, instead of the objective lens 5, another light converging member such as a hologram lens can be used.

【0034】[0034]

【発明の効果】上述の如く、本発明による面形状測定器
は、非球面量の大きいもの、或いは深いRのものを凹面
及び凸面の両方について高精度に且つ短時間に測定し得
るという実用上重要な利点を有している。
As described above, the surface shape measuring instrument according to the present invention is practically capable of measuring a large aspherical amount or a deep R with respect to both concave and convex surfaces with high accuracy and in a short time. It has important advantages.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例による面形状測定器の光学
系を示す図である。
FIG. 1 is a diagram showing an optical system of a surface shape measuring instrument according to a first embodiment of the present invention.

【図2】上記実施例における偏光面の回転を説明する図
である。
FIG. 2 is a diagram for explaining the rotation of the polarization plane in the above embodiment.

【図3】上記実施例の非球面量算出の原理図である。FIG. 3 is a principle diagram of calculating an aspheric amount in the above-described embodiment.

【図4】上記実施例の傾き角補正光学系の作用を説明す
る図である。
FIG. 4 is a diagram for explaining the operation of the tilt angle correction optical system of the above embodiment.

【図5】第二の実施例の光学系を示す図である。FIG. 5 is a diagram showing an optical system of a second embodiment.

【図6】従来の面形状測定器の光学系を示す図である。FIG. 6 is a diagram showing an optical system of a conventional surface shape measuring instrument.

【図7】従来の別の面形状測定器の光学系を示す図であ
る。
FIG. 7 is a diagram showing an optical system of another conventional surface shape measuring instrument.

【符号の説明】[Explanation of symbols]

1 光源 4 参照鏡 5 対物レンズ 7 被検物 11 ビームスプリッタ 12 光検知器 15,16,17 偏光プリズム 18 1/2波長板 19,20 ファラディローテータ 21,22 π/4ローテータ 23 複屈折プリズム 28,29 干渉縞計数部 DESCRIPTION OF SYMBOLS 1 light source 4 reference mirror 5 objective lens 7 test object 11 beam splitter 12 photodetector 15, 16, 17 polarizing prism 18 1/2 wavelength plate 19, 20 Faraday rotator 21, 22 π / 4 rotator 23 birefringent prism 28, 29 Interference fringe counter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川島 隆 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 川上 一雄 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 植竹 敏文 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (56)参考文献 特公 平5−10602(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Kawashima 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Kazuo Kawakami 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Toshifumi Uetake 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (56) Reference Japanese Patent Publication 5-10602 (JP, B2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 可干渉性の光束を発する光源と、該光束
を参照光束と試験光束とに一旦分離した後これらを結合
させる分離結合光学系と、前記試験光束を光軸に垂直な
方向に移動させる傾き補正光学系と、該試験光束を被検
面に集束する集束光学系と、該被検面の傾きによって生
ずる光束の横ずれを検出する光検出器と、前記参照光束
を反射する参照鏡と、前記参照光束と試験光束とを結合
させて生ずる干渉縞を計数する干渉縞計数部と、から構
成された面形状測定器。
1. A light source that emits a coherent light beam, a separation / combination optical system that temporarily separates the light beam into a reference light beam and a test light beam, and then combines these, and the test light beam in a direction perpendicular to the optical axis. A tilt correction optical system for moving, a focusing optical system for focusing the test light beam on a test surface, a photodetector for detecting lateral deviation of the light beam caused by the tilt of the test surface, and a reference mirror for reflecting the reference light beam. And an interference fringe counting section for counting interference fringes generated by combining the reference light flux and the test light flux.
【請求項2】 前記集束光学系の光源側に、試験光束を
相異なる2つの偏光成分に分離する複屈折素子を設けた
ことを特徴とする、請求項1に記載の面形状測定器。
2. The surface shape measuring instrument according to claim 1, wherein a birefringence element for separating the test light beam into two different polarization components is provided on the light source side of the focusing optical system.
【請求項3】 前記試験光束の経路の途中にファラディ
ローテータを設けたことを特徴とする、請求項2に記載
の面形状測定器。
3. The surface shape measuring instrument according to claim 2, wherein a Faraday rotator is provided in the middle of the path of the test light beam.
JP3118474A 1991-05-23 1991-05-23 Surface shape measuring instrument Expired - Lifetime JPH0678894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3118474A JPH0678894B2 (en) 1991-05-23 1991-05-23 Surface shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3118474A JPH0678894B2 (en) 1991-05-23 1991-05-23 Surface shape measuring instrument

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58205563A Division JPS6097205A (en) 1983-11-01 1983-11-01 Planar face measuring device

Publications (2)

Publication Number Publication Date
JPH0650732A JPH0650732A (en) 1994-02-25
JPH0678894B2 true JPH0678894B2 (en) 1994-10-05

Family

ID=14737572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3118474A Expired - Lifetime JPH0678894B2 (en) 1991-05-23 1991-05-23 Surface shape measuring instrument

Country Status (1)

Country Link
JP (1) JPH0678894B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3605010B2 (en) * 2000-08-08 2004-12-22 株式会社ミツトヨ Surface texture measuring instrument

Also Published As

Publication number Publication date
JPH0650732A (en) 1994-02-25

Similar Documents

Publication Publication Date Title
CN1916561A (en) Interferometer for measuring perpendicular translations
EP0208276B1 (en) Optical measuring device
JPH0587540A (en) Three-dimensional measuring device
JPS5979104A (en) Optical device
JPH0678894B2 (en) Surface shape measuring instrument
JPS6097205A (en) Planar face measuring device
JPH095018A (en) Device for measuring moving quantity
JPH05157512A (en) Wave surface interferometer
JP2002214070A (en) Instrument and method for eccentricity measurement and projection lens incorporating optical element measured for eccentricity by using them
JP2592254B2 (en) Measuring device for displacement and displacement speed
JP2512873B2 (en) Luminous flux stabilizer
JP2808713B2 (en) Optical micro displacement measuring device
JP2625209B2 (en) Optical micro displacement measuring device
JPH0510733A (en) Three-dimensional shape measuring apparatus
JP3372324B2 (en) Lens system eccentricity measuring apparatus and eccentricity measuring method
JP3053135B2 (en) High precision coordinate measuring instrument
JPH07146212A (en) Optical path correcting apparatus and optical measuring apparatus
JP3728151B2 (en) Curved surface shape measuring device
JP2591143B2 (en) 3D shape measuring device
JPS60211304A (en) Measuring instrument for parallelism
JP2902417B2 (en) Interferometer for measuring wavefront aberration
JP3064614B2 (en) High precision coordinate measuring device
JPH05196418A (en) Optical measuring device
JPH09126712A (en) Laser length measuring machine
JPS5987309A (en) Measuring device of inclination of face

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19950328