JPH0678491B2 - Positive resistance temperature coefficient Method for producing heating element resin composition - Google Patents

Positive resistance temperature coefficient Method for producing heating element resin composition

Info

Publication number
JPH0678491B2
JPH0678491B2 JP543886A JP543886A JPH0678491B2 JP H0678491 B2 JPH0678491 B2 JP H0678491B2 JP 543886 A JP543886 A JP 543886A JP 543886 A JP543886 A JP 543886A JP H0678491 B2 JPH0678491 B2 JP H0678491B2
Authority
JP
Japan
Prior art keywords
heating element
temperature coefficient
resin composition
composition
positive resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP543886A
Other languages
Japanese (ja)
Other versions
JPS62164763A (en
Inventor
康友 船越
政光 宮崎
誠之 寺門
和典 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP543886A priority Critical patent/JPH0678491B2/en
Publication of JPS62164763A publication Critical patent/JPS62164763A/en
Publication of JPH0678491B2 publication Critical patent/JPH0678491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は採暖器具,一般の加熱装置等として有用な正抵
抗温度係数発熱体に用いる正抵抗温度係数発熱体樹脂組
成物の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a positive resistance temperature coefficient heating element resin composition used for a positive resistance temperature coefficient heating element useful as a heating tool, a general heating device and the like. .

従来の技術 従来から結晶性高分子に導電性微粉末を分散した抵抗組
成物が顕著なPTC特性を示すことが知られていた。この
組成物を溶剤に溶解あるいは分散させたインク状あるい
は有機高分子に分散させた可撓性組成物の形にして自己
温度制御性を有する発熱体を構成する試みがなされて来
た。この方法は抵抗体形状の加工性が優れていて任意の
形状が容易に得られること,祈り曲げが容易で自由な曲
面に形成出来ること,抵抗値の調整範囲が広いこと等に
利点があり、これまで面状発熱体および長尺の可撓性発
熱体を得る方法として用いられて来た。
2. Description of the Related Art It has been conventionally known that a resistance composition in which a conductive fine powder is dispersed in a crystalline polymer exhibits remarkable PTC characteristics. Attempts have been made to construct a heating element having self-temperature controllability in the form of an ink-like composition prepared by dissolving or dispersing this composition in a solvent or a flexible composition prepared by dispersing it in an organic polymer. This method is advantageous in that it has excellent workability of the resistor shape and that any shape can be easily obtained, that prayer bending is easy and that it can be formed on a free curved surface, and that the resistance value adjustment range is wide. Up to now, it has been used as a method for obtaining a planar heating element and a long flexible heating element.

発明が解決しようとする問題点 上記の発熱体は長い間に亘って使用していると高分子材
料の膨張,結晶性高分子の球晶肥大等の現象によって発
熱体組成物中の導電性微粉末が移動し抵抗が徐々に高く
なり発熱しなくなるといった問題があった。この問題を
解決するため導電性微粉末個々に有機高分子を形成し、
高分子材料に分散させる方法が用いられることもある
が、この方法は高分子の相溶性(親水性)の特性を利用
するものであり、従来同様の問題を残した。そこで、放
射線,電子線,UV,化学架橋等の方法により導電性微粉末
を結晶性高分子中に結合させ移動を防止する方法が検討
されていた。ところで、これらの方法の中で放射線,電
子線等の方法はコストが高く生産の場で実用に供しにく
いといった問題を有していた。UV法は紫外線の透しにく
い組成物においては用いることは困難であった。この様
なことから我々は有機過酸化物を用いる化学架橋方法を
採用した。ところが、有機過酸化物を用いた方法では組
成物が2次元ないし3次元の構造に架橋し外見上硬度の
高い組成物として得られるのである。しかし、この様な
硬度の高い組成物は自由に所望の形状に成形することが
困難となり実用への大きな問題となったのである。
Problems to be Solved by the Invention When the above-mentioned heating element is used for a long time, the conductive material in the heating element composition may be deteriorated due to phenomena such as expansion of the polymer material and spheroidal enlargement of the crystalline polymer. There was a problem that the powder moved, the resistance gradually increased, and heat generation stopped. In order to solve this problem, an organic polymer is formed in each conductive fine powder,
A method of dispersing the polymer in a polymer material may be used, but this method utilizes the compatibility (hydrophilicity) property of the polymer, and has the same problem as before. Therefore, a method of binding conductive fine powder to a crystalline polymer by a method such as radiation, electron beam, UV, or chemical crosslinking to prevent migration has been studied. By the way, among these methods, the methods such as radiation and electron beam have a problem that the cost is high and it is difficult to put them into practical use in the production field. The UV method has been difficult to use in a composition in which it is difficult for ultraviolet rays to pass through. For this reason, we adopted the chemical crosslinking method using organic peroxide. However, in the method using an organic peroxide, the composition is crosslinked into a two-dimensional or three-dimensional structure to obtain a composition having a high apparent hardness. However, it is difficult to mold such a composition having a high hardness into a desired shape freely, which is a serious problem for practical use.

問題点を解決するための手段 本発明は上記問題を解決するため、結晶性高分子,導電
性微粉末,有機過酸化物を成分に含む組成物を加熱混練
の後、例えば平均粒子径が約2mmの大きさの粒子に粗粉
砕した後、相対向して少なくともいづれか一方が回転す
る回転体の間隙に上記粗粉砕物を水などの液体と一緒に
投入し、50重量%平均粒子径を120ミクロン以下に微粉
砕し、この微粉砕物を有機高分子材料で所望の濃度に分
散させて正抵抗温度係数発熱樹脂組成物を得ることにな
る。
Means for Solving the Problems In order to solve the above problems, the present invention comprises, after heating and kneading a composition containing a crystalline polymer, a conductive fine powder and an organic peroxide, a mean particle size of After coarsely pulverizing to a particle of 2 mm in size, the coarsely pulverized product is put together with a liquid such as water into a gap between rotating bodies in which at least one of them rotates in opposition to each other. It is finely pulverized to a size of not more than micron, and the finely pulverized product is dispersed to a desired concentration with an organic polymer material to obtain a positive resistance temperature coefficient exothermic resin composition.

作 用 本発明の技術的手段による作用は次のようになる。すな
わち、導電性微粉末を分散させた架橋型抵抗体組成物は
架橋により2次元あるいは3次元の構造となり長期に亘
っての使用状態においても高分子の膨張が少なく、結晶
性高分子の球晶肥大が小さくなる等により抵抗の変化が
少なくなるのである。しかし、架橋によって立体構造を
とるため硬度の高い塊状物となり所望の形状に加工する
ことが困難となる。これを所望の形状に加工性良くする
ためには適度に可撓性を付与することが重要となる。こ
の可撓性付与の一手段として、この塊状物を適正に微粉
化する方法がある。そこで本発明は粗粉砕した組成物を
相対向して少なくとも一方が回転する回転体の間隙に上
記粗粉砕物を液体の一緒に投入しながら微粉化し、50重
量%平均粒子径が120ミクロン以下の微粉砕物を得るの
である。この様にして得た微粉砕物は長辺と短辺の比
(アスペクト比)が大きく、この微粉砕物を他の高分子
と混合すると適度にお互いがからみ合い多くの接触点を
得ることが出来るため、長期間に亘って抵抗の変化の少
ない組成物が得られるのである。又、50重量%平均粒子
径が120ミクロン以下にすることによって任意の形状に
自由に加工することが出来ると共に折り曲げ力等が働い
てもクラックの発生がないのである。又、粒子径が大き
くなるに従って抵抗値の低下,バラツキ現象が進み、発
熱体としての抵抗値制御が困難となるので、微粉砕時の
50重量%平均粒子径の上限ろ120ミクロンとした。
Operation The operation of the technical means of the present invention is as follows. That is, the cross-linked resistor composition in which the conductive fine powder is dispersed has a two-dimensional or three-dimensional structure due to cross-linking, and the polymer does not swell even in a long-term use state, and the spherulite of the crystalline polymer is present. The change in resistance is reduced as the hypertrophy is reduced. However, since it has a three-dimensional structure due to cross-linking, it becomes a lump with high hardness and it is difficult to process it into a desired shape. In order to make it into a desired shape with good workability, it is important to impart appropriate flexibility. As one means for imparting this flexibility, there is a method of appropriately pulverizing this lump. Therefore, the present invention finely powders the coarsely pulverized composition while simultaneously pouring the coarsely pulverized product into a gap of a rotating body in which at least one of them is rotated in opposition to each other, and a 50% by weight average particle diameter of 120 μm or less. A finely pulverized product is obtained. The finely pulverized product thus obtained has a large ratio of long side to short side (aspect ratio), and if this finely pulverized product is mixed with other polymer, it may be entangled with each other to obtain many contact points. As a result, a composition having little change in resistance over a long period of time can be obtained. Further, when the 50% by weight average particle diameter is 120 microns or less, it can be freely processed into an arbitrary shape and cracks do not occur even when a bending force or the like acts. Further, as the particle size increases, the resistance value decreases and the variation phenomenon progresses, making it difficult to control the resistance value of the heating element.
The upper limit of the 50% by weight average particle diameter was set to 120 microns.

実施例 (第1実施例) 無水の有機酸にて変性したポリエチレン50重量%、平均
粒子径800Åのカーボンブラック50重量%を混合し150〜
180℃の温度で約10分間ロールにて混練した。その後、
この混練物に有機過酸化物としてジアルキルパーオキサ
イド4.4重量%投入し150〜155℃の範囲に管理されたロ
ールにて約10分間混練した。その後、この混練物を180
〜190℃の炉中に約60分間入れアフターキュアーを行な
った。
Example (First Example) 50% by weight of polyethylene modified with anhydrous organic acid and 50% by weight of carbon black having an average particle size of 800Å were mixed to obtain 150-
The mixture was kneaded with a roll at a temperature of 180 ° C. for about 10 minutes. afterwards,
To the kneaded product, 4.4% by weight of dialkyl peroxide was added as an organic peroxide, and the mixture was kneaded for about 10 minutes with a roll controlled in the range of 150 to 155 ° C. Then, this kneaded product is 180
It was put in an oven at ˜190 ° C. for about 60 minutes for after-curing.

アフタキュアー完了後、回転刃式粉砕期にて約2mmの大
きさに粗粉砕した。この様にして得た粗粉砕物を相対向
して一方が回転する回転体の間隙に水と一緒に供給し温
度約90℃で微粉化加工を行ない50重量%平均粒子径が約
50ミクロンに微粉砕した。この微粉砕物を脱水,乾燥工
程を経てカーボンコンク組成物を得たのである。この組
成物にオレフィン系エラストマー,安定剤等を用いて所
望のカーボン濃度になる様調整し混練,ペレット化を行
ない最終抵抗体組成物を得た。この組成物3を用いて銅
電極1,2を両面に形成した第1図に示す発熱体を得た。
このようにして得た発熱体の性能を第1表,第2図,第
3図に示す。
After the after-cure was completed, it was roughly crushed to a size of about 2 mm during the rotary blade crushing period. The coarsely pulverized material obtained in this way is fed together with water into the gap between the rotors, one of which rotates in opposition to the other, and is pulverized at a temperature of about 90 ° C to obtain a 50% by weight average particle size of about 50%.
Finely ground to 50 microns. The finely pulverized product was dehydrated and dried to obtain a carbon concrete composition. This composition was adjusted to a desired carbon concentration by using an olefin elastomer, a stabilizer, etc., and kneaded and pelletized to obtain a final resistor composition. The composition 3 was used to obtain a heating element shown in FIG. 1 in which copper electrodes 1 and 2 were formed on both surfaces.
The performance of the heating element thus obtained is shown in Table 1, FIG. 2 and FIG.

(第2実施例) 第1の実施例において、アフタキュアー完了後、粗粉砕
して得た大きさ約2mmの粒子を用いて水とエチレングリ
コールの混合液用いて回転体の間隙部に供給し温度約14
0℃で粉砕し50重量%平均粒子径約120ミクロンの粒子を
得た。この粉砕部を洗浄,乾燥の後,オレフィン系エラ
ストマー,安定剤等を用いて所望のカーボン濃度になる
様調整し混練,ペレット化を行ない最終抵抗体組成物を
得た。この組成物を用いて第1図に示す発熱体を得た。
このようにして得た発熱体の性能を第1表,第2図,第
3図に示す。
(Second Embodiment) In the first embodiment, after the after-cure is completed, coarsely pulverized particles having a size of about 2 mm are used to supply a mixture of water and ethylene glycol to the gap of the rotor. Temperature about 14
The particles were pulverized at 0 ° C. to obtain particles having a 50% by weight average particle diameter of about 120 microns. The crushed portion was washed and dried, then adjusted to a desired carbon concentration using an olefin elastomer, a stabilizer, etc., and kneaded and pelletized to obtain a final resistor composition. A heating element shown in FIG. 1 was obtained using this composition.
The performance of the heating element thus obtained is shown in Table 1, FIG. 2 and FIG.

(第3実施例) 第1実施例において、50重量%平均粒子径が約90ミクロ
ンに微粉砕した組成物を脱水,乾燥の後、オレフィン系
エラストマー,安定剤等を用いて所望のカーボン濃度に
なる様調整し混練,ペレット化を行ない最終低抗体組成
物を得た。この組成物を用いて第1図に示す発熱体を得
た。
(Third Example) In the first example, a composition in which 50% by weight average particle size was finely pulverized to about 90 microns was dehydrated and dried, and then an olefin elastomer, a stabilizer and the like were used to obtain a desired carbon concentration. The final low antibody composition was obtained by adjusting and kneading and pelletizing. A heating element shown in FIG. 1 was obtained using this composition.

第1表は低抗体を種々の半径を有するゲージに沿って折
り曲げた時、どの半径で低抗体にクラックが発生するこ
を実験で得た値である。
Table 1 shows experimentally obtained values at which radius the low antibody was cracked when the low antibody was bent along gauges having various radii.

発明の効果 本発明は上記構成,作用を有するもので導電性微粉末と
結晶性高分子を化学的に結合させることにより高分子材
料の膨張,結晶の肥大化等に寄因する低抗体としての低
抗体の不安定化が少なくなる。又、この化学的結合物を
微粉化し、特に50重量%平均粒子径を120ミクロン以下
にすることにより、加工性,外観が優れ抵抗値の不均一
化がなくなる。又回転体の間で粉砕を行うため得られた
粉砕物はアスベクト比が大きく、更に粉砕物からヒゲ状
の枝が見られることから微粉砕物どうしがからみ合い、
多くの接点を持つため抵抗の均一な長期に亘って安定し
た機能を維持することが出来るのである。
EFFECTS OF THE INVENTION The present invention has the above-mentioned structure and action, and is a low antibody that causes swelling of a polymer material and swelling of crystals by chemically bonding conductive fine powder and a crystalline polymer. Less destabilization of low antibodies. Further, by finely pulverizing the chemically bound product, and particularly by setting the 50% by weight average particle diameter to 120 μm or less, workability and appearance are excellent, and nonuniform resistance value is eliminated. In addition, since the crushed product obtained by crushing between the rotating bodies has a large asvect ratio, and since the whiskers-like branches are seen from the crushed product, the finely crushed products are entangled with each other,
Since it has many contacts, it can maintain a stable function over a long period of time with uniform resistance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例で得た発熱体の断面斜視図、
第2図は粉砕物の50重量%平均粒子径と抵抗値との関係
を示すグラフ、第3図は粉砕物の50重量%平均粒子径と
第1図に示した発熱体の初期抵抗値が1/2になるまでの
時間の関係を示すグラフである。 1,2……銅電極、3……抵抗体組成物。
FIG. 1 is a sectional perspective view of a heating element obtained in one embodiment of the present invention,
Fig. 2 is a graph showing the relationship between the 50% by weight average particle size of the pulverized product and the resistance value. Fig. 3 shows the 50% by weight average particle size of the pulverized product and the initial resistance value of the heating element shown in Fig. 1. It is a graph which shows the relationship of the time until it becomes 1/2. 1,2 ... Copper electrodes, 3 ... Resistor composition.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】結晶性高分子,導電性微粉末,有機過酸化
物を成分に含む組成物を加熱混練し、次いでこれを粗粉
砕した後、相対向して少なくともいづれか一方が回転す
る回転体の間隙に上記粗粉砕物を液体と一緒に投入し、
50重量%平均粒子径を120ミクロン以下に微粉砕し、こ
の微粉砕物を有機高分子材料で所望の濃度に分散させて
正抵抗温度係数発熱体樹脂組成物を得ることを特徴とす
る正抵抗温度係数発熱体樹脂組成物の製造方法。
1. A rotator in which a composition containing a crystalline polymer, a conductive fine powder, and an organic peroxide as components is heated and kneaded, and then coarsely crushed, and at least one of them rotates in opposition to each other. Put the above coarsely pulverized material together with the liquid in the gap of
Positive resistance characterized by finely pulverizing 50 wt% average particle diameter to 120 microns or less and dispersing the finely pulverized product to a desired concentration with an organic polymer material to obtain a positive resistance temperature coefficient heating element resin composition. Temperature coefficient heating element resin composition manufacturing method.
JP543886A 1986-01-14 1986-01-14 Positive resistance temperature coefficient Method for producing heating element resin composition Expired - Lifetime JPH0678491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP543886A JPH0678491B2 (en) 1986-01-14 1986-01-14 Positive resistance temperature coefficient Method for producing heating element resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP543886A JPH0678491B2 (en) 1986-01-14 1986-01-14 Positive resistance temperature coefficient Method for producing heating element resin composition

Publications (2)

Publication Number Publication Date
JPS62164763A JPS62164763A (en) 1987-07-21
JPH0678491B2 true JPH0678491B2 (en) 1994-10-05

Family

ID=11611198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP543886A Expired - Lifetime JPH0678491B2 (en) 1986-01-14 1986-01-14 Positive resistance temperature coefficient Method for producing heating element resin composition

Country Status (1)

Country Link
JP (1) JPH0678491B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543135B2 (en) * 1988-06-01 1996-10-16 松下電器産業株式会社 Self-temperature control heating element composition
US6059997A (en) * 1995-09-29 2000-05-09 Littlelfuse, Inc. Polymeric PTC compositions

Also Published As

Publication number Publication date
JPS62164763A (en) 1987-07-21

Similar Documents

Publication Publication Date Title
DE68914966T2 (en) Process for producing a self-regulating, flexible and flat heating element.
JPH01146256A (en) Manufacture of zinc-air electrochemical battery and dry-type cathode
JPS61123665A (en) Production of electrically conductive resin composition
JPH0678491B2 (en) Positive resistance temperature coefficient Method for producing heating element resin composition
JP3564758B2 (en)   PTC composition
JPH0685361B2 (en) Positive resistance temperature coefficient Method for producing heating element resin composition
JP3525935B2 (en) Method for producing PTC composition
US2019363A (en) Preparation of jelly-forming organic substances
JP3909009B2 (en) Organic positive temperature coefficient thermistor and manufacturing method thereof
JPS61144001A (en) Resistor composition
JP2888499B2 (en) Manufacturing method of spherical activated carbon
JPH0516467B2 (en)
JPH05175008A (en) Manufacture of ptc resistor
KR100197201B1 (en) Sheet-like heating material
JPH01304682A (en) Temperature self controlling heat radiating body
JPH02173069A (en) Production of heating element composition
JPH07335378A (en) Manufacture of ptc heating element
JPH02156502A (en) Organic temperature sensitive element having self-temperature control characteristic
US2430123A (en) Method of making insulating material
JPS6260202A (en) Manufacturing positive temperature coefficient heater resin composition
JPH0124723B2 (en)
JPH01304683A (en) Temperature self controlling heat radiating composition
JPH01304684A (en) Temperature self controlling heat radiating composition
JPH0468501A (en) Resistor having ptc characteristic
JPS63184303A (en) Manufacture of ptc compound

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term