JPH02156502A - Organic temperature sensitive element having self-temperature control characteristic - Google Patents

Organic temperature sensitive element having self-temperature control characteristic

Info

Publication number
JPH02156502A
JPH02156502A JP30982588A JP30982588A JPH02156502A JP H02156502 A JPH02156502 A JP H02156502A JP 30982588 A JP30982588 A JP 30982588A JP 30982588 A JP30982588 A JP 30982588A JP H02156502 A JPH02156502 A JP H02156502A
Authority
JP
Japan
Prior art keywords
temperature
high molecule
graphite
carbon black
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30982588A
Other languages
Japanese (ja)
Other versions
JP2668426B2 (en
Inventor
Norio Mori
森 禮男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63309825A priority Critical patent/JP2668426B2/en
Priority to CA 2004760 priority patent/CA2004760C/en
Priority to DE68928400T priority patent/DE68928400T2/en
Priority to EP19890122574 priority patent/EP0372552B1/en
Publication of JPH02156502A publication Critical patent/JPH02156502A/en
Priority to US08/184,855 priority patent/US5415934A/en
Application granted granted Critical
Publication of JP2668426B2 publication Critical patent/JP2668426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To enable the title temperature sensitive element to discharge the self-temperature control function in sharp fluctuation of positive characteristic by a method wherein graphite or carbon black is compounded of a low dimensional material mainly composed of bridging high molecule and linear high molecule. CONSTITUTION:Graphite or carbon black is compounded of a low dimensional material mainly composed of bridging high molecule and linear high molecule. The title temperature sensitive element can be manufactured by blending the conductive graphite or carbon black with monomer of bridging high molecule, fine grains or liquid polymer of linear high molecule compound as the low dimensional material and low molecular organic compound to be blended and polymerized in an organic solvent. Through these procedures, the said element discharging the self temperature sensing and controlling functions in various phases as a sensor of molecular level as well as having the stable temperature- conductive characteristics in the least with-time fluctuation in the resistance values regardless of repeated applications can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、杓100°C以下の低温領域で特定温度の検
知および自己温度制御機能を有する新規な有機質感温素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel organic temperature sensing element that has specific temperature detection and self-temperature control functions in a low temperature range of 100° C. or less.

〔従来の技術〕[Conventional technology]

従来、熱硬化性樹脂または熱可塑性樹脂に黒鉛、カーボ
ンブラック又は金属粉などの導電性物質を配合して導電
性樹脂もしくは半導電性樹脂を形成し、これら有機質の
優れた特性を利用して電子部品或いは発熱体として広く
使用されている。
Conventionally, conductive resins or semiconductive resins are formed by blending thermosetting resins or thermoplastic resins with conductive substances such as graphite, carbon black, or metal powder, and the excellent properties of these organic materials are used to create electronic Widely used as parts or heating elements.

しかし、これらの宿命的欠点は安定性に欠けて居り、信
鎖されるものが無いことである。特に、長期使用後の経
時変化等を免れ得なかった。
However, their fatal drawback is that they lack stability and have no chain to rely on. In particular, changes over time after long-term use could not be avoided.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

例えば約100℃以下の低温領域において安定な温度−
導電特性をもち、昇温−冷却を繰返しても電気抵抗値に
経時変化がなく、しかも特定温度検知及び特定温度領域
での正の特性変化の大きな自己温度制御機能をもつ、安
定性の優れた有機質素材の開発が要請されている。
For example, stable temperature in the low temperature range of about 100℃ or less.
It has conductive properties, and its electrical resistance value does not change over time even after repeated heating and cooling, and it also has a self-temperature control function that detects a specific temperature and has a large positive characteristic change in a specific temperature range, making it highly stable. The development of organic materials is required.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、上記の課題を達成すべく鋭意検討した結果
、黒鉛またはカーボンブラックが二次元の典型的六員環
網目平面状の堅固な共有結合構造を有し、平面層間では
結合力が比較的ゆるく、よくスリップするが、かなりの
吸着力を有して面間膨潤、縮退すること、および二次平
面内ではいわゆる共役系共有結合として絶縁性を示すが
、層面間はいわゆるπ電子雲の存在により金属と同様の
導電性を示すことに着目し、この黒鉛またはカーボンブ
ラックの眉間に吸着特性の強い誘導体などを吸着させて
眉間距離を拡大するとともに、その上下の無機層間に結
晶性低分子量有機化合物を浸入させ、吸着した誘導体の
一部又は全量を置換し、又は無機層と直接吸着させて架
橋化し、その架橋分子の長さを変えることにより眉間の
導電抵抗を自由にコントロールすることができることを
見出し、本発明を完成させるに至った。
As a result of intensive studies to achieve the above-mentioned problem, the present inventor discovered that graphite or carbon black has a solid covalent bond structure in the form of a two-dimensional typical six-membered ring network planar structure, and that the bonding strength between the planar layers is comparable. It is loose and slips well, but it has a considerable adsorption force and swells and degenerates between planes.In the secondary plane, it exhibits insulating properties as a so-called conjugated covalent bond, but between the planes of the layer, there is a so-called π-electron cloud. Focusing on the fact that graphite or carbon black exhibits conductivity similar to that of metals, we expanded the distance between the eyebrows by adsorbing derivatives with strong adsorption properties between the eyebrows of graphite or carbon black, and added crystalline low-molecular-weight materials between the inorganic layers above and below the graphite. The conductive resistance between the eyebrows can be freely controlled by infiltrating an organic compound to replace part or all of the adsorbed derivative, or by directly adsorbing it to an inorganic layer to form a crosslink, and by changing the length of the crosslinked molecule. We have discovered that this can be done, and have completed the present invention.

すなわち、本発明の自己温度制御特性をもつ有機質感温
素子は、黒鉛またはカーボンブラックに架橋型高分子と
線状高分子を主体とする低次元物質を複合させてなるこ
とを特徴とする。
That is, the organic textured temperature element having self-temperature control properties of the present invention is characterized by being made of a composite of graphite or carbon black with a low-dimensional substance mainly consisting of a crosslinked polymer and a linear polymer.

本発明による感温素子は、導電性黒鉛またはカーボンブ
ラックに架橋型高分子の七ツマ−と低次元物質である線
状高分子化合物の微粉末又は液状ポリマー及び低分子量
有機化合物を配合し、有機溶媒中でブレンドおよび重合
させることにより製造することができる。
The temperature-sensitive element according to the present invention is produced by blending conductive graphite or carbon black with a cross-linked polymer heptamer, a fine powder or liquid polymer of a linear polymer compound which is a low-dimensional substance, and a low molecular weight organic compound. It can be produced by blending and polymerizing in a solvent.

本発明において、黒鉛またはカーボンブラックとしては
、天然または人造黒鉛、ファーネスブラック、アセチレ
ンブラックなどが挙げられ、粒径1μ以下、特に0.1
μ以下のものを使用するのが好ましい。
In the present invention, examples of graphite or carbon black include natural or artificial graphite, furnace black, acetylene black, etc., and the particle size is 1μ or less, especially 0.1μ.
It is preferable to use a material less than μ.

架橋型高分子としては、三次元網状構造を形成する熱硬
化樹脂のモノマー、たとえばエポキシ樹脂、メラミン樹
脂、ポリウレタン樹脂、シリコン樹脂などとその変性樹
脂などの七ツマ−が好適に使用される。
As the crosslinked polymer, thermosetting resin monomers forming a three-dimensional network structure, such as epoxy resins, melamine resins, polyurethane resins, silicone resins, and their modified resins are preferably used.

線状高分子化合物としてはポリエチレン、エチレン酢8
ビニル共重合体、エチレン−塩化ビニル共重合体、ポリ
プロピレンなどのオレフィン系重合体、液状ポリブタジ
ェンなどのジエン系レジン、アイオノマレジンなどが挙
げられ、好ましいのは液状ポリブタジェン又は結晶性を
有する微粉末ポリエチレンである。
Linear polymer compounds include polyethylene and ethylene vinegar8
Examples include vinyl copolymers, ethylene-vinyl chloride copolymers, olefin polymers such as polypropylene, diene resins such as liquid polybutadiene, ionomare resins, and preferred are liquid polybutadiene or crystalline fine powder polyethylene. It is.

また、低分子量有機化合物としての代表例としては炭素
数20以上のアルカン系直鎖炭化水素またはその脂肪酸
が挙げられる。
Typical examples of low molecular weight organic compounds include linear alkane hydrocarbons having 20 or more carbon atoms and fatty acids thereof.

有機溶媒または反応誘導剤としては、ベンゼン、トルエ
ン、キシレンなどの芳香族炭化水素、n −ブタノール
、n−プロパツールなどのアルコール類、エチレングリ
コール、プロピレングリコール、1、 4−ブタンジオ
ールなどの脂肪族グリコール、シクロペンクン−1,2
−ジオールなどの脂環族ジオール、ヒドロキノンなどの
フェノール類、メチルエチルケトンなどのケトン類やテ
トラヒドロフランなどが挙げられる。
Examples of organic solvents or reaction inducers include aromatic hydrocarbons such as benzene, toluene, and xylene, alcohols such as n-butanol and n-propanol, and aliphatic compounds such as ethylene glycol, propylene glycol, and 1,4-butanediol. Glycol, cyclopenkune-1,2
Examples include alicyclic diols such as -diol, phenols such as hydroquinone, ketones such as methyl ethyl ketone, and tetrahydrofuran.

本発明の感温素子の製造に際し、上記関連物質の配合は
、黒鉛と架橋型高分子とからなる導電性高次元物質10
0部に対し、黒鉛は10〜60部、架橋型高分子は40
〜90部の範囲とするのが適当である。
When manufacturing the temperature-sensitive element of the present invention, the above-mentioned related substances are blended into a conductive high-dimensional material consisting of graphite and a cross-linked polymer.
0 parts, graphite is 10 to 60 parts, and crosslinked polymer is 40 parts.
A suitable range is 90 parts.

架橋型高分子が90部をこえると導電性が悪くなる。ま
た、40部より少ないと、すなわち黒鉛が60部をこえ
ても増量効果に乏しい、そして黒鉛又はカーボンブラッ
クの配合は種類と量によって室温での基本導電率はそれ
ぞれ違ってくるが、特定温度検知及び自己温度制御特性
に対しては一律的に決めてよい、又架橋型高分子もカー
ボンブラックとグラフト化すれば導電性物質のマトリッ
クス(母体)となるから基本導電率はそれぞれ違ってく
るが、やはり一律的に決められてよい。
If the amount of the crosslinked polymer exceeds 90 parts, the conductivity will deteriorate. In addition, if it is less than 40 parts, that is, if the graphite exceeds 60 parts, the effect of increasing the amount will be poor, and the basic conductivity at room temperature will differ depending on the type and amount of graphite or carbon black, but the specific temperature detection and self-temperature control characteristics can be determined uniformly, and if a cross-linked polymer is grafted with carbon black, it becomes a matrix of a conductive substance, so the basic conductivity will be different for each. After all, it can be determined uniformly.

線状(鎖状)高分子化合物は、導電性の安定化を図るた
め、上記架橋型高分子の配合量と黒鉛の配合量を合算し
たttoo部に対し5〜100部の範囲で加えるのがよ
い。100部をこえると、導電性が極変に低下し、実用
範囲をこえる。
In order to stabilize the conductivity, it is recommended that the linear (chain) polymer compound be added in an amount of 5 to 100 parts based on the total amount of the crosslinked polymer and graphite. good. When the amount exceeds 100 parts, the conductivity decreases drastically and exceeds the practical range.

低分子量有機化合物、例えば上記の炭化水素は3〜30
部の範囲とする。30部をこえると製品の靭性が低下し
、3部以下では特性の効果が乏しくなる。
Low molecular weight organic compounds, such as the above hydrocarbons, have a molecular weight of 3 to 30
The scope shall be within the scope of this section. If it exceeds 30 parts, the toughness of the product will decrease, and if it is less than 3 parts, the properties will be less effective.

有機溶媒は、最少25部以上必要であるが、溶媒として
希釈の必要に応じて任意に増量し得る。
A minimum amount of 25 parts or more of the organic solvent is required, but the amount can be increased as desired depending on the need for dilution.

〔作用〕[Effect]

本発明の感温素子は、前記配合成分と順次混合する過程
でまず架橋型高分子モノマーが黒鉛にグラフト化され、
そのモノマーに線状高分子化合物が混合されることによ
り形成される。そして、このポリマーは熱処理過程で架
橋型高分子の重合反応と同時によじり合いブレンドされ
る。このことは、素子製品の均質性から判断される。ま
た、素子製品に可撓性を与え、特性の安定化のために架
橋型高分子の三次元化および重合度と関連して非常に重
要な役割をしている。
In the temperature-sensitive element of the present invention, a cross-linked polymer monomer is first grafted onto graphite in the process of sequentially mixing with the above-mentioned ingredients,
It is formed by mixing the monomer with a linear polymer compound. During the heat treatment process, this polymer is twisted and blended simultaneously with the polymerization reaction of the crosslinked polymer. This can be determined from the homogeneity of the device product. In addition, it plays an extremely important role in providing flexibility to device products and stabilizing the properties in relation to the three-dimensionalization and degree of polymerization of crosslinked polymers.

こうして、線状高分子化合物は、とかく硬くなりがちな
三次元網状化合物に柔軟性とエントロピー剛性を与え、
低温でフレキシビリティ−を付与し、高温で逆にゆるく
なるのを防ぎ、しまりを与えて全系を安定化している。
In this way, linear polymer compounds provide flexibility and entropic rigidity to three-dimensional network compounds, which tend to be hard.
It provides flexibility at low temperatures, prevents it from becoming loose at high temperatures, and provides tightness to stabilize the entire system.

低分子有機化合物は、直接に或いは反応誘導剤との協働
によって黒鉛層間に浸入し、或いはこれを拡大し、黒鉛
層に強力に吸着して眉間化合物を形成するものとみられ
る。
The low-molecular-weight organic compound appears to penetrate between the graphite layers directly or in cooperation with a reaction inducer, or expand the graphite layers, and is strongly adsorbed to the graphite layers to form a glabellar compound.

これは、本発明の感温素子が反復高温加熱(低分子量有
機化合物の融点よりもはるかに高い温度、例えば融点6
5°Cの配合物に対して130°Cまで)にも耐え、特
性が殆ど変化しないという実験結果から裏付けられる。
This means that the temperature sensing element of the present invention can be repeatedly heated at high temperatures (at temperatures much higher than the melting point of low molecular weight organic compounds, for example, melting point 6.
This is supported by experimental results showing that it can withstand temperatures up to 130°C (compared to a formulation at 5°C), with almost no change in properties.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

なお、以下の説明において記載されている各成分の部は
重量部を表す。
Note that parts of each component described in the following description represent parts by weight.

実施例1 カーボンブラック(平均粒径O01μ以下)45部アル
キドメラミンレジンモノマー    55部ローパラフ
ィン (平均粒径5μ以下の微粉末) 25部高分子量ポリエ
チレン (平均粒径15μ以下の粉末) 25部トルエン   
            45部MEK       
       25部n−ブタノール        
    30部上記の配合によって得られた混合溶液は
黒汁状の液で、これを硝子板の上に塗布し、遠赤外線照
射により被照射温度155°CXl0分程反応させると
塗膜表面にクラックの無いものに仕上がった。
Example 1 Carbon black (average particle size O01μ or less) 45 parts Alkyd melamine resin monomer 55 parts Low paraffin (fine powder with average particle size 5μ or less) 25 parts High molecular weight polyethylene (powder with average particle size 15μ or less) 25 parts Toluene
45 part MEK
25 parts n-butanol
30 parts The mixed solution obtained by the above formulation is a black juice-like liquid, and when this is applied on a glass plate and reacted with far infrared rays at a temperature of 155°C for about 0 minutes, cracks will appear on the surface of the coating. It ended up being nothing.

試片は極間中60鶴×極長23mm、比抵抗値25°C
で8.5xlOΩ−個であった。
The specimen is 60 cranes between poles x pole length 23mm, resistivity value 25°C.
It was 8.5xlOΩ- pieces.

この素子をアルミナウールで素子面の上下を保温して電
圧を印加した。電圧印加直前の素子電気抵抗値は13.
OKΩ、素子表面温度25°Cであったが、ACloo
Vで印加すると温度の上昇に従って抵抗値も比例して、
16.8にΩに上昇した。温度は62°Cに達し、この
温度を5ooo時間以上キープし、それ以上温度の上昇
がなかった。
This device was kept warm on the top and bottom of the device surface with alumina wool, and a voltage was applied. The element electrical resistance value immediately before voltage application is 13.
OKΩ, the element surface temperature was 25°C, but ACloo
When applied at V, the resistance value increases proportionally as the temperature rises.
It rose to Ω at 16.8. The temperature reached 62°C and was maintained at this temperature for more than 500 hours without any further increase in temperature.

その後、同一試験片に2倍の電力即ち14 tvAC印
加すると発熱温度は75℃を長時間維持して、それ以上
温度上昇は全く無かった。この温度での素子の抵抗測定
値は23.4にΩに上昇していた。
Thereafter, when twice the power, that is, 14 tvAC was applied to the same test piece, the temperature of the heat generated remained at 75° C. for a long time, and there was no further temperature rise. The measured resistance of the device at this temperature had increased to 23.4 Ω.

また、素子に電圧印加をカットして常温25゜0°Cに
戻ったときの素子の抵抗は完全に13.OKΩに復帰し
た。これを12回反復して上記と全く同一の結果であっ
たので、本配合の素子は完全な安定化された温度依存性
自己温度制御素子であることが確認された。
Furthermore, when the voltage application to the element is cut and the temperature returns to room temperature of 25°0°C, the resistance of the element is completely 13. I returned to OKΩ. This was repeated 12 times and the results were exactly the same as above, confirming that the device with this formulation was a completely stabilized temperature-dependent self-temperature control device.

第1図は、本実施例で得られた感温素子に対するmm加
電圧を変えたときの素子表面温度と抵抗値との関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the element surface temperature and the resistance value when the applied voltage in mm to the temperature sensing element obtained in this example is changed.

第2図は、同じく昇温特性を示すグラフであり、横軸は
時間(分)、縦軸は温度(°C)を表す。
FIG. 2 is a graph similarly showing the temperature increase characteristics, with the horizontal axis representing time (minutes) and the vertical axis representing temperature (°C).

実施例2 カーボンブラック(平均粒径0.1 μ以下)アクリル
−エポキシレジンモノマー アイオノマレジン n−パラフィン (平均粒径5μ以下の粉末) キシレン EK n−ブタノール ダイア七トンアルコール 30部 70部 35部 15部 35部 15部 15部 25部 上記配合により、実施例1と同様にして感温素子を作成
した。試片は極間中60鶴×極長23鶴、C 比抵抗は25°Cで1.9X10Ω−備であった。
Example 2 Carbon black (average particle size of 0.1 μ or less) Acrylic-epoxy resin monomer Ionomare resin n-paraffin (powder with average particle size of 5 μ or less) 15 parts 35 parts 15 parts 15 parts 25 parts A temperature-sensitive element was prepared in the same manner as in Example 1 using the above formulation. The specimen had a diameter of 60 squares between poles and a length of 23 poles, and had a specific resistance of 1.9 × 10Ω at 25°C.

また、その昇温特性を第3図に示した。アクリル−エポ
キシレジンは三次元構造化の重合度が進む程安定性が増
すが、一方案子として非常に跪く、実用上大きな欠点に
なる。この欠点をイオン結合アイオノマレジンで補充し
ている。
Moreover, the temperature increase characteristics are shown in FIG. The stability of acrylic-epoxy resin increases as the degree of polymerization of the three-dimensional structure increases, but on the other hand, it is extremely unstable, which is a major drawback in practical use. This drawback is compensated for by ionic bonding ionomare resin.

アイオノマレジンは、熱可葉性エラストマーとして特に
室温近くの低温において、素子全系に安定性を維持しな
がら柔軟性を付与する。アクリル−エポキシモノマーと
の相溶性も非常によく、よくブレンドされる。
Ionomare resin, as a thermoplastic elastomer, imparts flexibility to the entire device system while maintaining stability, especially at low temperatures near room temperature. It also has very good compatibility with acrylic-epoxy monomers and blends well.

実施例3 架橋型高分子として、表−1の配合表に示すように、ア
ルキッドメラミンレジンモノマーを使用し、カーボンブ
ラックとの配合比を変えて実施例1と同様に感温素子を
作製し、常温における体積固有抵抗(Ω−cm+)を測
定した。
Example 3 A temperature-sensitive element was prepared in the same manner as in Example 1, using alkyd melamine resin monomer as a crosslinked polymer as shown in the formulation table in Table 1, and changing the blending ratio with carbon black. The volume resistivity (Ω-cm+) at room temperature was measured.

また、カーボンブラックの配合比を一定(45部)にし
て、架橋型高分子としてフェノールレジンモノマー、ア
クリル−エポキシレジンモノマーを使用したときの体積
固有抵抗(Ω−1)を測定した。
Further, the volume resistivity (Ω-1) was measured when a phenol resin monomer and an acrylic-epoxy resin monomer were used as crosslinked polymers with the blending ratio of carbon black constant (45 parts).

測定はそれぞれ実施例1と同様に混合液をパイレックス
硝子板(厚さ1鶴)に塗布し、遠赤外線照射により被照
射温度155“cxto分で処理し極間中60鰭×極長
IQmsの試片を作成して行った。
For each measurement, the mixed solution was applied to a Pyrex glass plate (1 piece thick) in the same manner as in Example 1, and treated with far-infrared irradiation at an irradiation temperature of 155 "cxto minutes". I made a piece and went.

架橋型高分子として、アルキントメラミンレジンモノマ
ーを用いた第4図に示すように、カーボンブランクの配
合量が50〜60部を越えると、体積固有抵抗は架橋型
高分子の種類によって異なるが、各感温素子についてほ
ぼ一定になる。
As shown in Figure 4, when an alkyne melamine resin monomer is used as a crosslinked polymer, when the amount of carbon blank exceeds 50 to 60 parts, the volume resistivity varies depending on the type of crosslinked polymer. It becomes approximately constant for each temperature sensing element.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、繰り返し使用に
よっても抵抗値の経時変化が極めて少なく、安定な温度
−導電特性を有し、しかも局部過熱のおそれがなく、分
子レベルのセンサとして種々の段階の自己温度感知およ
び制御機能をもつ感温素子を提供することができる。
As explained above, according to the present invention, there is extremely little change in resistance value over time even after repeated use, it has stable temperature-conductivity characteristics, there is no risk of local overheating, and it can be used as a sensor at the molecular level in various ways. A temperature sensing element with step self temperature sensing and control functionality can be provided.

また、この感温素子は昇温時においても柔軟で弾性に冨
み、しかも適度の剛性を有するフレキシブルエラストマ
ーとしての性質を備え、種々の形態に加工することがで
き、製造方法も容易で低コストで製造することが可能で
あり、巾広い用途が期待される。
In addition, this temperature-sensitive element has the properties of a flexible elastomer that is flexible and elastic even when the temperature rises, and has appropriate rigidity, so it can be processed into various forms, and the manufacturing method is easy and low cost. It can be manufactured with

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で得られた感温素子の印加電圧を変
えたときの素子表面温度と抵抗値との関係を示すグラフ
。 第2図は、同上の昇温特性を示すグラフ。 第3図は、同じ〈実施例2で得られた感温素子の昇温特
性を示すグラフ。 第4図は、実施例3についてのアルキッドメラミン樹脂
とカーボンブラックの配合比と体積固有抵抗(常温)と
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the element surface temperature and the resistance value when the applied voltage of the temperature-sensitive element obtained in Example 1 is changed. FIG. 2 is a graph showing the temperature increase characteristics same as above. FIG. 3 is a graph showing the temperature rise characteristics of the temperature sensing element obtained in the same Example 2. FIG. 4 is a graph showing the relationship between the blending ratio of alkyd melamine resin and carbon black and volume resistivity (at room temperature) for Example 3.

Claims (1)

【特許請求の範囲】[Claims]  黒鉛またはカーボンブラックに架橋型高分子と線状高
分子を主体とする低次元物質を複合させてなることを特
徴とする自己温度制御特性をもつ有機質感温素子。
An organic temperature-sensitive element with self-temperature control characteristics, which is made by combining graphite or carbon black with a low-dimensional material mainly consisting of a cross-linked polymer and a linear polymer.
JP63309825A 1988-12-09 1988-12-09 Organic temperature sensing device having self-temperature control characteristics and method of manufacturing the same Expired - Lifetime JP2668426B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63309825A JP2668426B2 (en) 1988-12-09 1988-12-09 Organic temperature sensing device having self-temperature control characteristics and method of manufacturing the same
CA 2004760 CA2004760C (en) 1988-12-09 1989-12-06 Composite temperature-sensitive element and face heat generator comprising the same
DE68928400T DE68928400T2 (en) 1988-12-09 1989-12-07 Composite temperature sensitive element and an end face heat generator containing the same
EP19890122574 EP0372552B1 (en) 1988-12-09 1989-12-07 Composite temperature-sensitive element and face heat generator comprising the same
US08/184,855 US5415934A (en) 1988-12-09 1994-01-21 Composite temperature sensitive element and face heat generator comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63309825A JP2668426B2 (en) 1988-12-09 1988-12-09 Organic temperature sensing device having self-temperature control characteristics and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02156502A true JPH02156502A (en) 1990-06-15
JP2668426B2 JP2668426B2 (en) 1997-10-27

Family

ID=17997716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63309825A Expired - Lifetime JP2668426B2 (en) 1988-12-09 1988-12-09 Organic temperature sensing device having self-temperature control characteristics and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2668426B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109693A (en) * 1998-10-07 2000-04-18 Nok Corp Ptc composition and plane heater
CN1301511C (en) * 1998-11-02 2007-02-21 Tdk株式会社 Positive temp. coefficient thermal resistance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452476B1 (en) 1999-01-28 2002-09-17 Tdk Corporation Organic positive temperature coefficient thermistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144001A (en) * 1984-12-18 1986-07-01 松下電器産業株式会社 Resistor composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144001A (en) * 1984-12-18 1986-07-01 松下電器産業株式会社 Resistor composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109693A (en) * 1998-10-07 2000-04-18 Nok Corp Ptc composition and plane heater
CN1301511C (en) * 1998-11-02 2007-02-21 Tdk株式会社 Positive temp. coefficient thermal resistance

Also Published As

Publication number Publication date
JP2668426B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JP2513659B2 (en) Conductive polymer composition
EP0197781B1 (en) Melt-shapeable fluoropolymer compositions
JPS60155268A (en) Electroconductive polymer composition
US3457537A (en) Flexible resistance element film
JPS59502161A (en) self-control electric heating device
EP0371059A1 (en) Conductive polymer composition
CA1334335C (en) Self-current limited devices and method of making same
CA2004760C (en) Composite temperature-sensitive element and face heat generator comprising the same
JPH02156502A (en) Organic temperature sensitive element having self-temperature control characteristic
JPH03132001A (en) Complex temperature sensing element having self temperature control characteristic
JPH02230684A (en) Planar heat generator
KR100197201B1 (en) Sheet-like heating material
JPH08191003A (en) Manufacture of ptc resistor and resistor manufactured by it
JPS5918804B2 (en) heat sensitive element
KR100197202B1 (en) Organic temperature transducer
EP0138424A2 (en) Electrical devices comprising conductive polymers exhibiting ptc characteristics
JPH03205777A (en) Planar heating body
Yu et al. Carbon Black Filled Polyolefine as a PTC Material: Melt Rheological Behavior
JPS62156159A (en) Electrically conductive resin composition
JPH0292960A (en) Polymer composition with electrical resistance value having positive temperature coefficient
JPH0652714A (en) Conductive polymer composite
JP2604517B2 (en) Conductive polymer composition
JPH01186783A (en) Manufacture of heater element of positive temperature characteristic
JPH0343986A (en) Manufacture of fibrous on-surface heating element which has self control function of temperature by resistance and electric properties
JPH0678491B2 (en) Positive resistance temperature coefficient Method for producing heating element resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12