JPH0652714A - Conductive polymer composite - Google Patents

Conductive polymer composite

Info

Publication number
JPH0652714A
JPH0652714A JP22361592A JP22361592A JPH0652714A JP H0652714 A JPH0652714 A JP H0652714A JP 22361592 A JP22361592 A JP 22361592A JP 22361592 A JP22361592 A JP 22361592A JP H0652714 A JPH0652714 A JP H0652714A
Authority
JP
Japan
Prior art keywords
conductive
particles
conductive polymer
conductivity
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22361592A
Other languages
Japanese (ja)
Inventor
Toshiaki Watanuki
俊朗 綿貫
Emiko Iwata
えみ子 岩田
Hideo Yamamoto
秀雄 山本
Isao Isa
功 伊佐
Katsumi Yoshino
勝美 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP22361592A priority Critical patent/JPH0652714A/en
Publication of JPH0652714A publication Critical patent/JPH0652714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a conductive polymer composite controllable to desired conductivity without damaging essential physical properties of a polymer material. CONSTITUTION:A mixture of insulating polymer particles having an average particle diameter of 0.1 to 200mum and the conductive polymer particles, in which the surfaces of these insulating polymer particles are convered with a conductive macromolecular thin film layer such as polypyrrole, is molten molded. Since a quantity of conductive macromolecules in a conductive polymer composite is extremely small, essential physical properties of a polymer material, such as light weight, flexibility and easy moldability are not impaired. Conductivity is controllable in the wide range of 10<-17> to 10<-1>S/cm. Especially, a semiconductive polymer composite having the conductivity of 10<-2> to 10<-10>S/cm, which is hardly controllable when kneaded by a conductive filler, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性のポリマー組成
物に関するものである。
FIELD OF THE INVENTION This invention relates to electrically conductive polymer compositions.

【0002】[0002]

【従来の技術】ポリマー材料は、軽量でフレキシビリテ
ィーがあり、成形加工が容易である等のため、種々の用
途に用いられている。しかし、一般に絶縁性であるため
静電気が発生しやすいという問題点があり、導電性また
は半導電性を必要とする用途には不向きである。
2. Description of the Related Art Polymer materials are used for various purposes because of their light weight, flexibility, and ease of molding. However, since it is generally insulative, it has a problem that static electricity is easily generated, and it is not suitable for applications requiring conductivity or semiconductivity.

【0003】このポリマー材料に導電性を付与するため
に、従来、金属、金属酸化物、カーボン等の導電性フィ
ラーを混練した組成物が知られている。しかし、導電性
を得るためには、ポリマー材料中に連続した導電路が形
成されなければならず、多量の導電性フィラーを添加し
なくてはならない。例えば、ポリマー材料にカーボンブ
ラックを混練する場合、カーボンブラックの添加量は、
ポリマー材料100重量部に対し10〜100重量部にもなる。
しかし、このように添加量が多いと、ポリマー材料が本
来持つ物性が損なわれ、引張強度や耐衝撃性等の強度劣
化が生じる。また、導電性フィラーを混練した場合は、
絶縁性から導電性への変化が急激に生じてしまい、半導
体領域での電導度の制御が困難である。加えて、導電性
フィラーは、ポリマー材料中に不均一に分散し易く電導
度のバラつきが生じやすい。
In order to impart conductivity to this polymer material, a composition in which a conductive filler such as metal, metal oxide or carbon is kneaded is conventionally known. However, in order to obtain conductivity, a continuous conductive path must be formed in the polymer material, and a large amount of conductive filler must be added. For example, when kneading carbon black into a polymer material, the amount of carbon black added is
It can be 10 to 100 parts by weight based on 100 parts by weight of the polymer material.
However, such a large amount of addition impairs the physical properties inherent in the polymer material, resulting in deterioration in strength such as tensile strength and impact resistance. Also, when kneading the conductive filler,
The change from the insulating property to the conductive property suddenly occurs, and it is difficult to control the electric conductivity in the semiconductor region. In addition, the conductive filler is likely to disperse non-uniformly in the polymer material and the conductivity tends to vary.

【0004】先に、本発明者らは、絶縁性基体粒子の表
面をポリピロールまたはポリアニリンの導電体層で被覆
した導電性粒子及びその製造方法を開示(特開平2−2
73407号公報、特開平3−64369号公報)し
た。これらによると安価で簡便な方法で、導電性の優れ
た導電性粒子を得ることができるが、導電性ポリマー組
成物としての具体的な提案はなかった。
The present inventors have previously disclosed conductive particles in which the surfaces of insulating substrate particles are coated with a conductive layer of polypyrrole or polyaniline, and a method for producing the conductive particles (JP-A-2-2).
73407 and JP-A-3-64369). According to these, conductive particles having excellent conductivity can be obtained by an inexpensive and simple method, but there has been no specific proposal as a conductive polymer composition.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的とすると
ころは、ポリマー材料が本来持つ物性を損なうことなく
優れた導電性を示す導電性ポリマー組成物を提供し、ま
た、所望の電導度に制御できる導電性ポリマー組成物を
提供することである。
The object of the present invention is to provide a conductive polymer composition exhibiting excellent conductivity without deteriorating the physical properties inherent to the polymer material, and to obtain a desired conductivity. It is to provide a controllable conductive polymer composition.

【0006】[0006]

【課題を解決するための手段】本発明者らは、鋭意検討
した結果、上記問題を解決しうる導電性ポリマー組成物
を完成するに至った。
Means for Solving the Problems As a result of intensive studies, the present inventors have completed a conductive polymer composition capable of solving the above problems.

【0007】すなわち、本発明は、絶縁性ポリマー粒子
と、絶縁性ポリマー粒子表面を導電性高分子薄膜層で被
覆した導電性ポリマー粒子との混合物を溶融成形してな
る導電性ポリマー組成物である。
That is, the present invention is a conductive polymer composition obtained by melt-molding a mixture of insulating polymer particles and conductive polymer particles whose surfaces are coated with a conductive polymer thin film layer. .

【0008】本発明の導電性ポリマー組成物は、導電性
フィラーのように混練等ではなく、絶縁性ポリマー粒子
及び導電性ポリマー粒子の2種類を混合した後、そのま
ま常圧ないし加圧下で溶融成形して得られる。
The conductive polymer composition of the present invention is not kneaded like a conductive filler, but is mixed with two kinds of insulating polymer particles and conductive polymer particles and then melt-formed under normal pressure or pressure. Obtained.

【0009】本発明の導電性ポリマー組成物は、導電性
ポリマー組成物中の導電性ポリマー粒子が10wt%より大
になると急激に導電性を示す。このような急激な電導度
の増大は、導電性ポリマー粒子がある比率以上になると
導電路が形成され、比率が大きくなるに従って導電路の
太さが実質的に大きくなって行くためと考えられる。
The conductive polymer composition of the present invention shows a sharp conductivity when the content of the conductive polymer particles in the conductive polymer composition exceeds 10 wt%. It is considered that such a rapid increase in conductivity is due to the formation of conductive paths when the conductive polymer particles have a certain ratio or more, and the thickness of the conductive paths substantially increases as the ratio increases.

【0010】本発明で用いられる絶縁性ポリマー粒子と
しては、平均粒径0.1〜200μmの熱硬化性樹脂や熱可塑
性樹脂等の合成樹脂または天然高分子の粒子がある。平
均粒径1〜100μmの球状粒子が溶融時の充填密度が特に
優れている。平均粒径が0.1μmより小、または200μmよ
り大の場合、所望の導電性を得るためには、従来の導電
性フィラーと同様に導電性ポリマー組成物中の導電性ポ
リマー粒子の比率を多くしなくてはならない。
The insulating polymer particles used in the present invention include particles of synthetic resin such as thermosetting resin or thermoplastic resin or natural polymer having an average particle diameter of 0.1 to 200 μm. Spherical particles having an average particle size of 1 to 100 μm have particularly excellent packing density when melted. When the average particle size is smaller than 0.1 μm or larger than 200 μm, in order to obtain the desired conductivity, increase the ratio of the conductive polymer particles in the conductive polymer composition as in the case of the conventional conductive filler. Must-have.

【0011】本発明で用いられる絶縁性ポリマー粒子を
例示すると、ポリエチレン、ポリプロピレン、ポリスチ
レン、ポリカーボネート、ポリメチルメタクリレート、
ポリエステル、ポリウレタン、ポリ塩化ビニル、ポリ塩
化ビニリデン、ポリ酢酸ビニル、ポリビニルブチラー
ル、ポリアミド、ポリイミド、エポキシ樹脂、フェノー
ル樹脂、シリコン樹脂、フッ素樹脂、ナイロン、エチレ
ン・酢酸ビニル樹脂、スチレン・アクリロニトリル樹
脂、アクリロニトリル・ブタジエン・スチレン樹脂等が
あるが、安価で安定性に優れたポリエチレンが好まし
い。
Examples of the insulating polymer particles used in the present invention include polyethylene, polypropylene, polystyrene, polycarbonate, polymethylmethacrylate,
Polyester, polyurethane, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl butyral, polyamide, polyimide, epoxy resin, phenol resin, silicone resin, fluorine resin, nylon, ethylene / vinyl acetate resin, styrene / acrylonitrile resin, acrylonitrile / Although there are butadiene / styrene resins and the like, polyethylene which is inexpensive and has excellent stability is preferable.

【0012】本発明で絶縁性ポリマー粒子を被覆する導
電性高分子としては、ポリピロール、ポリアニリン、ポ
リチオフェンまたはその誘導体があるが、導電性及び安
定性の面からポリピロールが好ましい。
As the conductive polymer for coating the insulating polymer particles in the present invention, there are polypyrrole, polyaniline, polythiophene and derivatives thereof, and polypyrrole is preferred from the viewpoint of conductivity and stability.

【0013】絶縁性ポリマー粒子の表面を導電性高分子
薄膜層で被覆する方法は、ポリピロールについては特開
平2−273407号公報、ポリアニリンについては特
開平3−64369号公報に開示されているが、本発明
はなんらこれらに限定されない。ポリピロールで被覆す
る方法は、一例として、水、アセトニトリルまたはアル
コールの1種または2種以上からなる溶媒中に、絶縁性
ポリマー粒子を添加し、ピロール、酸化剤及びドーパン
トの存在下、−30〜40℃の温度で攪拌することにより簡
便に製造できる。
A method of coating the surface of the insulating polymer particles with a conductive polymer thin film layer is disclosed in JP-A-2-273407 for polypyrrole and JP-A-3-64369 for polyaniline. The present invention is not limited to these. The method of coating with polypyrrole is, for example, -30 to 40 in the presence of pyrrole, an oxidant and a dopant by adding insulating polymer particles to a solvent consisting of one or more of water, acetonitrile or alcohol. It can be easily produced by stirring at a temperature of ° C.

【0014】絶縁性ポリマー粒子表面の導電性高分子薄
膜層の膜厚は1μm以下、または導電性ポリマー組成物
中の導電性高分子の比率は5wt%以下であることが好ま
しい。導電性高分子薄膜層の膜厚が1μmより大、また
は導電性ポリマー組成物中の導電性高分子の比率が5wt
%より大の時は、導電性ポリマー組成物の物性が損なわ
れる恐れがある。従来の導電性フィラーを混練した組成
物では、本発明の導電性ポリマー組成物のようにわずか
な添加量で所望の導電性は得られない。
The thickness of the conductive polymer thin film layer on the surface of the insulating polymer particles is preferably 1 μm or less, or the ratio of the conductive polymer in the conductive polymer composition is preferably 5 wt% or less. The thickness of the conductive polymer thin film layer is larger than 1 μm, or the ratio of the conductive polymer in the conductive polymer composition is 5 wt.
When it is more than%, the physical properties of the conductive polymer composition may be impaired. With the conventional composition in which the conductive filler is kneaded, the desired conductivity cannot be obtained with a small addition amount as in the conductive polymer composition of the present invention.

【0015】本発明の導電性ポリマー組成物の電導度
は、絶縁性ポリマー粒子と導電性ポリマー粒子との混合
比率を変えることにより10-17程度の絶縁体から10-1
度の導電体まで広く制御できる。特に、10ー2〜10ー10Ω・
cmの半導体領域での電導度の制御が容易である。
The conductivity of the conductive polymer composition of the present invention can be varied from an insulator of about 10 -17 to a conductor of about 10 -1 by changing the mixing ratio of the insulating polymer particles and the conductive polymer particles. You can control. In particular, 10 Ω · 10 over 2-10 over
It is easy to control the electric conductivity in the semiconductor region of cm.

【0016】[0016]

【実施例】以下、導電性ポリマー粒子の合成例及び本発
明の導電性ポリマー組成物の実施例について説明する
が、本発明はこれらのみに限定されるものではない。電
導度の測定は、高抵抗のものは2端子法で、低抵抗のも
のは4端子法で室温で測定した。
EXAMPLES Examples of synthesizing conductive polymer particles and examples of the conductive polymer composition of the present invention will be described below, but the present invention is not limited thereto. The conductivity was measured by a two-terminal method for high resistance and a four-terminal method for low resistance at room temperature.

【0017】合成例1 塩化第二鉄・六水和塩17gをアセトニトリル250mlに溶
解し、これに平均粒径30μmの球状の絶縁性ポリエチレ
ン粒子(商品名:フロービーズ、住友精化(株)製)30
gを添加し0℃に冷却しながら攪拌分散した。液温を0
〜5℃に保ちながら、ピロール1.7gを含むアセトニト
リル溶液40mlを添加し1時間攪拌した後、ろ別し、水及
びメタノールで洗浄した後、乾燥し、表面を黒色のポリ
ピロール層で被覆した球状の導電性ポリエチレン粒子を
得た。元素分析値及び収率から、得られた粒子のポリピ
ロール被覆層の膜厚は0.1μmであった。また、得られた
粒子を温度90℃、3トン/cm2で30分溶融成形したディ
スク状のポリマー組成物の電導度は、2.6×10-1S/cm
であった。
Synthesis Example 1 17 g of ferric chloride hexahydrate is dissolved in 250 ml of acetonitrile, and spherical insulating polyethylene particles having an average particle diameter of 30 μm (trade name: Flow beads, manufactured by Sumitomo Seika Chemicals Ltd.) ) 30
g was added, and the mixture was stirred and dispersed while cooling to 0 ° C. Liquid temperature is 0
While maintaining at ~ 5 ° C, 40 ml of an acetonitrile solution containing 1.7 g of pyrrole was added, and the mixture was stirred for 1 hour, filtered, washed with water and methanol, and then dried to form a spherical polypyrrole surface-coated spherical surface. Conductive polyethylene particles were obtained. From the elemental analysis value and the yield, the film thickness of the polypyrrole coating layer of the obtained particles was 0.1 μm. The electrical conductivity of the disc-shaped polymer composition obtained by melt-molding the obtained particles at a temperature of 90 ° C. and 3 ton / cm 2 for 30 minutes is 2.6 × 10 −1 S / cm.
Met.

【0018】合成例2 粒径1〜2μmの球状の絶縁性ポリメチルメタクリレー
ト粒子(商品名:MP−1400、綜研化学(株)製)
220gを水800g及びアルミナメディア(直径12mm×高さ
13mm)1500gと共にポットミルに入れ60回/分で4時間
分散した。この分散液に水1180gを加え、0℃に冷却し
ながら攪拌した。液温を0〜3℃に保ちながら、ピロー
ル21.7gを含む水540gを添加し1時間攪拌した後、ろ
別し、水及びメタノールで洗浄した後、乾燥し、表面を
黒色のポリピロール層で被覆した球状の導電性ポリメチ
ルメタクリレート粒子を得た。元素分析値及び収率か
ら、得られた粒子のポリピロール被覆層の膜厚は0.02μ
mであった。また、得られた粒子を温度120℃、3トン/
cm2で30分溶融成形したディスク状のポリマー組成物の
電導度は、3.5S/cmであった。
Synthesis Example 2 Spherical insulating polymethylmethacrylate particles having a particle size of 1 to 2 μm (trade name: MP-1400, manufactured by Soken Chemical Industry Co., Ltd.)
220g to 800g water and alumina media (diameter 12mm x height
13 mm) and 1500 g were put in a pot mill and dispersed at 60 times / min for 4 hours. Water (1180 g) was added to this dispersion, and the mixture was stirred while being cooled to 0 ° C. While maintaining the liquid temperature at 0 to 3 ° C, 540 g of water containing 21.7 g of pyrrole was added, stirred for 1 hour, filtered, washed with water and methanol, and dried to coat the surface with a black polypyrrole layer. Spherical conductive polymethylmethacrylate particles were obtained. From the elemental analysis value and the yield, the thickness of the polypyrrole coating layer of the obtained particles was 0.02μ.
It was m. In addition, the obtained particles are heated at a temperature of 120 ° C., 3 tons
The disk-shaped polymer composition melt-molded at cm 2 for 30 minutes had an electric conductivity of 3.5 S / cm.

【0019】実施例1 平均粒径30μmの球状の絶縁性ポリエチレン粒子(商品
名:フロービーズ、住友精化(株)製)75wt%と、合成
例1で得られた球状の導電性ポリエチレン粒子25wt%と
を混合し、温度90℃、3トン/cm2で30分間溶融成形し
て直径1.3cmのディスク状の導電性ポリマー組成物を得
た。電導度は、2.2×10-6S/cmであった。
Example 1 75 wt% of spherical insulating polyethylene particles having an average particle diameter of 30 μm (trade name: Flow beads, manufactured by Sumitomo Seika Chemicals Ltd.) and 25 wt% of spherical conductive polyethylene particles obtained in Synthesis Example 1 %, And melt-molded at a temperature of 90 ° C. and 3 ton / cm 2 for 30 minutes to obtain a disk-shaped conductive polymer composition having a diameter of 1.3 cm. The electric conductivity was 2.2 × 10 −6 S / cm.

【0020】導電性ポリエチレン粒子のポリピロール層
の膜厚は0.1μmであるので、導電性ポリエチレン粒子中
のポリピロールは約2wt%であり、また導電性ポリマー
組成物中の比率は約0.4wt%である。
Since the thickness of the polypyrrole layer of the conductive polyethylene particles is 0.1 μm, the polypyrrole in the conductive polyethylene particles is about 2 wt%, and the ratio in the conductive polymer composition is about 0.4 wt%. .

【0021】実施例2 実施例1において、絶縁性ポリエチレン粒子80wt%と導
電性ポリエチレン粒子20wt%を混合した以外は実施例1
と同様にして、導電性ポリマー組成物を得た。電導度
は、2.1×10-8S/cmであった。
Example 2 Example 1 was repeated except that 80 wt% of insulating polyethylene particles and 20 wt% of conductive polyethylene particles were mixed.
A conductive polymer composition was obtained in the same manner as in. The electrical conductivity was 2.1 × 10 -8 S / cm.

【0022】実施例3 実施例1において、絶縁性ポリエチレン粒子70wt%と導
電性ポリエチレン粒子30wt%を混合した以外は実施例1
と同様にして、導電性ポリマー組成物を得た。電導度
は、1.8×10-4S/cmであった。
Example 3 Example 1 was repeated except that 70 wt% of insulating polyethylene particles and 30 wt% of conductive polyethylene particles were mixed.
A conductive polymer composition was obtained in the same manner as in. The electric conductivity was 1.8 × 10 −4 S / cm.

【0023】実施例4 実施例1において、絶縁性ポリエチレン粒子50wt%と導
電性ポリエチレン粒子50wt%を混合した以外は実施例1
と同様にして、導電性ポリマー組成物を得た。電導度
は、1.2×10-2S/cmであった。
Example 4 Example 1 was repeated except that 50 wt% of insulating polyethylene particles and 50 wt% of conductive polyethylene particles were mixed.
A conductive polymer composition was obtained in the same manner as in. The conductivity was 1.2 × 10 -2 S / cm.

【0024】実施例5 実施例1において、絶縁性ポリエチレン粒子20wt%と導
電性ポリエチレン粒子80wt%を混合した以外は実施例1
と同様にして、導電性ポリマー組成物を得た。電導度
は、1.1×10-1S/cmであった。
Example 5 Example 1 was repeated except that 20 wt% of insulating polyethylene particles and 80 wt% of conductive polyethylene particles were mixed.
A conductive polymer composition was obtained in the same manner as in. The conductivity was 1.1 × 10 -1 S / cm.

【0025】実施例1〜5において、絶縁性ポリエチレ
ン粒子に対する導電性ポリエチレン粒子の比率が25〜30
wt%の時、2.2×10-6〜1.8×10-4S/cmの半導電性のポ
リマー組成物が得られた。
In Examples 1 to 5, the ratio of conductive polyethylene particles to insulating polyethylene particles was 25 to 30.
At wt%, a semiconductive polymer composition of 2.2 × 10 −6 to 1.8 × 10 −4 S / cm was obtained.

【0026】比較例1 実施例1において、絶縁性ポリエチレン粒子のみを用い
た以外は実施例1と同様にして、ポリマー組成物を得
た。電導度は、2.1×10-16S/cmで、絶縁性であった。
Comparative Example 1 A polymer composition was obtained in the same manner as in Example 1 except that only insulating polyethylene particles were used. The conductivity was 2.1 × 10 -16 S / cm, and it was insulating.

【0027】実施例6 粒径1〜2μmの球状の絶縁性ポリメチルメタクリレー
ト粒子(商品名:MP−1400、綜研化学(株)製)
75wt%と、合成例2で得られた球状の導電性ポリメチル
メタクリレート粒子25wt%とを混合し、温度120℃、3
トン/cm2で30分間溶融成形して直径1.3cmのディスク状
の導電性ポリマー組成物を得た。電導度は、3.1×10-5
S/cmであった。
Example 6 Spherical insulating polymethylmethacrylate particles having a particle size of 1 to 2 μm (trade name: MP-1400, manufactured by Soken Chemical Industry Co., Ltd.)
75 wt% and 25 wt% of the spherical conductive polymethylmethacrylate particles obtained in Synthesis Example 2 were mixed, and the temperature was 120 ° C., and 3
It was melt-molded at ton / cm 2 for 30 minutes to obtain a disk-shaped conductive polymer composition having a diameter of 1.3 cm. Conductivity is 3.1 × 10 -5
It was S / cm.

【0028】実施例7 実施例6において、絶縁性ポリメチルメタクリレート粒
子85wt%と導電性ポリメチルメタクリレート粒子15wt%
とを混合した以外は実施例6と同様にして、導電性ポリ
マー組成物を得た。電導度は、3.1×10-9S/cmであっ
た。
Example 7 In Example 6, 85 wt% of insulating polymethylmethacrylate particles and 15 wt% of conductive polymethylmethacrylate particles
A conductive polymer composition was obtained in the same manner as in Example 6 except that and were mixed. The conductivity was 3.1 × 10 -9 S / cm.

【0029】実施例8 実施例6において、絶縁性ポリメチルメタクリレート粒
子80wt%と導電性ポリメチルメタクリレート粒子20wt%
とを混合した以外は実施例6と同様にして、導電性ポリ
マー組成物を得た。電導度は、4.6×10-8S/cmであっ
た。
Example 8 In Example 6, 80 wt% of insulating polymethylmethacrylate particles and 20 wt% of conductive polymethylmethacrylate particles
A conductive polymer composition was obtained in the same manner as in Example 6 except that and were mixed. The conductivity was 4.6 × 10 -8 S / cm.

【0030】実施例9 実施例6において、絶縁性ポリメチルメタクリレート粒
子70wt%と導電性ポリメチルメタクリレート粒子30wt%
とを混合した以外は実施例6と同様にして、導電性ポリ
マー組成物を得た。電導度は、2.0×10-2S/cmであっ
た。
Example 9 In Example 6, 70 wt% of insulating polymethylmethacrylate particles and 30 wt% of conductive polymethylmethacrylate particles
A conductive polymer composition was obtained in the same manner as in Example 6 except that and were mixed. The conductivity was 2.0 × 10 -2 S / cm.

【0031】実施例10 実施例6において、絶縁性ポリメチルメタクリレート粒
子50wt%と導電性ポリメチルメタクリレート粒子50wt%
とを混合した以外は実施例6と同様にして、導電性ポリ
マー組成物を得た。電導度は、6.6×10-1S/cmであっ
た。
Example 10 In Example 6, 50 wt% of insulating polymethylmethacrylate particles and 50 wt% of conductive polymethylmethacrylate particles
A conductive polymer composition was obtained in the same manner as in Example 6 except that and were mixed. The electric conductivity was 6.6 × 10 -1 S / cm.

【0032】実施例6において、絶縁性ポリメチルメタ
クリレート粒子に対する導電性ポリメチルメタクリレー
ト粒子の比率が25wt%の時に、3.1×10-5S/cmの半導
電性ポリマー組成物が得られた。
In Example 6, a semiconductive polymer composition of 3.1 × 10 -5 S / cm was obtained when the ratio of conductive polymethylmethacrylate particles to insulating polymethylmethacrylate particles was 25 wt%.

【0033】比較例2 実施例6において、絶縁性ポリメチルアクリレート粒子
のみを用いた以外は実施例6と同様にして、ポリマー組
成物を得た。電導度は、約10-17S/cmで、絶縁性であ
った。
Comparative Example 2 A polymer composition was obtained in the same manner as in Example 6 except that only insulating polymethyl acrylate particles were used. The conductivity was about 10 -17 S / cm, and it was insulating.

【0034】実施例11 合成例1において、平均粒径30μmの球状の絶縁性ポリ
エチレン粒子の代りに平均粒径11μmの球状の絶縁性ポ
リスチレン粒子(商品名:ファインパールPB3011
W、住友化学工業(株)製)を用いた以外は合成例1と
同様にして、球状の導電性ポリスチレン粒子を得た。つ
いで、絶縁性ポリスチレン粒子78wt%と、得られた導電
性ポリスチレン粒子22wt%とを混合し、温度120℃、3
トン/cm2で30分間溶融成形して、直径1.3cmのディスク
状の導電性ポリマー組成物を得た。電導度は、4.1×10
-7S/cmであった。
Example 11 In the synthesis example 1, spherical insulating polystyrene particles having an average particle diameter of 11 μm were replaced with spherical insulating polystyrene particles having an average particle diameter of 30 μm (trade name: Fine Pearl PB3011).
Spherical conductive polystyrene particles were obtained in the same manner as in Synthesis Example 1 except that W and Sumitomo Chemical Co., Ltd. were used. Then, 78 wt% of insulating polystyrene particles and 22 wt% of the obtained conductive polystyrene particles are mixed, and the temperature is 120 ° C.
Melt-molding was performed for 30 minutes at ton / cm 2 to obtain a disk-shaped conductive polymer composition having a diameter of 1.3 cm. Conductivity is 4.1 x 10
-7 S / cm.

【0035】実施例12 合成例1において、平均粒径30μmの球状の絶縁性ポリ
エチレン粒子の代りに平均粒径40μmの球状の絶縁性ポ
リ塩化ビニル粒子(商品名:ビニカ75BX、三菱化成
ビニル(株)製)を用いた以外は合成例1と同様にし
て、球状の導電性ポリ塩化ビニル粒子を得た。ついで、
絶縁性ポリ塩化ビニル粒子89wt%と、得られた導電性ポ
リ塩化ビニル粒子11wt%とを混合し、温度130℃、1ト
ン/cm2で30分間溶融成形して、直径1.3cmのディスク状
の導電体ポリマー組成物を得た。電導度は6.3×10-6
/cmであった。
Example 12 Instead of spherical insulating polyethylene particles having an average particle size of 30 μm in Synthesis Example 1, spherical insulating polyvinyl chloride particles having an average particle size of 40 μm (trade name: Vinica 75BX, Mitsubishi Kasei Vinyl Co., Ltd. Spherical conductive polyvinyl chloride particles were obtained in the same manner as in Synthesis Example 1 except that (1) was used. Then,
89 wt% of insulating polyvinyl chloride particles and 11 wt% of the obtained conductive polyvinyl chloride particles were mixed and melt-molded at a temperature of 130 ° C. and 1 ton / cm 2 for 30 minutes to form a disk-shaped 1.3 cm diameter. A conductor polymer composition was obtained. Conductivity is 6.3 × 10 -6 S
It was / cm.

【0036】[0036]

【発明の効果】本発明の導電性ポリマー組成物は、導電
性ポリマー組成物中の導電性高分子が極めて少量である
ので、軽量でフレキシビリティーがあり、成形加工が容
易である等のポリマー材料が本来持つ物性を損なわな
い。また、絶縁性ポリマー粒子と導電性ポリマー粒子と
の比率を変えることにより、電導度を10-17〜10-1S/c
mの広範囲で制御できる。特に、10ー2〜10ー10Ω・cmの半
導体領域での電導度の制御が容易である。
The electrically conductive polymer composition of the present invention has a very small amount of electrically conductive polymer in the electrically conductive polymer composition, so that it is lightweight and has flexibility, and is easy to process. Does not impair the original physical properties of the material. In addition, by changing the ratio of the insulating polymer particles and the conductive polymer particles, the conductivity can be 10 -17 to 10 -1 S / c.
It can be controlled in a wide range of m. In particular, it is easy to control the conductivity of the semiconductor region 10 over 2-10 over 10 Omega · cm.

【0037】本発明の導電性ポリマー組成物は、電子素
子の電極、電極取出し材料、コネクタ、発熱体、導電ケ
ーブル等の導電性材料や、帯電防止ロール、静電気防止
成形体等の帯電防止材のほか、ファックス電極板、電線
ケーブルの半導電層等の半導電性材料として使用でき
る。
The conductive polymer composition of the present invention can be used as a conductive material for electrodes of electronic devices, electrode take-out materials, connectors, heating elements, conductive cables, and antistatic materials such as antistatic rolls and antistatic moldings. In addition, it can be used as a semi-conductive material such as a fax electrode plate and a semi-conductive layer for electric cables.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 秀雄 群馬県渋川市半田2470番地 日本カーリッ ト株式会社中央研究所内 (72)発明者 伊佐 功 群馬県渋川市半田2470番地 日本カーリッ ト株式会社中央研究所内 (72)発明者 吉野 勝美 大阪府岸和田市尾生町166番地の3 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Yamamoto, 2470, Handa, Shibukawa, Gunma Japan, Central Research Institute, Japan Carlit Co., Ltd. (72) Isao Isa, 2470, Handa, Shibukawa, Gunma, Japan Central Research, Japan In-house (72) Inventor Katsumi Yoshino 3 from 166 Oomachi, Kishiwada City, Osaka Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性ポリマー粒子と、絶縁性ポリマー
粒子表面を導電性高分子薄膜層で被覆した導電性ポリマ
ー粒子との混合物を溶融成形してなる導電性ポリマー組
成物。
1. A conductive polymer composition obtained by melt-molding a mixture of insulating polymer particles and conductive polymer particles whose surfaces are coated with a conductive polymer thin film layer.
【請求項2】 絶縁性ポリマー粒子が平均粒径0.2〜200
μmのポリエチレン粒子であることを特徴とする請求項
1記載の導電性ポリマー組成物。
2. The insulating polymer particles have an average particle size of 0.2 to 200.
The conductive polymer composition according to claim 1, wherein the conductive polymer composition is polyethylene particles having a size of μm.
【請求項3】 導電性高分子がポリピロールであること
を特徴とする請求項1記載の導電性ポリマー組成物。
3. The conductive polymer composition according to claim 1, wherein the conductive polymer is polypyrrole.
【請求項4】 導電性ポリマー組成物の電導度が10ー2〜1
0ー10S/cmの半導電性であることを特徴とする請求項1
記載の導電性ポリマー組成物。
4. The conductive polymer composition having an electric conductivity of 10 −2 to 1
0 -10 Claim 1, characterized in that a semi-conductive S / cm
The conductive polymer composition described.
JP22361592A 1992-07-31 1992-07-31 Conductive polymer composite Pending JPH0652714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22361592A JPH0652714A (en) 1992-07-31 1992-07-31 Conductive polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22361592A JPH0652714A (en) 1992-07-31 1992-07-31 Conductive polymer composite

Publications (1)

Publication Number Publication Date
JPH0652714A true JPH0652714A (en) 1994-02-25

Family

ID=16800981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22361592A Pending JPH0652714A (en) 1992-07-31 1992-07-31 Conductive polymer composite

Country Status (1)

Country Link
JP (1) JPH0652714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042918A1 (en) * 2010-09-28 2012-04-05 積水化成品工業株式会社 Coloring resin particles, and production method and uses therefor
JP2012072264A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Coloring resin particle and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042918A1 (en) * 2010-09-28 2012-04-05 積水化成品工業株式会社 Coloring resin particles, and production method and uses therefor
JP2012072264A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Coloring resin particle and use thereof
CN103119088A (en) * 2010-09-28 2013-05-22 积水化成品工业株式会社 Coloring resin particles, and production method and uses therefor

Similar Documents

Publication Publication Date Title
US5705555A (en) Conductive polymer compositions
US5595689A (en) Highly conductive polymer blends with intrinsically conductive polymers
CA1190735A (en) Flexible screen-printable conductive composition
US5057370A (en) Electrically conducting solid plastics
US3003975A (en) Conductive plastic composition and method of making the same
US4689250A (en) Cross-linked polymer coated metal particle filler compositions
JPH0428743B2 (en)
TW200305619A (en) Electroconductive composition, electroconductive coating and method of producing the electroconductive coating
EP0197046B1 (en) Flexible coating
US3733385A (en) Method of making conducting plastic articles
CN108084627B (en) HIPS (high impact polystyrene) based conductive master batch based on carbon nano tube and graphene compound system and preparation method thereof
CN101277996A (en) Antistatic polymer films with improved antistatic properties
US3346444A (en) Electrically conductive polymers and process of producing the same
JPS61123665A (en) Production of electrically conductive resin composition
CA1337012C (en) Temperature self-controlling heating composition
US5158707A (en) Conductive plastic composite and its preparation and use
US4655964A (en) Conductive nylon molding materials
JPH0652714A (en) Conductive polymer composite
JP3056247B2 (en) Method for producing polymer composition having antistatic property-conductivity
US4683082A (en) One-component, particle-filled compositions
Singh et al. Electrical behaviour of attritor processed Al/PMMA composites
JPH01225663A (en) Conductive resin composition
EP0756748A1 (en) Electrically conducting material and a method to prepare it
US4786437A (en) One-component, particle-filled compositions
EP0221434B1 (en) Improving conductivity of plastics containing metallic fillers