JPH0678444A - Detecting device for deterioration of insulation - Google Patents

Detecting device for deterioration of insulation

Info

Publication number
JPH0678444A
JPH0678444A JP22410392A JP22410392A JPH0678444A JP H0678444 A JPH0678444 A JP H0678444A JP 22410392 A JP22410392 A JP 22410392A JP 22410392 A JP22410392 A JP 22410392A JP H0678444 A JPH0678444 A JP H0678444A
Authority
JP
Japan
Prior art keywords
current
unbalanced
detection
ground fault
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22410392A
Other languages
Japanese (ja)
Other versions
JP2732000B2 (en
Inventor
Kenji Kitamura
憲治 北村
Akio Saruta
明雄 猿田
Hironobu Abe
寛延 阿部
Osamu Funayama
修 船山
Yoji Sasaki
洋二 佐々木
Kazuo Takahashi
一男 高橋
Hideo Ochiai
秀男 落合
Shoichi Goi
昭一 五井
Shigemitsu Mori
茂光 森
Akio Kitagawa
明男 北川
Yoshinori Ito
芳則 伊藤
Akira Akiyama
昭 秋山
Kazushi Ono
一志 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP22410392A priority Critical patent/JP2732000B2/en
Publication of JPH0678444A publication Critical patent/JPH0678444A/en
Application granted granted Critical
Publication of JP2732000B2 publication Critical patent/JP2732000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To sensitively detect the current based on the deterioration of insulation of a cable or load flowing to the cable constituting a power system. CONSTITUTION:This detector is equipped with ZCTs 26 and 28 which detect the unbalance current and the earth current flowing in a main cable, and the earth line 38 of ZCT26 pierces it in forward direction, and the earth line 38 of ZCT28 pierces it in reverse direction, and the unbalance currents by the detection of ZCTs 26 and 28 are outputted in the reverse polarities with each other, and the earth currents are outputted in the same polarity, and when the detection currents of each ZCTs 26 and 28 are added with an adder, the unbalance currents are offset with each other, and only the earth current can be detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁劣化検出装置に係
り、特に、電源系統を構成する配電線及び配電線に接続
される電気機器の絶縁劣化を検出するに好適な絶縁劣化
検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulation deterioration detecting device, and more particularly to an insulation deterioration detecting device suitable for detecting insulation deterioration of a distribution line which constitutes a power supply system and an electric device connected to the distribution line.

【0002】[0002]

【従来の技術】非接地系の電源系統においては、電源変
圧器を遮断器を介して母線に接続し、この母線に配電用
遮断器を介してケーブルを接続し、このケーブルに誘導
電動機などの負荷を接続する構成が採用されている。こ
のようなシステムにおいては、地絡事故からケーブル及
び負荷を保護するために、特開昭58−79428号公
報に記載されているような地絡継電装置が設けられてい
る。またこのようなシステムにおいては、負荷機器の絶
縁劣化を早期に検出するために、ケーブルの電源側に微
少な地絡電流を検出可能なケーブル貫通型ZCTを配置
する構成が採用されている。すなわち、負荷機器が絶縁
劣化状態となると、ケーブルには地絡電流に相当する電
流が流れるため、この電流をZCTで検出し、負荷機器
の絶縁劣化を早期に検出するようになっている。
2. Description of the Related Art In an ungrounded power system, a power transformer is connected to a busbar through a circuit breaker, and a cable is connected to this busbar through a circuit breaker for distribution. A configuration for connecting a load is adopted. In such a system, a ground fault relay device as described in JP-A-58-79428 is provided in order to protect the cable and the load from the ground fault. Further, in such a system, in order to detect the insulation deterioration of the load device at an early stage, a configuration in which a cable penetrating ZCT capable of detecting a minute ground fault current is arranged on the power source side of the cable is adopted. That is, when the load device is in the insulation deterioration state, a current corresponding to a ground fault current flows in the cable, and therefore this current is detected by ZCT to detect the insulation deterioration of the load device at an early stage.

【0003】[0003]

【発明が解決しようとする課題】しかし、非接地系の電
源系統では、ケーブルの対地静電容量が比較的大きく、
この値の各相間のアンバランスによる不平衡電流が常時
流れている。すなわち、ケーブルには、負荷に電流を供
給するときに、ケーブルの導体とケーブルのシース(被
覆)との間の静電容量を介して不平衡電流が流れ、この
不平衡電流がアース線を介して流れるようになってい
る。この不平衡電流はZCTの二次側に地絡電流として
発生するようになっており、負荷機器の絶縁劣化に伴な
う地絡電流が不平衡電流以下の値のときには、不平衡電
流の位相差との兼ね合いで不平衡電流の中に吸収されて
しまい、絶縁劣化に伴なう微少電流を検出することがで
きない。すなわち、ケーブルに貫通型ZCTを単に設け
ても、負荷機器の絶縁劣化が初期の状態のように、絶縁
劣化に伴なう漏洩電流のレベルが小さいときには絶縁劣
化の状態を確実に検出することができない。
However, in the non-grounded power supply system, the capacitance of the cable to ground is relatively large,
An unbalanced current is constantly flowing due to the imbalance between these phases. That is, when supplying current to the load, an unbalanced current flows through the capacitance between the conductor of the cable and the sheath (coating) of the cable, and this unbalanced current flows through the ground wire. It is designed to flow. This unbalanced current is generated as a ground fault current on the secondary side of the ZCT. When the ground fault current due to the insulation deterioration of the load equipment is less than or equal to the unbalanced current, the level of the unbalanced current is In consideration of the phase difference, it is absorbed in the unbalanced current, and it is impossible to detect the minute current due to the insulation deterioration. That is, even if the cable is provided with the through-type ZCT, it is possible to reliably detect the state of insulation deterioration when the level of the leakage current accompanying the insulation deterioration is small as in the initial state of the insulation deterioration of the load device. Can not.

【0004】本発明の目的は、電源系統を構成するケー
ブルまたは負荷の絶縁劣化に伴なう電流を高感度に検出
することができる絶縁劣化検出装置を提供することにあ
る。
An object of the present invention is to provide an insulation deterioration detecting device capable of detecting with high sensitivity a current associated with insulation deterioration of a cable or a load constituting a power supply system.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、第1の装置として、電源と負荷とを結ぶ
ケーブルに流れる不平衡電流を検出する第1不平衡電流
検出手段と、前記ケーブルに流れる不平衡電流を第1不
平衡電流検出手段とは異なる極性で検出する第2不平衡
電流検出手段と、第1不平衡電流検出手段の検出電流に
重畳した地絡電流を検出する第1地絡電流検出手段と、
第2不平衡電流検出手段の検出電流に重畳した地絡電流
を第1地絡電流検出手段の検出電流と同一極性で検出す
る第2地絡電流検出手段と、第1不平衡電流検出手段の
検出電流と第1地絡電流検出手段の検出電流と第2不平
衡電流検出手段の検出電流及び第2地絡電流検出手段の
検出電流をそれぞれ加算する加算手段とを備えている絶
縁劣化検出装置を構成したものである。
In order to achieve the above object, the present invention provides, as a first device, a first unbalanced current detecting means for detecting an unbalanced current flowing in a cable connecting a power source and a load. A second unbalanced current detecting means for detecting an unbalanced current flowing through the cable with a polarity different from that of the first unbalanced current detecting means, and a ground fault current superimposed on the detected current of the first unbalanced current detecting means. A first ground fault current detecting means,
The second ground fault current detecting means for detecting the ground fault current superposed on the detection current of the second unbalanced current detecting means with the same polarity as the detection current of the first ground fault current detecting means, and the first unbalanced current detecting means. Insulation deterioration detecting device provided with an addition unit that adds the detection current, the detection current of the first ground fault current detection unit, the detection current of the second unbalanced current detection unit, and the detection current of the second ground fault current detection unit, respectively. Is configured.

【0006】第2の装置として、電源と負荷とを結ぶケ
ーブルに流れる不平衡電流を検出する第1不平衡電流検
出手段と、前記ケーブルに流れる不平衡電流を第1不平
衡電流検出手段とは異なる極性で検出する第2不平衡電
流検出手段と、第1不平衡電流検出手段の検出電流に重
畳した地絡電流を検出する第1地絡電流検出手段と、第
2不平衡電流検出手段の検出電流に重畳した地絡電流を
第1地絡電流検出手段の検出電流と同一極性で検出する
第2地絡電流検出手段と、第2不平衡電流検出手段の検
出電流と第2地絡電流検出手段の検出電流との加算電流
のレベルを第2不平衡電流検出手段の検出電流のレベル
以下に制限するリミッタ手段と、リミッタ手段の出力電
流と第1不平衡電流検出手段の検出電流及び第1地絡電
流検出手段の検出電流をそれぞれ加算する加算手段とを
備えている絶縁劣化検出装置を構成したものである。
[0006] As a second device, a first unbalanced current detecting means for detecting an unbalanced current flowing through a cable connecting a power source and a load and a first unbalanced current detecting means for detecting an unbalanced current flowing through the cable. The second unbalanced current detecting means for detecting with different polarities, the first ground fault current detecting means for detecting the ground fault current superimposed on the detection current of the first unbalanced current detecting means, and the second unbalanced current detecting means Second ground fault current detection means for detecting the ground fault current superimposed on the detected current with the same polarity as the detection current of the first ground fault current detection means, and detection current of the second unbalanced current detection means and second ground fault current Limiter means for limiting the level of the current added to the detection current of the detection means to the level of the detection current of the second unbalanced current detection means, the output current of the limiter means, the detection current of the first unbalanced current detection means and the first 1 Detection of ground fault current detection means Flow and is obtained by constituting the in which insulation deterioration detection device and an adding means for adding respectively.

【0007】第3の装置として、電源と負荷とを結ぶケ
ーブルに流れる不平衡電流を検出する第1不平衡電流検
出手段と、前記ケーブルに流れる不平衡電流を第1不平
衡電流検出手段とは異なる極性で検出する第2不平衡電
流検出手段と、第1不平衡電流検出手段の検出電流に重
畳した地絡電流を検出する第1地絡電流検出手段と、第
2不平衡電流検出手段の検出電流に重畳した地絡電流を
第1地絡電流検出手段の検出電流と同一極性で検出する
第2地絡電流検出手段と、第1不平衡電流検出手段の検
出電流と第1地絡電流検出手段の検出電流との加算電流
のレベルを第1不平衡電流検出手段の検出電流のレベル
以下に制限するリミッタ手段と、リミッタ手段の出力電
流と第2不平衡電流検出手段の検出電流及び第2地絡電
流検出手段の検出電流をそれぞれ加算する加算手段とを
備えている絶縁劣化検出装置を構成したものである。
As a third device, a first unbalanced current detecting means for detecting an unbalanced current flowing through a cable connecting a power source and a load, and a first unbalanced current detecting means for detecting an unbalanced current flowing through the cable. The second unbalanced current detecting means for detecting with different polarities, the first ground fault current detecting means for detecting the ground fault current superimposed on the detection current of the first unbalanced current detecting means, and the second unbalanced current detecting means Second ground fault current detection means for detecting the ground fault current superimposed on the detected current with the same polarity as the detection current of the first ground fault current detection means, and the detection current of the first unbalanced current detection means and the first ground fault current. Limiter means for limiting the level of the current added to the detection current of the detection means to the level of the detection current of the first unbalanced current detection means, the output current of the limiter means, the detection current of the second unbalanced current detection means, and the first 2 Detection of ground fault current detection means Flow and is obtained by constituting the in which insulation deterioration detection device and an adding means for adding respectively.

【0008】第4の装置として、電源と負荷とを結ぶ三
相配電線の周囲に巻回されたコイルを有しこのコイルに
流れる電流から零相電流を検出する一対の零相変流器
と、各零相変流器の出力電流を加算する加算器とを備
え、前記三相配電線の電源側外被に接続されたアース線
が三相配電線に沿って各零相変流器のコイルと三相配電
線の外被との間に挿入され、各零相変流器内を挿入され
たアース線がその端末で接地され、一方の零相変流器内
に挿入されたアース線は三相配電線を流れる不平衡電流
とこのアース線を流れる不平衡電流が互いに同一方向に
流れるように配線され、他方の零相変流器内に挿入され
たアース線は三相配電線を流れる不平衡電流とこのアー
ス線を流れる不平衡電流が互いに逆方向に流れるように
配線されている絶縁劣化検出装置を構成したものであ
る。
As a fourth device, a pair of zero-phase current transformers each having a coil wound around a three-phase distribution line connecting a power source and a load and detecting a zero-phase current from the current flowing through the coil, And an adder for adding the output currents of the respective zero-phase current transformers, wherein the ground wire connected to the power supply side jacket of the three-phase distribution line is connected to the coils of the respective zero-phase current transformers along the three-phase distribution line. The ground wire inserted between the jacket of the phase distribution line and inserted in each zero-phase current transformer is grounded at its terminal, and the ground wire inserted in one zero-phase current transformer is the three-phase distribution line. The unbalanced current flowing through and the unbalanced current flowing through this ground wire are wired so that they flow in the same direction, and the ground wire inserted in the other zero-phase current transformer is The insulation is poorly wired so that the unbalanced currents flowing through the ground wire flow in opposite directions. It is obtained by constituting the detecting device.

【0009】第5の装置として、電源と負荷とを結ぶ三
相配電線の周囲に巻回されたコイルを有しこのコイルに
流れる電流から零相電流を検出する一対の零相変流器
と、一方の零相変流器の検出電流を不平衡電流のレベル
以下に制限するレベル制限器と、他方の零相変流器の出
力電流とレベル制限器の出力電流とを加算する加算器と
を備え、前記三相配電線の電源側外被に接続されたアー
ス線が三相配電線に沿って各零相変流器のコイルと三相
配電線の外被との間に挿入され、各零相変流器内を挿入
されたアース線がその端末で接地され、一方の零相変流
器内に挿入されたアース線は三相配電線を流れる不平衡
電流とこのアース線を流れる不平衡電流が互いに同一方
向に流れるように配線され、他方の零相変流器内に挿入
されたアース線は三相配電線を流れる不平衡電流とこの
アース線を流れる不平衡電流が互いに逆方向に流れるよ
うに配線されている絶縁劣化検出装置を構成したもので
ある。
As a fifth device, a pair of zero-phase current transformers each having a coil wound around a three-phase distribution line connecting a power source and a load and detecting a zero-phase current from a current flowing through the coil, A level limiter that limits the detected current of one zero-phase current transformer to the level of the unbalanced current or less, and an adder that adds the output current of the other zero-phase current transformer and the output current of the level limiter. The ground wire connected to the power-side jacket of the three-phase distribution line is inserted between the coil of each zero-phase current transformer and the jacket of the three-phase distribution line along the three-phase distribution line, The ground wire inserted in the current transformer is grounded at its terminal, and the ground wire inserted in one zero-phase current transformer has an unbalanced current flowing in the three-phase distribution line and an unbalanced current flowing in this ground wire. The ground wire inserted in the other zero-phase current transformer is wired so that it flows in the same direction. In which unbalanced current unbalanced current flowing through the distribution line through the ground wire constituted the insulation deterioration detection device is wired to flow in opposite directions.

【0010】[0010]

【作用】前記した手段によれば、負荷が絶縁劣化状態と
なると、ケーブルには不平衡電流と共に絶縁劣化に伴な
う地絡電流が流れる。不平衡電流は第1,第2不平衡電
流検出手段でそれぞれ検出され、地絡電流は第1,第2
地絡電流検出手段によってそれぞれ検出される。そして
各検出手段の検出出力は加算手段によって加算される。
このとき第1不平衡電流検出手段の検出電流と第2不平
衡電流検出手段の検出電流の極性が相異なるため、不平
衡電流は互いに相殺される。一方、地絡電流は共に同一
極性で検出されるため、加算手段からは各地絡電流を加
算した電流のみが出力されることになる。このため加算
手段の出力信号から負荷の絶縁劣化を高感度に検出する
ことができる。
According to the above-mentioned means, when the load is in the insulation deteriorated state, the unbalanced current and the ground fault current accompanying the insulation deterioration flow in the cable. The unbalanced currents are respectively detected by the first and second unbalanced current detecting means, and the ground fault currents are the first and second unbalanced currents.
Each is detected by the ground fault current detection means. Then, the detection output of each detecting means is added by the adding means.
At this time, since the polarities of the detected currents of the first unbalanced current detecting means and the second unbalanced current detecting means are different from each other, the unbalanced currents cancel each other out. On the other hand, since the ground fault currents are both detected with the same polarity, only the current obtained by adding the local fault currents is output from the adding means. Therefore, the insulation deterioration of the load can be detected with high sensitivity from the output signal of the adding means.

【0011】またケーブルが絶縁劣化状態となると、ケ
ーブルには不平衡電流と共に絶縁劣化に伴なう地絡電流
が流れる。そして不平衡電流は第1,第2不平衡電流検
出手段によって検出され、地絡電流は第1,第2地絡電
流検出手段によってそれぞれ検出される。そして第1不
平衡電流検出手段と第1地絡電流検出手段の検出出力の
和または第2不平衡電流検出手段と第2地絡電流検出手
段の検出出力との和のうち一方の検出電流の和が不平衡
電流以下のレベルに制限された状態で加算手段によって
加算される。各不平衡電流検出手段の検出による不平衡
電流は互いに極性が異なるため、加算手段からは地絡電
流のみが出力されることになる。このためケーブルが絶
縁劣化状態になったことを高感度に検出することができ
る。
When the cable is in a deteriorated insulation state, an unbalanced current and a ground fault current accompanying the deterioration of insulation flow in the cable. The unbalanced current is detected by the first and second unbalanced current detection means, and the ground fault current is detected by the first and second ground fault current detection means, respectively. One of the detection currents of the sum of the detection outputs of the first unbalanced current detection means and the first ground fault current detection means or the sum of the detection outputs of the second unbalanced current detection means and the second ground fault current detection means The sum is added by the adding means in a state where the sum is limited to a level equal to or lower than the unbalanced current. Since the unbalanced currents detected by the respective unbalanced current detection means have different polarities, only the ground fault current is output from the addition means. Therefore, it is possible to detect with high sensitivity that the cable is in a deteriorated state.

【0012】[0012]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1において、電源変圧器10は受電遮断器1
2を介して電源側母線14に接続されている。電源側母
線14には接地系計器用変圧器16が接続されていると
共に非接地系の有効接地電流を決定する制限抵抗器18
が接続されている。また電源側母線14には配電用遮断
器20、電源端子部22を介して主回路ケーブル24が
接続されている。主回路ケーブル24の線路途中には接
地系変流器として2台のZCT26,28が設けられて
おり、主回路ケーブル24端部には誘導電動機などから
構成される負荷30が接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, a power transformer 10 is a power receiving circuit breaker 1.
It is connected to the power source side bus bar 14 via 2. A grounding system voltage transformer 16 is connected to the power supply side bus bar 14 and a limiting resistor 18 for determining an effective grounding current of a non-grounding system.
Are connected. A main circuit cable 24 is connected to the power source side bus bar 14 via a power distribution breaker 20 and a power source terminal portion 22. Two ZCTs 26 and 28 are provided as grounding current transformers in the middle of the main circuit cable 24, and a load 30 composed of an induction motor or the like is connected to the end of the main circuit cable 24.

【0013】ZCT26,28は、主回路ケーブル24
を流れる零相電流から地絡電流を検出できるように構成
されており、二次側が比較判定器32の端子C1,C
2,C3,C4にそれぞれ接続されている。各ZCT2
6,28の二次側には二次側の電流を電圧に変換するた
めの抵抗34,36が接続されている。そしてZCT2
6は、電源端子部22に接続されたアース線38が順方
向に貫通されており、ZCT28はアース線38が逆方
向に貫通されている。このためZCT26とZCT28
の二次側から出力される不平衡電流の検出値は互いに逆
極性で検出されるようになっている。すなわち、主回路
ケーブル24の各相24A,24B,24Cとシース4
2との間には対地静電容量C1,C2,C3があるた
め、主回路ケーブル24に電流が流れると、対地静電容
量C1,C2,C3、シース42、アース線38を介し
て電流が流れる。各相を流れる電流のベクトルは図2の
ように表わされ、そのベクトル合成は完全に0とならず
シース42とアース線38には不平衡電流44が流れ
る。この不平衡電流は、ZCT26の二次側には、図3
の(A)に示されるような波形として出力され、ZCT
28の二次側には図3の(B)に示されるような波形と
して出力されることになる。このため各ZCT26とZ
CT28の不平衡電流を加算したときには、各不平衡電
流が相殺され、図3の(C)に示されるように不平衡電
流の和は0となる。一方、主回路ケーブル24に地絡に
伴なう電流が流れたときには、各ZCT26,28の二
次側には同一極性の地絡電流が流れるようになってい
る。すなわち、ZCT26,28、抵抗34,36は不
平衡電流検出手段を構成すると共に地絡電流検出手段を
構成するようになっている。
The ZCTs 26 and 28 are connected to the main circuit cable 24.
The ground side current can be detected from the zero-phase current flowing through the secondary side, and the secondary side has terminals C1 and C of the comparison / determination unit 32.
2, C3 and C4, respectively. Each ZCT2
Resistors 34 and 36 for converting a current on the secondary side into a voltage are connected to the secondary sides of the sensors 6 and 28. And ZCT2
6, the ground wire 38 connected to the power supply terminal portion 22 penetrates in the forward direction, and the ZCT 28 penetrates the ground wire 38 in the reverse direction. Therefore, ZCT26 and ZCT28
The detected values of the unbalanced currents output from the secondary side of the are detected with opposite polarities. That is, each phase 24A, 24B, 24C of the main circuit cable 24 and the sheath 4
Since there are ground capacitances C1, C2, C3 between the two, when a current flows through the main circuit cable 24, a current flows through the ground capacitances C1, C2, C3, the sheath 42, and the ground wire 38. Flowing. The vector of the current flowing through each phase is represented as shown in FIG. 2, and the vector composition is not completely zero, and the unbalanced current 44 flows through the sheath 42 and the ground wire 38. This unbalanced current is generated on the secondary side of the ZCT 26 as shown in FIG.
Is output as a waveform as shown in (A) of
A waveform as shown in FIG. 3B is output to the secondary side of 28. Therefore, each ZCT26 and Z
When the unbalanced currents of CT28 are added, the unbalanced currents cancel each other out, and the sum of the unbalanced currents becomes 0 as shown in FIG. On the other hand, when a current associated with a ground fault flows through the main circuit cable 24, a ground fault current of the same polarity flows through the secondary side of each ZCT 26, 28. That is, the ZCTs 26 and 28 and the resistors 34 and 36 constitute not only the unbalanced current detecting means but also the ground fault current detecting means.

【0014】比較判定器32は増幅器46,48と加算
器50を備えて構成されており、増幅器46,48の入
力側がZCT26,28に接続されている。増幅器46
はZCT26の二次側から出力される信号を増幅し、増
幅した信号を加算器50へ出力するようになっている。
増幅器48はZCT28の二次側から出力される信号を
増幅し、増幅した信号を加算器50へ出力するようにな
っている。加算器50は増幅器46の出力信号と増幅器
48の出力信号を加算し、加算した信号50Aを出力す
るようになっている。
The comparison / determination unit 32 is constructed by including amplifiers 46 and 48 and an adder 50, and the input sides of the amplifiers 46 and 48 are connected to the ZCTs 26 and 28. Amplifier 46
Is configured to amplify the signal output from the secondary side of the ZCT 26 and output the amplified signal to the adder 50.
The amplifier 48 amplifies the signal output from the secondary side of the ZCT 28 and outputs the amplified signal to the adder 50. The adder 50 adds the output signal of the amplifier 46 and the output signal of the amplifier 48, and outputs the added signal 50A.

【0015】上記構成において、負荷30で絶縁劣化が
生じ、この絶縁劣化に伴なって主回路ケーブル24に地
絡電流I1が流れると、図5に示されるように、この地
絡電流I1は各ZCT26出力の不平衡電流26A,2
8Aに重畳される。そして各増幅器46,48からは合
成された信号46A,48Aの信号が出力される。すな
わちZCT26出力の不平衡電流26Aは地絡電流I1
と同一極性であるため、これらの電流の合成値は信号4
6Aとなる。一方ZCT28出力の不平衡電流28Aと
地絡電流I1との極性は逆極性であるため、これらの電
流を合成した信号は信号48Aとなる。そして信号46
Aと信号48Aが加算器50で加算されると、加算器5
0からは2倍の地絡電流I1に等しい信号50Aが出力
される。すなわち、ZCT26,28はアース線38が
互いに逆方向に貫通されているため、不平衡電流の極性
が互いに逆となり、各ZCT26,28の出力信号を合
成したときには不平衡電流が互いに相殺され、地絡電流
I1のみを検出することができる。しかも2倍の地絡電
流に等しい電流を検出することができるため、負荷30
の絶縁劣化に伴なう電流を高感度に検出することができ
る。
In the above structure, when the load 30 suffers insulation deterioration and a ground fault current I1 flows through the main circuit cable 24 as a result of this insulation deterioration, as shown in FIG. Unbalanced current 26A, 2 of ZCT26 output
8A is superimposed. The combined signals 46A and 48A are output from the amplifiers 46 and 48, respectively. That is, the unbalanced current 26A of the ZCT 26 output is the ground fault current I1.
The combined value of these currents is
6A. On the other hand, the polarities of the unbalanced current 28A output from the ZCT 28 and the ground fault current I1 are opposite to each other, so that the signal obtained by combining these currents becomes the signal 48A. And signal 46
When A and the signal 48A are added by the adder 50, the adder 5
From 0, a signal 50A equal to twice the ground fault current I1 is output. That is, since the ZCTs 26 and 28 have the ground wires 38 penetrating in opposite directions, the polarities of the unbalanced currents are opposite to each other, and when the output signals of the ZCTs 26 and 28 are combined, the unbalanced currents cancel each other out. Only the leakage current I1 can be detected. Moreover, since a current equal to twice the ground fault current can be detected, the load 30
It is possible to detect with high sensitivity the current associated with the insulation deterioration of the.

【0016】次に、本発明の他の実施例を図6及び図7
に基づいて説明する。本実施例は、増幅器48と加算器
50との間に、増幅器48の出力信号を不平衡電流のレ
ベル以下に制限するレベル制限器としてのリミッタ52
を設けたものであり、他の構成は前記実施例と同様であ
るので、同一のものには同一符号を付してそれらの説明
は省略する。
Next, another embodiment of the present invention will be described with reference to FIGS. 6 and 7.
It will be described based on. In this embodiment, a limiter 52 as a level limiter for limiting the output signal of the amplifier 48 to the level of the unbalanced current or less is provided between the amplifier 48 and the adder 50.
Since the other configurations are the same as those of the above-described embodiment, the same components are designated by the same reference numerals and the description thereof will be omitted.

【0017】上記構成において、主回路ケーブル24が
絶縁劣化状態となって、主回路ケーブル24に絶縁劣化
に伴なう地絡電流I2が流れると、地絡電流I2が不平
衡電流26Aと28Aにそれぞれ重畳され、増幅器4
6,48からは地絡電流の発生に伴なう信号46A,4
8Aが出力される。増幅器46の出力信号46Aはその
まま加算器50に入力されるが、増幅器48の出力信号
48Aはリミッタ52によって不平衡電流のレベル以下
にそのレベルが制限され、信号52Aとして出力され
る。すなわち不平衡電流から地絡電流I2の成分が除去
された信号52Aが加算器50に入力されることにな
る。そして加算器50において信号46Aと信号52A
とを加算すると、加算器50からは地絡電流I2のみを
含む信号50Aを出力することができる。このため、本
実施例によれば、主回路ケーブル24が絶縁劣化状態と
なっても、主回路ケーブル24の絶縁劣化を高感度で検
出することができる。
In the above structure, when the main circuit cable 24 is in the insulation deterioration state and the ground fault current I2 flows in the main circuit cable 24 due to the insulation deterioration, the ground fault current I2 becomes the unbalanced currents 26A and 28A. Amplifiers 4 superimposed on each other
Signals 46A and 4 associated with the generation of the ground fault current from 6 and 48
8A is output. The output signal 46A of the amplifier 46 is directly input to the adder 50, but the output signal 48A of the amplifier 48 is limited in level to the level of the unbalanced current by the limiter 52 and output as the signal 52A. That is, the signal 52A from which the component of the ground fault current I2 is removed from the unbalanced current is input to the adder 50. Then, in the adder 50, the signal 46A and the signal 52A
By adding and, the signal 50A including only the ground fault current I2 can be output from the adder 50. Therefore, according to the present embodiment, even if the main circuit cable 24 is in the insulation deterioration state, the insulation deterioration of the main circuit cable 24 can be detected with high sensitivity.

【0018】また前記実施例においては、リミッタ52
を増幅器48と加算器50との間に設けたものについて
述べたが、リミッタ52を増幅器48と加算器50との
間に挿入する変わりに、増幅器46と加算器50との間
に挿入しても、前記実施例と同様に主回路ケーブル24
の絶縁劣化を高感度に検出することができる。
Further, in the above embodiment, the limiter 52
In the above description, the amplifier is provided between the amplifier 48 and the adder 50. Instead of inserting the limiter 52 between the amplifier 48 and the adder 50, the limiter 52 is inserted between the amplifier 46 and the adder 50. Also, as in the above embodiment, the main circuit cable 24
Insulation deterioration can be detected with high sensitivity.

【0019】上記実施例におけるZCT26,28、比
較判定器32などを設置するに際しては、図8に示され
るように、閉鎖配電盤54内の検出ユニット56内にZ
CT26,28を収納し、表面扉58背面側に比較判定
器32を設置する。検出ユニット56は負荷側主回路ケ
ーブル処理室60内に収納されており、検出ユニット5
6を主回路ケーブル24に接続する。更にアース線38
を接地母線62に接続し、各ZCT26,28の二次側
をシールド線64を介して比較判定器32に接続する。
このような配置及び接続構成を採用することにより、各
ユニットを合理的に配置することができると共に組み立
て作業の標準化が可能となる。更にノイズによる誤動作
を防止することができる。なお、受電遮断器室66と電
源引込みケーブル室68と負荷側主回路ケーブル処理室
60との間には金属各壁70,72が設けられており、
また配電用遮断器室74と母線室76の周囲は金属各壁
78,80,82によって仕切られている。また電源引
込みケーブル84が導体86を介して断路部88に接続
されている。また断路部90が母線3R,3S,3Tに
接続されている。断路部92は母線3Tに接続されてお
り、断路部94は導体96を介して検出ユニット56に
接続されている。
When installing the ZCTs 26, 28, the comparison / determination unit 32, etc. in the above-described embodiment, as shown in FIG. 8, the Z is placed in the detection unit 56 in the closed switchboard 54.
The CTs 26 and 28 are housed, and the comparison / determination device 32 is installed on the back side of the front door 58. The detection unit 56 is housed in the load side main circuit cable processing chamber 60, and
6 to the main circuit cable 24. Earth wire 38
Is connected to the ground bus 62, and the secondary side of each ZCT 26, 28 is connected to the comparison / determination unit 32 via the shield wire 64.
By adopting such an arrangement and connection configuration, it is possible to rationally arrange the units and standardize the assembling work. Further, malfunction due to noise can be prevented. Metal walls 70 and 72 are provided between the power receiving circuit breaker chamber 66, the power supply lead-in cable chamber 68, and the load-side main circuit cable processing chamber 60.
The periphery of the power distribution breaker chamber 74 and the busbar chamber 76 are partitioned by metal walls 78, 80, 82. Further, the power supply lead-in cable 84 is connected to the disconnecting portion 88 via the conductor 86. Further, the disconnection section 90 is connected to the busbars 3R, 3S, 3T. The disconnection section 92 is connected to the bus bar 3T, and the disconnection section 94 is connected to the detection unit 56 via the conductor 96.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
電源と負荷とを結ぶケーブルに、ケーブルを流れる不平
衡電流と地絡電流を共に検出する検出手段を一対設け、
各検出手段により不平衡電流を互いに逆極性で、地絡電
流を互いに同一極性で検出し、ケーブルの絶縁劣化と負
荷の絶縁劣化に伴なう電流のみを検出するようにしたた
め、ケーブルの絶縁劣化及び負荷の絶縁劣化を高感度に
検出することができる。
As described above, according to the present invention,
The cable connecting the power supply and the load is provided with a pair of detection means for detecting both the unbalanced current and the ground fault current flowing through the cable,
The unbalanced currents have the opposite polarities and the ground fault currents have the same polarities, and only the currents associated with cable insulation deterioration and load insulation deterioration are detected by each detection means. Also, the insulation deterioration of the load can be detected with high sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す全体構成図である。FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.

【図2】ケーブル不平衡電流のベクトル図である。FIG. 2 is a vector diagram of a cable unbalanced current.

【図3】ケーブル不平衡電流の除去方法を説明するため
の波形図である。
FIG. 3 is a waveform diagram for explaining a method of removing a cable unbalanced current.

【図4】比較判定器の構成図である。FIG. 4 is a configuration diagram of a comparison / determination device.

【図5】負荷の絶縁劣化状態を検出する方法を説明する
ための波形図である。
FIG. 5 is a waveform diagram for explaining a method for detecting a load insulation deterioration state.

【図6】比較判定器の他の実施例を示す構成図である。FIG. 6 is a configuration diagram showing another embodiment of a comparison / determination device.

【図7】ケーブルの絶縁劣化状態を検出する方法を説明
するための波形図である。
FIG. 7 is a waveform diagram for explaining a method for detecting a cable insulation deterioration state.

【図8】本発明に係る装置が設置された閉鎖配電盤の構
成図である。
FIG. 8 is a configuration diagram of a closed switchboard in which the device according to the present invention is installed.

【符号の説明】[Explanation of symbols]

10 電源変圧器 12 受電遮断器 14 電源側母線 20 配電用遮断器 22 電源端子部 24 主回路ケーブル 26,28 ZCT 30 負荷 32 比較判定器 34,36 抵抗 46,48 増幅器 50 加算器 52 リミッタ 10 power transformer 12 power receiving circuit breaker 14 power supply side bus bar 20 power distribution circuit breaker 22 power source terminal part 24 main circuit cable 26, 28 ZCT 30 load 32 comparison judgment device 34, 36 resistance 46, 48 amplifier 50 adder 52 limiter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 寛延 宮城県仙台市青葉区一番町三丁目7番1号 東北電力株式会社内 (72)発明者 船山 修 宮城県仙台市宮城野区港五丁目2−1 東 北電力株式会社新仙台火力発電所内 (72)発明者 佐々木 洋二 青森県八戸市大字河原木字宇兵衛河原1− 1 東北電力株式会社八戸火力発電所内 (72)発明者 高橋 一男 宮城県宮城郡七ケ浜町代ケ崎浜字前島1 東北電力株式会社仙台火力発電所内 (72)発明者 落合 秀男 新潟県新潟市桃山町2−200 東北電力株 式会社新潟火力発電所内 (72)発明者 五井 昭一 秋田県秋田市飯島字古道下川端217−6 東北電力株式会社秋田火力発電所内 (72)発明者 森 茂光 宮城県仙台市宮城野区港五丁目2−1 東 北電力株式会社新仙台火力発電所内 (72)発明者 北川 明男 新潟県北蒲原郡聖篭町大字亀塚浜字磯山1 −155 東北電力株式会社東新潟火力発電 所内 (72)発明者 伊藤 芳則 宮城県仙台市青葉区一番町三丁目7番1号 東北電力株式会社内 (72)発明者 秋山 昭 宮城県仙台市青葉区一番町三丁目7番1号 東北電力株式会社内 (72)発明者 小野 一志 宮城県仙台市青葉区一番町三丁目7番1号 東北電力株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hironobu Abe, 3-7-1, Ichibancho, Aoba-ku, Sendai-shi, Miyagi Prefecture Tohoku Electric Power Co., Inc. (72) Osamu Funayama, 5-chome, Miyagino-ku, Sendai-shi, Miyagi Prefecture 2-1 Tohoku Electric Power Co., Inc. Shin-Sendai Thermal Power Plant (72) Inventor Yoji Sasaki Ube Guard Kawara, Hachinohe City, Aomori Prefecture 1-1 Hyakunohe Thermal Power Plant (72) Tohoku Electric Power Co., Inc. Kazuo Takahashi Miyagi Miyagi Prefecture 1 Maejima, Daigasakihama, Shichigahama-cho, Tohoku Electric Power Company Sendai Thermal Power Plant (72) Inventor Hideo Ochiai 2-200 Momoyamacho, Niigata City, Niigata Prefecture Tohoku Electric Power Co., Inc. Niigata Thermal Power Station (72) Inventor Shoichi Goi Akita, Akita Prefecture 217-6 Shimokawabata, Kojima, Iijima-shi, Tohoku Electric Power Co., Inc. Akita Thermal Power Station (72) Inventor Shigemitsu Mori Miya, Sendai City Miyagi Prefecture Tohoku Electric Power Co., Inc. Shinsendai Thermal Power Plant (2-1) Minato 5-chome, Jono-ku (72) Inventor Akio Kitagawa 1-155, Isoyama, Kamezuka-hama, Seigo-cho, Kitakanbara-gun, Niigata Prefecture Tohoku Electric Power Co., Inc. Higashi-Niigata Thermal Power Plant (72) ) Inventor Yoshinori Ito 3-7-1, Ichibancho, Aoba-ku, Sendai-shi, Miyagi Tohoku Electric Power Co., Inc. (72) Inventor Akiyama 3-7-1, Ibancho, Aoba-ku, Sendai, Miyagi Tohoku Electric Power Co., Inc. In-house (72) Inventor Kazushi Ono 3-7-1, Ichibancho, Aoba-ku, Sendai City, Miyagi Prefecture Tohoku Electric Power Co., Inc.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電源と負荷とを結ぶケーブルに流れる不
平衡電流を検出する第1不平衡電流検出手段と、前記ケ
ーブルに流れる不平衡電流を第1不平衡電流検出手段と
は異なる極性で検出する第2不平衡電流検出手段と、第
1不平衡電流検出手段の検出電流に重畳した地絡電流を
検出する第1地絡電流検出手段と、第2不平衡電流検出
手段の検出電流に重畳した地絡電流を第1地絡電流検出
手段の検出電流と同一極性で検出する第2地絡電流検出
手段と、第1不平衡電流検出手段の検出電流と第1地絡
電流検出手段の検出電流と第2不平衡電流検出手段の検
出電流及び第2地絡電流検出手段の検出電流をそれぞれ
加算する加算手段とを備えている絶縁劣化検出装置。
1. A first unbalanced current detecting means for detecting an unbalanced current flowing through a cable connecting a power source and a load, and an unbalanced current flowing through the cable with a polarity different from that of the first unbalanced current detecting means. The second unbalanced current detecting means, the first ground fault current detecting means for detecting the ground fault current superimposed on the detected current of the first unbalanced current detecting means, and the detected current of the second unbalanced current detecting means. Second ground fault current detection means for detecting the generated ground fault current with the same polarity as the detection current of the first ground fault current detection means, detection current of the first unbalanced current detection means and detection of the first ground fault current detection means An insulation deterioration detecting device comprising: an electric current; and an adding means for adding the detected current of the second unbalanced current detecting means and the detected current of the second ground fault current detecting means, respectively.
【請求項2】 電源と負荷とを結ぶケーブルに流れる不
平衡電流を検出する第1不平衡電流検出手段と、前記ケ
ーブルに流れる不平衡電流を第1不平衡電流検出手段と
は異なる極性で検出する第2不平衡電流検出手段と、第
1不平衡電流検出手段の検出電流に重畳した地絡電流を
検出する第1地絡電流検出手段と、第2不平衡電流検出
手段の検出電流に重畳した地絡電流を第1地絡電流検出
手段の検出電流と同一極性で検出する第2地絡電流検出
手段と、第2不平衡電流検出手段の検出電流と第2地絡
電流検出手段の検出電流との加算電流のレベルを第2不
平衡電流検出手段の検出電流のレベル以下に制限するリ
ミッタ手段と、リミッタ手段の出力電流と第1不平衡電
流検出手段の検出電流及び第1地絡電流検出手段の検出
電流をそれぞれ加算する加算手段とを備えている絶縁劣
化検出装置。
2. A first unbalanced current detecting means for detecting an unbalanced current flowing through a cable connecting a power supply and a load, and an unbalanced current flowing through the cable with a polarity different from that of the first unbalanced current detecting means. The second unbalanced current detecting means, the first ground fault current detecting means for detecting the ground fault current superimposed on the detected current of the first unbalanced current detecting means, and the detected current of the second unbalanced current detecting means. Second ground fault current detection means for detecting the generated ground fault current with the same polarity as the detection current of the first ground fault current detection means, detection current of the second unbalanced current detection means and detection of the second ground fault current detection means Limiter means for limiting the level of the added current to the current to the level of the detected current of the second unbalanced current detecting means, the output current of the limiter means, the detected current of the first unbalanced current detecting means and the first ground fault current Add the detection current of each detection means Insulation deterioration detecting device comprising:
【請求項3】 電源と負荷とを結ぶケーブルに流れる不
平衡電流を検出する第1不平衡電流検出手段と、前記ケ
ーブルに流れる不平衡電流を第1不平衡電流検出手段と
は異なる極性で検出する第2不平衡電流検出手段と、第
1不平衡電流検出手段の検出電流に重畳した地絡電流を
検出する第1地絡電流検出手段と、第2不平衡電流検出
手段の検出電流に重畳した地絡電流を第1地絡電流検出
手段の検出電流と同一極性で検出する第2地絡電流検出
手段と、第1不平衡電流検出手段の検出電流と第1地絡
電流検出手段の検出電流との加算電流のレベルを第1不
平衡電流検出手段の検出電流のレベル以下に制限するリ
ミッタ手段と、リミッタ手段の出力電流と第2不平衡電
流検出手段の検出電流及び第2地絡電流検出手段の検出
電流をそれぞれ加算する加算手段とを備えている絶縁劣
化検出装置。
3. A first unbalanced current detecting means for detecting an unbalanced current flowing through a cable connecting a power supply and a load, and an unbalanced current flowing through the cable with a polarity different from that of the first unbalanced current detecting means. The second unbalanced current detecting means, the first ground fault current detecting means for detecting the ground fault current superimposed on the detected current of the first unbalanced current detecting means, and the detected current of the second unbalanced current detecting means. Second ground fault current detection means for detecting the generated ground fault current with the same polarity as the detection current of the first ground fault current detection means, detection current of the first unbalanced current detection means and detection of the first ground fault current detection means Limiter means for limiting the level of the added current to the current to the level of the detected current of the first unbalanced current detecting means, the output current of the limiter means, the detected current of the second unbalanced current detecting means and the second ground fault current Add the detection current of each detection means Insulation deterioration detecting device comprising:
【請求項4】 電源と負荷とを結ぶ三相配電線の周囲に
巻回されたコイルを有しこのコイルに流れる電流から零
相電流を検出する一対の零相変流器と、各零相変流器の
出力電流を加算する加算器とを備え、前記三相配電線の
電源側外被に接続されたアース線が三相配電線に沿って
各零相変流器のコイルと三相配電線の外被との間に挿入
され、各零相変流器内を挿入されたアース線がその端末
で接地され、一方の零相変流器内に挿入されたアース線
は三相配電線を流れる不平衡電流とこのアース線を流れ
る不平衡電流が互いに同一方向に流れるように配線さ
れ、他方の零相変流器内に挿入されたアース線は三相配
電線を流れる不平衡電流とこのアース線を流れる不平衡
電流が互いに逆方向に流れるように配線されている絶縁
劣化検出装置。
4. A pair of zero-phase current transformers, each having a coil wound around a three-phase distribution line connecting a power source and a load, for detecting a zero-phase current from a current flowing through the coil, and each zero-phase transformer. A ground line connected to the power supply side jacket of the three-phase distribution line along the three-phase distribution line and the coil of each zero-phase current transformer and the outside of the three-phase distribution line. The ground wire inserted between each zero-phase current transformer and the grounded part is grounded at its end, and the ground wire inserted in one zero-phase current transformer flows through the three-phase distribution line. The current and the unbalanced current flowing through this ground wire are wired so that they flow in the same direction, and the ground wire inserted into the other zero-phase current transformer flows through this ground wire with the unbalanced current flowing through the three-phase distribution line. An insulation deterioration detection device that is wired so that unbalanced currents flow in opposite directions.
【請求項5】 電源と負荷とを結ぶ三相配電線の周囲に
巻回されたコイルを有しこのコイルに流れる電流から零
相電流を検出する一対の零相変流器と、一方の零相変流
器の検出電流を不平衡電流のレベル以下に制限するレベ
ル制限器と、他方の零相変流器の出力電流とレベル制限
器の出力電流とを加算する加算器とを備え、前記三相配
電線の電源側外被に接続されたアース線が三相配電線に
沿って各零相変流器のコイルと三相配電線の外被との間
に挿入され、各零相変流器内を挿入されたアース線がそ
の端末で接地され、一方の零相変流器内に挿入されたア
ース線は三相配電線を流れる不平衡電流とこのアース線
を流れる不平衡電流が互いに同一方向に流れるように配
線され、他方の零相変流器内に挿入されたアース線は三
相配電線を流れる不平衡電流とこのアース線を流れる不
平衡電流が互いに逆方向に流れるように配線されている
絶縁劣化検出装置。
5. A pair of zero-phase current transformers, each having a coil wound around a three-phase distribution line connecting a power source and a load, for detecting a zero-phase current from a current flowing through the coil, and one zero-phase current transformer. A level limiter for limiting the detected current of the current transformer to the level of the unbalanced current or less; and an adder for adding the output current of the other zero-phase current transformer and the output current of the level limiter, The ground wire connected to the power supply side jacket of the phase distribution line is inserted between the coil of each zero-phase current transformer and the jacket of the three-phase distribution line along the three-phase distribution line, The ground wire inserted is grounded at its terminal, and the ground wire inserted in one zero-phase current transformer has the unbalanced current flowing through the three-phase distribution line and the unbalanced current flowing through this ground wire flowing in the same direction. Ground wire inserted in the other zero-phase current transformer An insulation deterioration detection device that is wired so that the balanced current and the unbalanced current that flows through this ground wire flow in opposite directions.
JP22410392A 1992-08-24 1992-08-24 Insulation degradation detector Expired - Fee Related JP2732000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22410392A JP2732000B2 (en) 1992-08-24 1992-08-24 Insulation degradation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22410392A JP2732000B2 (en) 1992-08-24 1992-08-24 Insulation degradation detector

Publications (2)

Publication Number Publication Date
JPH0678444A true JPH0678444A (en) 1994-03-18
JP2732000B2 JP2732000B2 (en) 1998-03-25

Family

ID=16808593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22410392A Expired - Fee Related JP2732000B2 (en) 1992-08-24 1992-08-24 Insulation degradation detector

Country Status (1)

Country Link
JP (1) JP2732000B2 (en)

Also Published As

Publication number Publication date
JP2732000B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
US6320731B1 (en) Fault tolerant motor drive arrangement with independent phase connections and monitoring system
US3515943A (en) Electrical fault detector
US4398232A (en) Protective relaying methods and apparatus
US10126348B2 (en) Combined on-line bushing monitoring and geo-magnetic induced current monitoring system
JP3680152B2 (en) Power line monitoring device
US3895263A (en) Grounded neutral detector drive circuit for two pole ground fault interrupter
US5612601A (en) Method for assessing motor insulation on operating motors
Schlake et al. Performance of third harmonic ground fault protection schemes for generator stator windings
JP3808624B2 (en) System protection relay device
US20060044710A1 (en) Ground fault detector for generator feeder
US3963963A (en) Ground-fault detection system
JPS5810934B2 (en) Ground fault detection device
JP3836620B2 (en) Protection device for ground fault current suppression device and ground fault suppression method
JPH0678444A (en) Detecting device for deterioration of insulation
JP2001352663A (en) Method and apparatus for detecting electrical leak in low-voltage ground electrical circuit
CA1179005A (en) Common suspension multi-line grounding protective relay
KR20020041973A (en) Breaker for a leakage of electrocity
JP3112706B2 (en) Ground fault detection device for distribution system
JP2001103656A (en) Bus protective relay
Zielichowski et al. Influence of difference system parameters on operating conditions of third harmonic ground-fault protection system of unit-connected generator
US1953108A (en) Differential relaying system
US2864037A (en) Fault detector for polyphase circuits
JPH05225891A (en) Earth leakage sensitivity measuring method for earth leakage alarm device
Deaton Limitations of ground-fault protection schemes on industrial electrical distribution systems
JP3378418B2 (en) Leakage protection method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees