JPH0678423B2 - Electropolymerization film formation method - Google Patents

Electropolymerization film formation method

Info

Publication number
JPH0678423B2
JPH0678423B2 JP2321886A JP2321886A JPH0678423B2 JP H0678423 B2 JPH0678423 B2 JP H0678423B2 JP 2321886 A JP2321886 A JP 2321886A JP 2321886 A JP2321886 A JP 2321886A JP H0678423 B2 JPH0678423 B2 JP H0678423B2
Authority
JP
Japan
Prior art keywords
film
insulating
organic polymer
oxide
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2321886A
Other languages
Japanese (ja)
Other versions
JPS62181324A (en
Inventor
繁雄 近藤
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2321886A priority Critical patent/JPH0678423B2/en
Publication of JPS62181324A publication Critical patent/JPS62181324A/en
Publication of JPH0678423B2 publication Critical patent/JPH0678423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は絶縁性酸化物上に有機高分子の電解重合膜を形
成する方法に関するものである。絶縁性酸化物上に形成
された有機高分子は、電子デバイスの材料として有効に
活用しうるものである。
TECHNICAL FIELD The present invention relates to a method for forming an electropolymerized film of an organic polymer on an insulating oxide. The organic polymer formed on the insulating oxide can be effectively used as a material for electronic devices.

従来の技術 従来の絶縁性酸化物上に電解重合膜を形成する方法とし
ては、第2図に示すようなものがある。すなわち、絶縁
基板3上に、電極4を間隔1mm以下に配置し、電解重合
を行なう。第3図に示すごとく、この電極4を陽極とし
て、大きな酸化電流を流し電解重合を行う。この電解重
合を長時間行う事により有機高分子の鎖は横方向にも成
長をはじめ、陽極酸化重合を更に長時間進めると、つい
には短絡し、第3図に示すごとく絶縁基板3上に堆積を
始める。この方法で、絶縁基板3上に有機高分子を積層
することは可能である。しかし、得られる有機高分子膜
は平滑でなく、不均一であり、十分な機械的強度もな
い。
2. Description of the Related Art As a conventional method for forming an electrolytically polymerized film on an insulating oxide, there is one as shown in FIG. That is, the electrodes 4 are arranged on the insulating substrate 3 at intervals of 1 mm or less, and electrolytic polymerization is performed. As shown in FIG. 3, with this electrode 4 as an anode, a large oxidation current is passed to carry out electrolytic polymerization. By carrying out this electrolytic polymerization for a long time, the chains of the organic polymer also start to grow in the lateral direction, and when the anodic oxidation polymerization is further advanced for a long time, a short circuit is finally generated and the organic polymer chains are deposited on the insulating substrate 3 as shown in FIG. To start. It is possible to stack an organic polymer on the insulating substrate 3 by this method. However, the obtained organic polymer film is not smooth and non-uniform, and does not have sufficient mechanical strength.

発明が解決しようとする問題点 本発明は直接絶縁膜上に平滑で、かつ、均一でありそし
て十分な機械的強度を持つ有機高分子膜を得ることを目
的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to obtain an organic polymer film which is smooth and uniform and has a sufficient mechanical strength directly on an insulating film.

問題点を解決するための手段 絶縁性酸化物に、陽イオンをインターカレーションする
よう、酸化電位と還元電位を交互に周期的に切換えて印
加し絶縁性酸化物上に電解重合膜を形成する。
Means for Solving the Problems An oxidation polymerization and a reduction potential are alternately and periodically applied to the insulating oxide so as to intercalate a cation, and an electrolytically polymerized film is formed on the insulating oxide. .

作 用 電解重合中に絶縁性酸化物の還元電位(重合の逆バイア
ス)を周期的に一定時間印加することにより得られる有
機高分子膜は平滑で、密度が高く機械的強度も高く、特
性の優れた有機高分子膜を絶縁膜上に積層することが可
能となる。
The organic polymer film obtained by periodically applying the reduction potential of the insulating oxide (reverse bias of polymerization) during electrolytic polymerization for a certain period of time has a smooth, dense, and high mechanical strength. It becomes possible to stack an excellent organic polymer film on the insulating film.

実施例 以下、本発明を電極上の絶縁膜として酸化タングステン
(以下WO3)を用いた場合で説明する。
EXAMPLES Hereinafter, the present invention will be described in the case of using tungsten oxide (hereinafter referred to as WO 3 ) as an insulating film on an electrode.

すなわち、電解液(極性溶媒に電解質と電解重合可能モ
ノマを溶解)中に、絶縁膜を被覆した電極を入れ電解重
合を行なう。正バイアス(絶縁膜を被膜した電極を陽
極)の場合電流は流れない。周期的に一定時間逆バイア
スとして、WO3の還元電位を印加すると、正バイアス時
に電流が流れ電解重合が進行し、絶縁膜上に有機高分子
膜を積層される。
That is, an electrode coated with an insulating film is put into an electrolytic solution (dissolving an electrolyte and a monomer capable of electrolytic polymerization in a polar solvent) to carry out electrolytic polymerization. In the case of positive bias (the electrode coated with the insulating film is the anode), no current flows. When a reducing potential of WO 3 is applied cyclically as a reverse bias for a certain period of time, a current flows at the time of positive bias and electrolytic polymerization proceeds to stack an organic polymer film on the insulating film.

WO3は逆バイアス印加時に式1に示すように還元される
(第1図(A))(M+は水素,リチウム,ナトリウム,
カリウム等一価の陽イオンを示す。)。
WO 3 is reduced as shown in Formula 1 when a reverse bias is applied (FIG. 1 (A)) (M + is hydrogen, lithium, sodium,
Indicates a monovalent cation such as potassium. ).

WO3+M++e→MWO3 ……1 生成したMWO3は電子伝導性となる。WO 3 + M + + e → MWO 3 ... 1 The generated MWO 3 becomes electronically conductive.

次に正バイアス時にMWO3は式2に示すように酸化される
(第1図(B))。
Next, when positively biased, MWO 3 is oxidized as shown in Equation 2 (FIG. 1 (B)).

MWO3→WO3+M++e ……2 正バイアス時にMWO3から電子の引き抜きがおこり、該膜
は電子伝導性から絶縁物と変化する。この際、反応の時
間的な遅れがあり、電子伝導性を保持している間に、MW
O3膜表面でモノマから電子を引き抜き、電子を引き抜か
れたモノマがWO3膜表面で会合し重合する。その結果、
絶縁膜上に平滑でち密な機械的強度の強い有機高分子膜
を積層できる。
MWO 3 → WO 3 + M + + e ... 2 When positive bias is applied, electrons are extracted from MWO 3 , and the film changes from electron conductivity to an insulator. At this time, there is a time delay in the reaction, and while maintaining the electronic conductivity, the MW
Electrons are withdrawn from the monomer on the O 3 film surface, and the electron-withdrawn monomer associates and polymerizes on the WO 3 film surface. as a result,
An organic polymer film which is smooth and dense and has high mechanical strength can be laminated on the insulating film.

本発明を適用しうる絶縁性酸化膜としては、WO3のほか
に、酸化モリブデン(MoO3),酸化チタン(TiO2),酸
化タンタル(Ta2O3),酸化シリコン(SiO2),五酸化
バナジウム(V2O5)などインターカレーション可能な酸
化物を全て挙げることができる。この絶縁性酸化膜の形
成方法は、熱酸化法,抵抗加熱蒸着法,スパッタ蒸着
法,電子ビーム蒸着法,プラズマ堆積法,熱分解気相堆
積法,光分解気相堆積法,電解酸化膜形成法などいずれ
の方法でも有効である。さらに本発明を適用しうるモノ
マとしては電解重合しうるモノマすべてであるが、とく
に例示すると以下のとおりである。すなわち、ピロー
ル,チオフェン,N−メチルピロール,3メチルチオフェ
ン,ナフトチオフェンなどの五員環化合物,アニリン,
フェノールなどで代表される芳香族化合物,ジベンゾク
ラウンエーテル,ビニルピリジンなどのビニル基を挙げ
ることができる。
As the insulating oxide film to which the present invention can be applied, in addition to WO 3 , molybdenum oxide (MoO 3 ), titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 3 ), silicon oxide (SiO 2 ), All intercalatable oxides such as vanadium oxide (V 2 O 5 ) can be mentioned. This insulating oxide film is formed by thermal oxidation method, resistance heating vapor deposition method, sputter vapor deposition method, electron beam vapor deposition method, plasma deposition method, pyrolysis vapor deposition method, photolysis vapor deposition method, electrolytic oxide film formation. Any method such as the law is effective. Further, as the monomer to which the present invention can be applied, all the monomers which can be electrolytically polymerized, but the following are specific examples. That is, five-membered ring compounds such as pyrrole, thiophene, N-methylpyrrole, 3-methylthiophene and naphthothiophene, aniline,
Examples thereof include aromatic compounds represented by phenol and the like, and vinyl groups such as dibenzocrown ether and vinylpyridine.

以下実施例について説明する。Examples will be described below.

実施例1 電極上に絶縁膜として、電子ビーム蒸着法で酸化タング
ステンを2000Åを形成した。次に、ピロール1.0g,ホウ
フッ化リチュウム1.2g,アセトニトリル100mlの割合で調
合した電解液を電解浴に入れ、陰極として白金板、参照
電極として銀線を用いた。陽極に前述の絶縁膜をつけた
電極を使った。正バイアスとして参照電極に対して、0.
68Vを2秒、逆バイアスとして−0.5Vを2秒間印加し、
2時間電解重合を行なった。次にアセトニトリル、つい
で水で積層膜を洗浄し、未反応モノマおよび電解質をの
ぞいた。
Example 1 Tungsten oxide of 2000 Å was formed on the electrode as an insulating film by an electron beam evaporation method. Next, an electrolytic solution prepared by mixing 1.0 g of pyrrole, 1.2 g of borofluoride and 100 ml of acetonitrile was placed in an electrolytic bath, and a platinum plate was used as a cathode and a silver wire was used as a reference electrode. An electrode having the above-mentioned insulating film attached to the anode was used. 0 for the reference electrode as a positive bias.
Apply 68V for 2 seconds and reverse bias of -0.5V for 2 seconds,
Electropolymerization was carried out for 2 hours. Next, the laminated film was washed with acetonitrile and then with water to remove unreacted monomers and the electrolyte.

実施例2〜8 以下は、実施例1において絶縁膜として用いた酸化タン
グステンのかわりに、種々の絶縁膜を用いて行なったも
のである。
Examples 2 to 8 The following are performed using various insulating films instead of the tungsten oxide used as the insulating film in Example 1.

絶縁膜上に有機高分子を積層できるとともに、得られる
膜は平滑で、ち密で、機械的強度も十分であった。
The organic polymer could be laminated on the insulating film, and the resulting film was smooth, dense, and had sufficient mechanical strength.

発明の効果 絶縁膜に電解重合法を用いて、直接平滑、ち密かつ機械
的強度も十分な有機高分子を積層できる。そのため、絶
縁物を中間に介在させたトランジスタなどの電子デバイ
スの製造に有機高分子形成法を活用することができるた
め、これらデバイスの形成を極めて、容易に形成するこ
とが可能となる。
Effect of the Invention By using an electrolytic polymerization method for an insulating film, it is possible to directly stack an organic polymer that is smooth, dense and has sufficient mechanical strength. Therefore, the organic polymer forming method can be used for manufacturing an electronic device such as a transistor having an insulator interposed therebetween, and thus these devices can be formed extremely easily.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における絶縁膜被覆の断面図
であり、同図(A)は逆バイアス印加時の電子の動きを
示した図、同図(B)は正バイアス印加時の電子の動き
を示した図、第2図は従来における電極を示す斜視図、
第3図は同従来例における作用を示す断面図である。 1……電極、2……絶縁膜。
FIG. 1 is a cross-sectional view of an insulating film coating in one embodiment of the present invention, FIG. 1 (A) is a diagram showing the movement of electrons when a reverse bias is applied, and FIG. 1 (B) is a view when a positive bias is applied. FIG. 2 is a diagram showing the movement of electrons, FIG. 2 is a perspective view showing a conventional electrode,
FIG. 3 is a sectional view showing the operation of the conventional example. 1 ... Electrode, 2 ... Insulating film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁性酸化物上に電解重合膜を形成するに
際して、前記絶縁性酸化物に、陽イオンをインタカレー
ションを行うため、還元電位を周期的に一定時間印加し
つつ酸化電位を印加し、電解重合を行うことを特徴とす
る電解重合膜形成法。
1. When forming an electrolytically polymerized film on an insulating oxide, a cation is intercalated into the insulating oxide. A method for forming an electropolymerized film, which comprises applying and electrolytically polymerizing.
JP2321886A 1986-02-05 1986-02-05 Electropolymerization film formation method Expired - Lifetime JPH0678423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2321886A JPH0678423B2 (en) 1986-02-05 1986-02-05 Electropolymerization film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2321886A JPH0678423B2 (en) 1986-02-05 1986-02-05 Electropolymerization film formation method

Publications (2)

Publication Number Publication Date
JPS62181324A JPS62181324A (en) 1987-08-08
JPH0678423B2 true JPH0678423B2 (en) 1994-10-05

Family

ID=12104516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2321886A Expired - Lifetime JPH0678423B2 (en) 1986-02-05 1986-02-05 Electropolymerization film formation method

Country Status (1)

Country Link
JP (1) JPH0678423B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199388A (en) * 1989-12-28 1991-08-30 Yoshida Kogyo Kk <Ykk> Production of electrochromic thin film
JP2502795B2 (en) * 1990-07-31 1996-05-29 松下電器産業株式会社 Capacitor

Also Published As

Publication number Publication date
JPS62181324A (en) 1987-08-08

Similar Documents

Publication Publication Date Title
JP2005281410A (en) Conductive polymer and solid electrolitic capacitor using the same
KR940004667B1 (en) Moisture sensor and manufacturing method thereof
JPH0678423B2 (en) Electropolymerization film formation method
JPH0568829B2 (en)
JP2001163960A (en) Method for preparing electrically conductive polymer material and solid electrolytic capacitor
JP6263742B2 (en) Organic conductor, organic conductor manufacturing method, electronic device, and solid electrolytic capacitor
JPH07104527B2 (en) Electrochromic display element
JPH0678424B2 (en) Method for producing electrolytically polymerized film
JP2001104771A (en) Thin film and method for manufacture thereof
JPS60137922A (en) Apparatus for electrolytic polymerization
JP2796970B2 (en) Method for manufacturing semiconductor device
JPH075717B2 (en) Method for producing N-alkyl substituted dihydropyrrolopyrrole polymer
JPS59226022A (en) Electrically conductive material and its production
JPS62183181A (en) Field-effect transistor and manufacture thereof
JP2001163983A (en) Polymerization additive
JPH02137309A (en) Manufacture of solid electrolytic capacitor
JP2957692B2 (en) Electrolytic polymerization method
JPH0443997B2 (en)
JPH0610251B2 (en) Process for producing pyrrolopyrrole polymer
JPH05136007A (en) Solid electrolytic capacitor and its manufacture
JPH03134020A (en) Highly conductive polypyrrole molding
JPS63139912A (en) Conductive polymer
JPS61245413A (en) Manufacture of conductive high polymer composite film
JPH03190922A (en) Method for electrolytic polymerization and polypyrrole
JPS62183128A (en) Manufacture of organic semiconductor device