JP2957692B2 - Electrolytic polymerization method - Google Patents

Electrolytic polymerization method

Info

Publication number
JP2957692B2
JP2957692B2 JP2335933A JP33593390A JP2957692B2 JP 2957692 B2 JP2957692 B2 JP 2957692B2 JP 2335933 A JP2335933 A JP 2335933A JP 33593390 A JP33593390 A JP 33593390A JP 2957692 B2 JP2957692 B2 JP 2957692B2
Authority
JP
Japan
Prior art keywords
anode
electrolytic
cathode
electrolytic polymerization
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2335933A
Other languages
Japanese (ja)
Other versions
JPH04202683A (en
Inventor
繁雄 近藤
和典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2335933A priority Critical patent/JP2957692B2/en
Publication of JPH04202683A publication Critical patent/JPH04202683A/en
Application granted granted Critical
Publication of JP2957692B2 publication Critical patent/JP2957692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電解重合方法に関し、特に電解重合の際に改
良された陰極を用いる電解重合方法に関するものであ
る。
Description: FIELD OF THE INVENTION The present invention relates to an electrolytic polymerization method, and more particularly to an electrolytic polymerization method using an improved cathode in electrolytic polymerization.

[従来の技術] 近年、ポリアニリン、ポリピロール、ポリチオフェン
などの電解酸化重合によるポリマー形成が盛んに行われ
てきており、特に優れた電子伝導性を有した有機導電性
ポリマーが作られるようになってきている。こうした導
電性ポリマーは電池の電極活物質、スウッチイング素
子、エレクトロクロミック材料、あるいはコンデンサの
電極材料への適用などの展開が試みられている。
[Prior art] In recent years, polymer formation by electrolytic oxidation polymerization of polyaniline, polypyrrole, polythiophene, and the like has been actively performed, and organic conductive polymers having particularly excellent electron conductivity have been produced. I have. Applications of such conductive polymers to electrode active materials for batteries, switching elements, electrochromic materials, or electrode materials for capacitors have been attempted.

こうした有機化合物の電解酸化重合について、例えば
代表的なポリピロールの電解酸化重合を例にとり、詳細
に以下に説明する。
The electrolytic oxidation polymerization of such an organic compound will be described in detail below by taking, for example, a typical electrolytic oxidation polymerization of polypyrrole.

第3図は通常用いられている電解重合装置を示したも
のである。図中1は電解液、2は電解槽、3は陽極、4
は陰極、5は電解液を撹拌および循環させるための循環
用ポンプ、6は電源、7および8は通電用リード線、9
および10は各電極との接続を行わせるためのコネクタ
ー、12は電解液を循環させるための循環用パイプであ
る。
FIG. 3 shows a commonly used electrolytic polymerization apparatus. In the figure, 1 is an electrolytic solution, 2 is an electrolytic cell, 3 is an anode, 4
Is a cathode, 5 is a circulation pump for stirring and circulating the electrolyte, 6 is a power supply, 7 and 8 are conducting leads, 9
Numerals 10 and 10 denote connectors for making connection with each electrode, and 12 denotes a circulation pipe for circulating the electrolyte.

通常、電解液1としては、例えばアセトニトリル、ジ
メチルフォルムアミド、プロピレンカーボネートなどの
有機溶媒や水系溶媒が用いられ、これら溶媒に対し支持
電解質として例えば過塩素酸テトラn−ブチルアンモニ
ウム、4フッ化ほう素テトラn−ブチルアンモニウム等
の塩を例えば約0.1〜0.6mol/Lとなるよう溶解させ溶媒
にイオン伝導性を与えている。また水系溶媒の場合には
例えばp−トルエンンスフォン酸ナトリウム、アルキル
ナフタレンスルフォン酸ナトリウムなどが使われる。
Usually, as the electrolytic solution 1, an organic solvent such as acetonitrile, dimethylformamide, propylene carbonate or an aqueous solvent is used, and as a supporting electrolyte for these solvents, for example, tetra-n-butylammonium perchlorate and boron tetrafluoride A salt such as tetra-n-butylammonium is dissolved in, for example, about 0.1 to 0.6 mol / L to impart ionic conductivity to the solvent. In the case of an aqueous solvent, for example, sodium p-toluenesulfonate, sodium alkylnaphthalenesulfonate and the like are used.

こうしてイオン伝導性を有した溶液中にモノマー(ピ
ロール)を例えば約0.05〜0.3mol/L溶解あるいは分散さ
せ電解液として用いてる。こうした電解液を用いて重合
をおこなわせるには、先ず、電解液中に一対の電極(陽
極3、陰極4)を浸漬させ、その間に約数Vの電圧を印
加することにより陽極3面に電解液中のピロールが酸化
されポリピロールが電解析出する。一方、陰極4面では
電解液そのものが還元される。
In this way, a monomer (pyrrole) is dissolved or dispersed in, for example, about 0.05 to 0.3 mol / L in a solution having ion conductivity and used as an electrolyte. In order to carry out polymerization using such an electrolytic solution, first, a pair of electrodes (anode 3 and cathode 4) are immersed in the electrolytic solution, and a voltage of about several volts is applied between the electrodes so that the electrolytic solution is applied to the surface of the anode 3. Pyrrole in the solution is oxidized and polypyrrole is electrolytically deposited. On the other hand, the electrolyte itself is reduced on the cathode 4 surface.

従って、電解酸化のために印加する電圧の大きさは電
解液および電解液中に存在する被還元性物質の酸化還元
電位の高低の違いにより変化する。電解液中に被還元性
物質を加えていなければ、上述のように電解液そのも
の、あるいは支持電解質からくるカチオンを還元するこ
とになる。この様に、電解酸化反応は陽極および陰極面
で通電電気量に相応して電気化学的酸化還元反応が行わ
れている。
Therefore, the magnitude of the voltage applied for electrolytic oxidation changes depending on the level of the oxidation-reduction potential of the electrolytic solution and the reducible substance present in the electrolytic solution. If no reducible substance is added to the electrolytic solution, cations coming from the electrolytic solution itself or from the supporting electrolyte are reduced as described above. As described above, in the electrolytic oxidation reaction, an electrochemical oxidation-reduction reaction is performed on the anode and cathode surfaces in accordance with the amount of electricity supplied.

[発明が解決しようとする課題] 上記従来の技術において、陽極3が白金、ステンレス
などの電気抵抗の低いものであっても陽極の形状が突出
している部分(この場合コネクターなども含む)などを
有していると、電解液中において電解した際、突出部分
に優先的にポリマーが析出する。逆に窪んだ部分を有す
る形状の陽極を用いたり、筒状の形状の陽極を用いる場
合には、これらの窪みや筒の内部にはポリマーが析出し
にくく、均一な重合膜の形成ができないと言う欠点があ
った。
[Problem to be Solved by the Invention] In the above-mentioned conventional technology, even if the anode 3 is made of platinum, stainless steel or the like, which has a low electric resistance, a portion where the shape of the anode protrudes (in this case, a connector and the like) is included. If it has, when electrolyzed in the electrolytic solution, the polymer is preferentially deposited on the protruding portion. Conversely, when using an anode having a depressed portion or using a cylindrical anode, it is difficult to deposit a polymer in these depressions and the inside of the tube, and it is not possible to form a uniform polymer film. There was a drawback to say.

また、多くの場合通常コネクター9は電解液中に浸か
っており、また、陽極としてその表面に酸化膜が形成さ
れた陽極を用いることも通常よく行なわれており、ある
いは、陽極の金属の種類によっては、電解重合の際に陽
極が電解酸化されて酸化膜が生成されるものもあり、こ
れらの陽極は一般に電気抵抗が高くなる。例えば電気抵
抗の高い表面に酸化膜が形成された陽極や透明電極ある
いは絶縁物上に予め薄く化学的析出させた導電性ポリマ
ー上に電解重合を行わせたい時にはコネクター9の部分
に電解重合体が優先的に析出し、電気抵抗の高い電極表
面に均一に電解重合体を析出させることが困難となって
いた。
In many cases, the connector 9 is usually immersed in an electrolytic solution, and it is also common practice to use an anode having an oxide film formed on its surface as an anode, or depending on the type of metal of the anode. In some cases, an anode is electrolytically oxidized during electrolytic polymerization to form an oxide film, and these anodes generally have high electric resistance. For example, when it is desired to carry out electrolytic polymerization on a conductive polymer which has been thinly chemically deposited on an anode, a transparent electrode or an insulator having an oxide film formed on a surface having a high electric resistance, an electrolytic polymer is provided on the connector 9 portion. It has been preferentially deposited, and it has been difficult to uniformly deposit the electrolytic polymer on the electrode surface having a high electric resistance.

本発明の目的は、かかる課題を解決し、陽極の形状に
突出部や窪みないしは筒状部分を有しているような部分
が存在しても、電解重合により陽極上に比較的均一に重
合体を析出させることのできる電解重合方法を提供する
ことにある。
The object of the present invention is to solve such a problem, and even if there is a portion having a projection or a depression or a cylindrical portion in the shape of the anode, the polymer is relatively uniformly formed on the anode by electrolytic polymerization. It is an object of the present invention to provide an electrolytic polymerization method capable of precipitating a polymer.

[課題を解決するための手段] 前記目的を達成するため、本発明の第1の発明の電解
重合方法は、電解酸化により導電性ポリマーを中空円筒
状の陽極上に形成させる際、前記陽極の単位面積当たり
に流れる電流密度を均一にさせるため、前記陽極の外側
に前記陽極に応じた形状の円筒状陰極を設けるととも
に、前記陽極の内側には補助陰極を設けて電解重合を行
うことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, in the electrolytic polymerization method of the first invention of the present invention, when a conductive polymer is formed on a hollow cylindrical anode by electrolytic oxidation, In order to make the current density flowing per unit area uniform, a cylindrical cathode having a shape corresponding to the anode is provided outside the anode, and an auxiliary cathode is provided inside the anode to perform electrolytic polymerization. And

また、本発明の第2の発明の電解重合方法は、電解酸
化により導電性ポリマーを平板状の陽極上に形成させる
際、前記陽極の単位面積当たりに流れる電流密度を均一
にさせるため、前記陽極の下部に断面逆V字状の陰極を
設けて電解重合を行うことを特徴とする。
Further, the electrolytic polymerization method of the second invention of the present invention is characterized in that, when a conductive polymer is formed on a flat anode by electrolytic oxidation, the current density per unit area of the anode is made uniform. Is characterized in that a cathode having an inverted V-shaped cross section is provided at the lower part of the substrate to perform electrolytic polymerization.

前記本発明の第1〜2の方法においては、陽極の表面
が金属酸化物または化学的に形成された導電性重合体の
薄膜を有する陽極であることが好ましい。
In the first and second methods of the present invention, it is preferable that the surface of the anode is an anode having a thin film of a metal oxide or a chemically formed conductive polymer.

[作用] 本発明は、酸化電解重合可能なモノマーを電解液中に
含有させて陽極と陰極間に電圧を印加することにより重
合体を陽極上に析出させる電解重合方法において、電流
分布がほぼ均一になるような、陽極形状に応じた形状の
陰極あるいは補助陰極を用い電解重合を行うので陽極上
にほぼ均一に電解重合による重合体を析出させることが
できる。
[Action] The present invention provides an electrolytic polymerization method in which a monomer capable of oxidative electrolytic polymerization is contained in an electrolytic solution and a polymer is deposited on the anode by applying a voltage between the anode and the cathode. Since the electrolytic polymerization is carried out using a cathode or an auxiliary cathode having a shape corresponding to the shape of the anode, it is possible to deposit the polymer by the electrolytic polymerization almost uniformly on the anode.

すなわち、電解酸化重合に際して、流れる電流は陽極
形状に応じ電極表面で電流の流れに強弱を生じる。例え
ば突起部を有する形状の陽極では、突起部分に電流が集
中する。こうした陽極の突起した部位に対応する陰極部
位を突起部位より遠ざけた形ないしは配置をした陰極と
することにより、その部位に流れる電流を少なくさせる
事が出来る。逆に窪んだ形状ないしは筒状の陽極内面の
奥では電流の流れが悪くなる。この場合には補助陰極を
陽極の内面に設置することにより、窪んだ部分を有する
陽極ないしは筒状の陽極の内面に均一に電流を流すこと
が出来、均一なポリマーをその内部に析出させる事が可
能となるのである。
That is, during the electrolytic oxidation polymerization, the flowing current produces a strong or weak current flow on the electrode surface according to the shape of the anode. For example, in the case of an anode having a projection, current concentrates on the projection. By forming the cathode portion corresponding to the protruding portion of the anode as a cathode arranged or arranged away from the protruding portion, it is possible to reduce the current flowing through that portion. Conversely, the flow of electric current is deep inside the concave or cylindrical inner surface of the anode. In this case, by installing the auxiliary cathode on the inner surface of the anode, it is possible to uniformly supply current to the inner surface of the anode having a depressed portion or the inner surface of the cylindrical anode, and to deposit a uniform polymer inside the anode. It is possible.

すなわち、本発明の第1の発明の電解重合方法は、中
空円筒状陽極の外側に前記陽極に応じた形状の円筒状陰
極を設けるとともに、前記陽極の内側には補助陰極を設
けて電解重合を行うことにより、電流密度を均一にでき
るため、均一厚さのポリマーを円筒状陽極表面全面に析
出させることができる。
That is, in the electrolytic polymerization method of the first invention of the present invention, a cylindrical cathode having a shape corresponding to the anode is provided outside the hollow cylindrical anode, and an auxiliary cathode is provided inside the anode to perform the electrolytic polymerization. By doing so, the current density can be made uniform, so that a polymer having a uniform thickness can be deposited on the entire surface of the cylindrical anode.

また、本発明の第2の発明の電解重合方法は、平板状
陽極の下部に断面逆V字状の陰極を設けて電解重合を行
うことにより、同様に電流密度を均一にできるため、均
一厚さのポリマーを平板状陽極表面全面に析出させるこ
とができる。
In the electrolytic polymerization method according to the second aspect of the present invention, a current density can be similarly made uniform by providing an inverted V-shaped cathode below the plate-shaped anode and performing electrolytic polymerization. Can be deposited on the entire surface of the flat anode.

また、一般的にこれらの陽極は電気抵抗が高い、した
がって前述の陽極形状による偏った重合体の析出のほか
に電極のコネクターにより電流が集中して流れやすくな
るが、本発明方法の陽極の表面が金属酸化物または化学
的に形成された導電性重合体の薄膜を有する陽極である
という好ましい例によれば、コネクターへの電流分布を
小さくして陽極への電流分布をほぼ均一とすることが出
来るので、これらの陽極への電解重合による重合体のほ
ぼ均一な析出が可能となる。
In addition, these anodes generally have high electric resistance, and therefore, in addition to the above-described uneven polymer deposition due to the anode shape, current concentrates and flows easily due to the electrode connector. According to a preferred example, the anode having a thin film of a metal oxide or a conductive polymer formed chemically can reduce the current distribution to the connector and make the current distribution to the anode substantially uniform. Therefore, the polymer can be deposited almost uniformly on the anode by electrolytic polymerization.

[実施例] 以下実施例をもとに本発明を更に詳細に説明する。[Examples] Hereinafter, the present invention will be described in more detail based on examples.

実施例1 直径5mm、長さ1cm、厚さ0.1mmのステンレス製の金属
円筒表面にポリピロールを電解酸化によって形成した。
第1図は本発明によるところの陰極ならびに補助陰極を
設けた電解槽の主要部の構成を示したものである。図中
1はピロールを含んだ電解液、2は電解槽、3はポリピ
ロールを析出させる円筒状ステンレス陽極、4は円筒状
陽極に応じた形状の円筒状ステンレス陰極、4′は円筒
状陽極内部に設置した直径1mmの補助陰極であり、補助
陰極4′は、陰極4はA点で電気的接触を行って用い
た。11は電気的接点を除いて表面に酸化チタン皮膜を形
成させた電極ハンガーコネクターで円筒状陽極3とリー
ド線7とはクリップ状のコネクター9で電気的接続を行
っている。また、10は陰極のクリップ状のコネクター、
8はリード線である。陰極に対し3Vの電圧を10分間印加
し、電解酸化重合皮膜を円筒状陽極に析出させた結果、
均一な重合膜が外面及び内面に析出させることが出来
た。なお、ここで電解液の組成としては、ピロール0.3m
ol/L、支持電解質としてp−トルエンスルホン酸ソーダ
0.15mol/Lの水溶液を用いた。
Example 1 Polypyrrole was formed by electrolytic oxidation on the surface of a stainless steel metal cylinder having a diameter of 5 mm, a length of 1 cm, and a thickness of 0.1 mm.
FIG. 1 shows a configuration of a main part of an electrolytic cell provided with a cathode and an auxiliary cathode according to the present invention. In the figure, 1 is an electrolytic solution containing pyrrole, 2 is an electrolytic cell, 3 is a cylindrical stainless steel anode for depositing polypyrrole, 4 is a cylindrical stainless steel cathode having a shape corresponding to the cylindrical anode, and 4 'is inside the cylindrical anode. The auxiliary cathode having a diameter of 1 mm was installed. The auxiliary cathode 4 ′ was used by making electrical contact with the cathode 4 at point A. Reference numeral 11 denotes an electrode hanger connector having a titanium oxide film formed on its surface except for electrical contacts, and the cylindrical anode 3 and the lead wire 7 are electrically connected by a clip-shaped connector 9. Also, 10 is a clip-shaped connector of the cathode,
8 is a lead wire. As a result of applying a voltage of 3 V to the cathode for 10 minutes and depositing an electrolytic oxidation polymerization film on the cylindrical anode,
A uniform polymer film could be deposited on the outer and inner surfaces. Here, the composition of the electrolytic solution, pyrrole 0.3m
ol / L, sodium p-toluenesulfonate as supporting electrolyte
An aqueous solution of 0.15 mol / L was used.

比較のために従来の電解方法により円筒状電極にポリ
マーを同一電解条件で析出させた。用いた電解槽の主要
部は第4図に示したような構成とした。図中1はピロー
ルを含んだ電解液、2は電解槽、3はポリピロールを析
出させる円筒状ステンレス陽極、4は平板状ステンレス
陰極、11は電気的接点を除いて表面に酸化チタン皮膜を
形成させた電極ハンガーコネクターで円筒状陽極3とリ
ード線7とはクリップ状のコネクター9で電気的接続を
行っている。また、10は陰極のクリップ状のコネクタ
ー、8はリード線である。その結果、円筒状陽極内部に
はポリマーが不均一に析出し、しかも未析出の部位が多
数存在した。
For comparison, a polymer was deposited on a cylindrical electrode under the same electrolysis conditions by a conventional electrolysis method. The main part of the electrolytic cell used was configured as shown in FIG. In the figure, 1 is an electrolytic solution containing pyrrole, 2 is an electrolytic cell, 3 is a cylindrical stainless steel anode for depositing polypyrrole, 4 is a flat stainless steel cathode, 11 is a titanium oxide film formed on the surface except for electrical contacts. In the electrode hanger connector, the cylindrical anode 3 and the lead wire 7 are electrically connected by a clip-shaped connector 9. Reference numeral 10 denotes a clip-shaped connector for the cathode, and reference numeral 8 denotes a lead wire. As a result, the polymer was deposited unevenly inside the cylindrical anode, and there were many undeposited portions.

実施例2 酸化アルミニウムを形成したアルミニウム箔(厚さ0.
1mm、幅5mm、長さ1cm)を陽極として用い該陽極表面に
は予めポリピロールを化学的に薄く形成させたものを用
いた。すなわち、硝酸マンガン水溶液に酸化アルミニウ
ムを形成したアルミニウム箔を浸漬後、空気中で加熱酸
化して、二酸化マンガンとし、ポリピロールのN,N−ジ
メチルホルムアミド溶液に浸漬し、陽極表面にポリピロ
ールを化学的に薄く形成させた陽極を用いた。
Example 2 Aluminum foil formed with aluminum oxide (thickness of 0.
1 mm, a width of 5 mm, and a length of 1 cm) were used as the anode, and the surface of the anode was made of polypyrrole which had been chemically thinned beforehand. That is, after immersing an aluminum foil formed with aluminum oxide in an aqueous solution of manganese nitrate, it is heated and oxidized in the air to form manganese dioxide, immersed in an N, N-dimethylformamide solution of polypyrrole, and chemically oxidized polypyrrole on the anode surface. A thinly formed anode was used.

使用した電解槽の主要部の構成は第2図に示した。図
中1はピロールを含んだ電解液、2は電解槽、3はポリ
ピロールを析出させる平板状陽極、4は断面逆V字状ス
テンレス陰極、11は電気的接点を除いて表面に酸化チタ
ン皮膜を形成させた電極ハンガーコネクター、7、8は
リード線、9、10はクリップ状のコネクターである。第
2図に示したように、陰極4は陽極3の電極ハンガーコ
ネクター11の通電部位Bから最遠部にある陽極位置に、
逆V字状の頂点部を最も近ずけて設定した。電解重合は
実施例1と同様の条件で行った。その結果、電極ハンガ
ーコネクター11ならびにその陽極接点部位(B)に多く
のポリピロールが析出したが、陽極全面に析出させる事
が出来た。
The configuration of the main part of the electrolytic cell used is shown in FIG. In the figure, 1 is an electrolytic solution containing pyrrole, 2 is an electrolytic cell, 3 is a plate-shaped anode for depositing polypyrrole, 4 is an inverted V-shaped stainless steel cathode, 11 is a titanium oxide film on the surface except for electrical contacts. The formed electrode hanger connectors, 7 and 8 are lead wires, and 9 and 10 are clip-shaped connectors. As shown in FIG. 2, the cathode 4 is located at the anode position furthest from the energized portion B of the electrode hanger connector 11 of the anode 3,
The inverted V-shaped apex was set closest. The electrolytic polymerization was performed under the same conditions as in Example 1. As a result, a large amount of polypyrrole was deposited on the electrode hanger connector 11 and its anode contact portion (B), but could be deposited on the entire surface of the anode.

従来の方法と比較するために第3図で示したと同様の
電解槽を用いポリピロールを電解析出させた。ただし、
陽極は、上記と同じ酸化アルミニウム膜の上に予めポリ
ピロールを化学的に薄く形成させたアルミニウム箔を用
い、また、通常行われている電解重合のごとく電極3、
4が電解液中に浸るようにしたので、コネクター9、10
も電解液中に浸る状態で、電解重合は本発明と同一条件
で行った。その結果、ポリピロールはコネクター9とそ
の陽極接点部位に殆ど析出し、同一時間内では、陽極全
面に析出させる事が出来なかった。全面に析出させるた
めには少なくとも30分以上の電解時間が必要とすること
が判明した。
For comparison with a conventional method, polypyrrole was electrolytically deposited using the same electrolytic cell as shown in FIG. However,
As the anode, an aluminum foil in which polypyrrole was previously chemically thinly formed on the same aluminum oxide film as described above was used, and the electrode 3 was used as in the usual electrolytic polymerization.
Since connector 4 was immersed in the electrolyte, connectors 9 and 10
Was also immersed in the electrolytic solution, and the electrolytic polymerization was performed under the same conditions as in the present invention. As a result, polypyrrole almost deposited on the connector 9 and its anode contact portion, and could not be deposited on the entire surface of the anode within the same time. It has been found that at least 30 minutes or more of electrolysis time is required for deposition on the entire surface.

実施例3 実施例2において用いたアルミ箔に更に二酸化マンガ
ンを付着させた陽極を用い、ハンガーコネクター11の材
料をチタンからタンタルに変えた以外実施例2と全く同
様のポリピロール電解重合膜形成を行った。
Example 3 A polypyrrole electrolytic polymerized film was formed in exactly the same manner as in Example 2 except that the material used for the hanger connector 11 was changed from titanium to tantalum using an anode obtained by further adhering manganese dioxide to the aluminum foil used in Example 2. Was.

その結果は全く実施例2と同様に良好な陽極面上への
ポリピロールの析出を得た。
As a result, polypyrrole was successfully deposited on the anode surface in the same manner as in Example 2.

上述の実施例では、モノマーとしてピロールを用いた
例を示したが、他の電解酸化重合可能なモノマー、例え
ばアニリンやチオフェンなどを用いても同様に適用でき
る。また、陽極上に予め形成する導電性重合膜もポリピ
ロールのみでなく二酸化マンガンや塩化第二鉄などの酸
化剤により化学的に析出可能な導電性重合体であれば他
の重合体、たとえばポリアニリンやポリチオフェンその
他の重合体も適用できる。また、陽極や陰極の材料は、
電解重合に使用できるものであれば何でもよく、特に実
施例のもののみに限定されるものではない。
In the above-described embodiment, an example in which pyrrole is used as a monomer has been described. However, the present invention can be similarly applied to other electrolytically oxidatively polymerizable monomers such as aniline and thiophene. In addition, the conductive polymer film formed in advance on the anode is not limited to polypyrrole, but may be any other polymer such as polyaniline as long as it is a conductive polymer that can be chemically deposited by an oxidizing agent such as manganese dioxide or ferric chloride. Polythiophene and other polymers are also applicable. The material of the anode and cathode is
Any material can be used as long as it can be used for electrolytic polymerization, and it is not particularly limited to those of Examples.

[発明の効果] 本発明方法によれば、陽極として突出部や窪みのある
陽極や筒状の陽極などの電流分布が不均一になりやすい
形状の陽極を用いても、陽極上にほぼ均一に電解重合に
よる重合体を析出させることができる。
[Effects of the Invention] According to the method of the present invention, even when an anode having a shape in which current distribution is likely to be non-uniform, such as an anode having a protrusion or a depression, or a cylindrical anode, is used, the anode is almost uniformly formed on the anode. A polymer can be deposited by electrolytic polymerization.

すなわち、本発明の第1の発明の電解重合方法は、中
空円筒状陽極の外側に前記陽極に応じた形状の円筒状陰
極を設けるとともに、前記陽極の内側には補助陰極を設
けて電解重合を行うことにより、電流密度を均一にでき
るため、均一厚さのポリマーを円筒状陽極表面全面に析
出させることができる。
That is, in the electrolytic polymerization method of the first invention of the present invention, a cylindrical cathode having a shape corresponding to the anode is provided outside the hollow cylindrical anode, and an auxiliary cathode is provided inside the anode to perform the electrolytic polymerization. By doing so, the current density can be made uniform, so that a polymer having a uniform thickness can be deposited on the entire surface of the cylindrical anode.

また、本発明の第2の発明の電解重合方法は、平板状
陽極の下部に断面逆V字状の陰極を設けて電解重合を行
うことにより、同様に電流密度を均一にできるため、均
一厚さのポリマーを平板状陽極表面全面に析出させるこ
とができる。
In the electrolytic polymerization method according to the second aspect of the present invention, a current density can be similarly made uniform by providing an inverted V-shaped cathode below the plate-shaped anode and performing electrolytic polymerization. Can be deposited on the entire surface of the flat anode.

また、本発明の前記第1〜2番目の方法の、陽極の表
面が金属酸化物または化学的に形成された導電性重合体
の薄膜を有する陽極であるという好ましい例によれば、
上記の効果のほか、コネクターに電流分布が特に集中し
やすい電気抵抗の高めの陽極を用いても、陽極への電解
重合による重合体のほぼ均一な析出が可能となる。
According to a preferred example of the first or second method of the present invention, wherein the surface of the anode is an anode having a thin film of a metal oxide or a chemically formed conductive polymer,
In addition to the effects described above, even when an anode having a high electric resistance is used in which a current distribution is particularly likely to be concentrated on the connector, it is possible to deposit the polymer almost uniformly by electrolytic polymerization on the anode.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の電解重合装置の主要部の概
略構成図、第2図は本発明の別の実施例の電解重合装置
の主要部の概略構成図、第3図は通常用いられている従
来の電解重合装置の概略構成図、第4図は従来の比較例
の電解重合装置の主要部の概略構成図である。 1……電解液、2……電解槽、3……陽極、4……陰
極、4′……補助陰極、5……循環用ポンプ、6……電
源、7、8リード線、9、10、11……コネクター、12…
…循環用パイプ
FIG. 1 is a schematic configuration diagram of a main portion of an electrolytic polymerization apparatus according to one embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a main portion of an electrolytic polymerization device according to another embodiment of the present invention, and FIG. FIG. 4 is a schematic configuration diagram of a conventional electrolytic polymerization apparatus used, and FIG. 4 is a schematic configuration diagram of main parts of a conventional electrolytic polymerization apparatus of a comparative example. DESCRIPTION OF SYMBOLS 1 ... Electrolyte solution, 2 ... Electrolyzer, 3 ... Anode, 4 ... Cathode, 4 '... Auxiliary cathode, 5 ... Circulation pump, 6 ... Power supply, 7,8 lead wire, 9,10 , 11 …… connector, 12…
... circulation pipe

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C25B 1/00 - 15/08 C25D 9/00 - 9/12 C25D 13/00 - 13/24 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) C25B 1/00-15/08 C25D 9/00-9/12 C25D 13/00-13/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解酸化により導電性ポリマーを中空円筒
状の陽極上に形成させる際、前記陽極の単位面積当たり
に流れる電流密度を均一にさせるため、前記陽極の外側
に前記陽極に応じた形状の円筒状陰極を設けるととも
に、前記陽極の内側には補助陰極を設けて電解重合を行
うことを特徴とする電解重合方法。
When forming a conductive polymer on a hollow cylindrical anode by electrolytic oxidation, a shape corresponding to the anode is formed outside the anode in order to make the current density flowing per unit area of the anode uniform. Wherein a cylindrical cathode is provided and an auxiliary cathode is provided inside the anode to perform electrolytic polymerization.
【請求項2】電解酸化により導電性ポリマーを平板状の
陽極上に形成させる際、前記陽極の単位面積当たりに流
れる電流密度を均一にさせるため、前記陽極の下部に断
面逆V字状の陰極を設けて電解重合を行うことを特徴と
する電解重合方法。
2. A cathode having an inverted V-shaped cross section below the anode in order to make the current density per unit area of the anode uniform when the conductive polymer is formed on the flat anode by electrolytic oxidation. An electrolytic polymerization method, wherein electrolytic polymerization is performed by providing the method.
【請求項3】陽極の表面が金属酸化物または化学的に形
成された導電性重合体の薄膜を有する陽極である請求項
1又は2に記載の電解重合方法。
3. The electrolytic polymerization method according to claim 1, wherein the surface of the anode is an anode having a thin film of a metal oxide or a chemically formed conductive polymer.
JP2335933A 1990-11-29 1990-11-29 Electrolytic polymerization method Expired - Fee Related JP2957692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2335933A JP2957692B2 (en) 1990-11-29 1990-11-29 Electrolytic polymerization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2335933A JP2957692B2 (en) 1990-11-29 1990-11-29 Electrolytic polymerization method

Publications (2)

Publication Number Publication Date
JPH04202683A JPH04202683A (en) 1992-07-23
JP2957692B2 true JP2957692B2 (en) 1999-10-06

Family

ID=18293970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2335933A Expired - Fee Related JP2957692B2 (en) 1990-11-29 1990-11-29 Electrolytic polymerization method

Country Status (1)

Country Link
JP (1) JP2957692B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102817042B (en) * 2012-08-25 2015-09-02 太原理工大学 A kind of preparation method of electroactive polypyrrole film

Also Published As

Publication number Publication date
JPH04202683A (en) 1992-07-23

Similar Documents

Publication Publication Date Title
Bull et al. Polymer Films on Electrodes: VII. Electrochemical Behavior at Polypyrrole‐Coated Platinum and Tantalum Electrodes
Burke et al. The oxygen electrode. Part 8.—Oxygen evolution at ruthenium dioxide anodes
KR910009477B1 (en) Solid electrolytic capacitor
US4728399A (en) Preparation of laminates of metals and electrically conductive polymers
US5151162A (en) Rechargeable storage battery with electroactive organic polymer electrodes in polar solvent electrolyte
JPH0474853B2 (en)
JPH0831400B2 (en) Solid electrolytic capacitor
JP2669671B2 (en) Method for controlling wettability of polymer thin film surface, and image forming method and image forming material using the method
US5189770A (en) Method of making solid electrolyte capacitor
US5166008A (en) Polymer gel-coated conductor, method of producing the same, and electric cell making use of the same
JPH0458165B2 (en)
JP2957692B2 (en) Electrolytic polymerization method
Istakova et al. Efficiency of pyrrole electropolymerization under various conditions
Łapkowski Electrochemical synthesis of polyaniline/poly (2-acryl-amido-2-methyl-1-propane-sulfonic acid) composite
EP0097218B1 (en) Photoassisted generation of hydrogen from water
JP2709130B2 (en) Polymer gel-coated conductor, method for forming the same, and battery using core polymer gel-coated conductor
Dong et al. Electrochemical behaviour of potassium ferricyanide, hydroquinone, catechol and p-aminophenol at polypyrrole film electrodes
JP2825975B2 (en) Electrical connector for electrolytic polymerization
JP3729013B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPH0467767B2 (en)
JP2631910B2 (en) Polypyrrole molded article for polymer secondary battery and method for producing the same
KR970005086B1 (en) Tantalium electrolytic condenser producing method
JPH07201676A (en) Electric double layer capacitor
CA1129376A (en) Electrodes for electrolytic recovery of metals
Morita et al. Electrocatalytic Behavior of Poly (2, 5-dihydroxyaniline) Synthesized by Electropolymerization in Aqueous Solutions

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees