JPH0678118B2 - Refueling nozzle - Google Patents

Refueling nozzle

Info

Publication number
JPH0678118B2
JPH0678118B2 JP17743589A JP17743589A JPH0678118B2 JP H0678118 B2 JPH0678118 B2 JP H0678118B2 JP 17743589 A JP17743589 A JP 17743589A JP 17743589 A JP17743589 A JP 17743589A JP H0678118 B2 JPH0678118 B2 JP H0678118B2
Authority
JP
Japan
Prior art keywords
oil
nozzle
valve
refueling
residual oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17743589A
Other languages
Japanese (ja)
Other versions
JPH0343400A (en
Inventor
慶司 鈴木
清氏 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tominaga Manufacturing Co
Original Assignee
Tominaga Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tominaga Manufacturing Co filed Critical Tominaga Manufacturing Co
Priority to JP17743589A priority Critical patent/JPH0678118B2/en
Publication of JPH0343400A publication Critical patent/JPH0343400A/en
Publication of JPH0678118B2 publication Critical patent/JPH0678118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は給油所等において使用され、自動車へガソリン
や軽油といった燃料油を供給する給油装置に使用される
給油ノズルに関するものである。
Description: (a) Field of Industrial Application The present invention relates to an oil supply nozzle used in an oil supply station or the like and used in an oil supply device for supplying fuel oil such as gasoline or light oil to an automobile.

(ロ)従来技術とその問題点 給油装置にはその下流端に給油ノズルが接続され、給油
ノズルに内設された手動弁機構を開閉させることにより
客の要求する量の給油や満たん給油が行なわれている。
(B) Conventional technology and its problems A refueling device has a refueling nozzle connected to its downstream end, and a manual valve mechanism provided inside the refueling nozzle is opened / closed to provide a refueling amount or a refueling amount required by a customer. Has been done.

これらの給油作業の終了時にはその給油ノズルの筒先内
の残油を完全に排出させておくべきであるが、作業を急
ぐあまりに油を残してしまうことが多く、油が残ってい
ると次の給油開始時に下記の不都合が生じる。
At the end of these refueling operations, the residual oil in the cylinder tip of the refueling nozzle should be completely drained, but in many cases the oil is left so quickly that the next refueling operation will occur. The following problems occur at the start.

筒先を自動車の給油口へセットしようとして下方に向け
ると残油が排出されてしまうので自動車を汚し、あるい
は散布されて火災や公害、さらにはスリップ事故の原因
となる。
When the cylinder tip is set to the fueling port of the vehicle and directed downward, residual oil is discharged, which pollutes or scatters the vehicle and causes fire, pollution, and even slip accidents.

また自動車側の油種を検知する機構(コンタミプルー
フ)を備えた装置にあってはその給油ノズルから排出さ
れた油を自動車の油であるとの判断をしてしまい、油種
の誤判定をする可能性がある。
Also, in the case of a device equipped with a mechanism (contamination proof) for detecting the type of oil on the automobile side, the oil discharged from the refueling nozzle is judged to be the oil of the automobile, and the oil type is erroneously judged. there's a possibility that.

誤って異なる油種の油を給油してしまうとエンジントラ
ブルの原因になり、修理費や油の始末に多額の費用が必
要となる。
Accidentally supplying oil of a different oil type will cause engine trouble, and a large amount of cost will be required to repair and dispose of the oil.

一方、筒先の下流側にポンプ圧力が作用すると開く弁を
設けて残油の排出を押さえる方法も採用されているが、
この場合には弁の部分が大きくなるので作業性を損なう
ことになる。
On the other hand, a method has also been adopted in which a valve that opens when the pump pressure acts on the downstream side of the cylinder tip is provided to suppress the discharge of residual oil.
In this case, since the valve portion becomes large, workability is impaired.

(ハ)問題点を解決するための構成とその作用 本発明は前回給油の残油があってもその排出するタイミ
ングあるいは排出する速度を制御することにより前記問
題点を解決しようとするもので、その構成は、本体内を
貫流する流路と、この流路が開閉される弁機構と、下流
端に筒先とを備え、ホースを介して送油装置に接続され
た給油ノズルにおいて、前記弁機構直近の筒先側流路に
繋がる残油収納室を設けたもので、給油終了時のアクシ
ョンたとえば給油ノズルを非給油時の定位置へ戻すある
いは筒先を上方へ向ける等によって残油収納室へ残油が
一時収納され、給油開始時のアクションたとえばポンプ
の始動や油種判定の終了によって収納室からの排出が開
始され、あるいは筒先を下方へ向けたときにゆっくりと
排出が開始される。
(C) Configuration and Action for Solving Problems The present invention is to solve the above problems by controlling the discharge timing or discharge speed of the residual oil of the previous refueling. The configuration is a refueling nozzle that includes a flow passage that flows through the inside of the main body, a valve mechanism that opens and closes the flow passage, and a cylinder tip at the downstream end, and is connected to an oil feeding device via a hose. A residual oil storage chamber connected to the nearest cylinder tip side flow path is provided.Action at the end of refueling, such as returning the refueling nozzle to a fixed position when not refueling, or by pointing the cylinder tip upwards Is temporarily stored, and discharge from the storage chamber is started by an action at the start of refueling, for example, starting of a pump or completion of oil type determination, or slowly when the cylinder tip is directed downward.

(ニ)実施例 第1図は油種判定機能を備えた給油装置の構造を示して
おり、1はポンプで、ポンプモーター2によって回転駆
動され逆止弁4の挿設された給油管3を介して図示しな
い油タンクから油を汲み出す。
(D) Embodiment FIG. 1 shows the structure of an oil supply device having an oil type determination function. Reference numeral 1 denotes a pump, which is rotationally driven by a pump motor 2 and has an oil supply pipe 3 in which a check valve 4 is inserted. The oil is pumped out from an oil tank (not shown).

5は汲み出された油を計量する流量計、6は流量計5が
計量した量に相当する数の流量パルス信号aを出力する
パルス発信器。
5 is a flow meter that measures the pumped oil, and 6 is a pulse transmitter that outputs a number of flow rate pulse signals a corresponding to the amount measured by the flow meter 5.

7は給油ノズルで、下流端に筒先8が接続され流量計5
とはホース9を介して繋がっている。
7 is a refueling nozzle, and a tube tip 8 is connected to the downstream end of the flow meter 5
And are connected via a hose 9.

10は後述する電気回路を収納した制御部、11は給油量の
表示器、12は非給油時に給油ノズル7を収納しておくノ
ズルケース、13はノズルケース12での給油ノズル7の存
在時のみノズル検知信号bを出力するノズル検知スイッ
チ、14は油種検知センサーユニット、15は三方切換弁、
16は加圧空気が供給されている送気管、17はガス吸引
管、18は作動管である。
10 is a control unit that houses an electric circuit described later, 11 is an indicator for the amount of refueling, 12 is a nozzle case that stores the refueling nozzle 7 when not refueling, 13 is only when the refueling nozzle 7 is present in the nozzle case 12. A nozzle detection switch that outputs a nozzle detection signal b, 14 an oil type detection sensor unit, 15 a three-way switching valve,
Reference numeral 16 is an air supply pipe to which pressurized air is supplied, 17 is a gas suction pipe, and 18 is an operation pipe.

第2図において、19は給油ノズル7の本体でその内部を
油流路20が貫流しており、主弁21と副弁22とからなる弁
機構23と油の流れを受けて開きその流れの作用で負圧を
発生させる負圧発生弁24からなる弁機構25とが収納され
ている。
In FIG. 2, reference numeral 19 denotes a main body of the oil supply nozzle 7 through which an oil flow passage 20 flows, and a valve mechanism 23 composed of a main valve 21 and a sub valve 22 receives an oil flow and opens. A valve mechanism 25 including a negative pressure generating valve 24 that generates a negative pressure by its action is housed.

26はレバーで、このレバー26が軸27を中心に図で反時計
方向に回転させられると二本のローラー28によって離脱
可能に係着された弁軸27と作動軸29とが一緒に右方へ変
位し、まず副弁22が次いで主弁21が開かれる。
Reference numeral 26 is a lever, and when the lever 26 is rotated counterclockwise around the shaft 27 in the drawing, the valve shaft 27 and the operating shaft 29, which are detachably engaged by two rollers 28, are moved to the right together. And the main valve 21 is opened first.

弁21,22が開き油が流れると流圧によって負圧発生弁24
が押し開かれる。
When the valves 21 and 22 open and the oil flows, the negative pressure is generated by the fluid pressure.
Is pushed open.

すると弁機構25を通過する油の作用で負圧路30に負圧が
発生する。
Then, the negative pressure is generated in the negative pressure passage 30 by the action of the oil passing through the valve mechanism 25.

この負圧路30はダイアフラム31で上下に仕切られた上室
32と一方端が筒先8の先端に開口33を有する負圧補償管
34とに繋がっており、発生した負圧の上昇は負圧補償管
34を介して供給される空気によって阻止されている。
This negative pressure passage 30 is an upper chamber partitioned by a diaphragm 31 into upper and lower parts.
32 and a negative pressure compensating tube having an opening 33 at one end of the barrel tip 8.
34 is connected to the negative pressure compensating tube.
It is blocked by air supplied through 34.

しかしながら油面の上昇で開口33が閉じられると空気の
供給が断たれるので負圧値の上昇を阻止出来なくなり、
この負圧値の上昇は上室32に作用してダイアフラム31を
ローラー28を伴って上方へ変位させ作動軸29と弁軸27の
係着状態が解除されて油の圧力により弁機構23が閉止さ
れることになる。
However, when the opening 33 is closed due to the rise of the oil level, the air supply is cut off, so it is not possible to prevent the rise of the negative pressure value,
This increase in the negative pressure value acts on the upper chamber 32 to displace the diaphragm 31 upward with the roller 28, releasing the engagement state between the operating shaft 29 and the valve shaft 27, and closing the valve mechanism 23 by the pressure of oil. Will be done.

これらの動作は既に公知であり、よって詳述は省略す
る。
These operations are already known, and therefore detailed description thereof will be omitted.

35はガス吸引管17の一方端の開口で、他方端は油種検知
センサーユニット14に繋がっている。
35 is an opening at one end of the gas suction pipe 17, and the other end is connected to the oil type detection sensor unit 14.

36,37はそれぞれ弁機構25の下流側直近に穿孔された通
孔で38は弁機構23の上流側流路に穿孔された通孔。
36 and 37 are through holes drilled in the immediate vicinity of the downstream side of the valve mechanism 25, and 38 is a through hole drilled in the upstream flow path of the valve mechanism 23.

第3A図は第2図における給油ノズル7を上方から見た図
で、ダイアフラム39によって仕切られた作用室40と残油
収納室41とが形成されており、ダイアフラム39はスプリ
ング42によって作用室40側へ常時付勢され、残油収納室
41は通孔36と、作用室40は作動管18とそれぞれ繋がって
いる。
3A is a view of the refueling nozzle 7 in FIG. 2 seen from above, and a working chamber 40 and a residual oil storage chamber 41 partitioned by a diaphragm 39 are formed, and the diaphragm 39 is actuated by a spring 42. Side is always biased to the residual oil storage chamber
41 is connected to the through hole 36, and the working chamber 40 is connected to the working pipe 18.

第6図は油種検知センサーユニット14の構成を示してお
り下記の機器が内設されている。
FIG. 6 shows the structure of the oil type detection sensor unit 14, in which the following devices are installed.

43は遮断弁、44は加圧空気が送通されることによって分
岐管51に負圧を発生させるエジェクタ、45はポートA,B,
Cを備えた三方切替弁である。
43 is a shutoff valve, 44 is an ejector for generating a negative pressure in the branch pipe 51 by feeding pressurized air, 45 is a port A, B,
It is a three-way switching valve equipped with C.

なお、三方切替弁15はそれぞれポートD,E,Fを備えてい
る。
The three-way switching valve 15 has ports D, E and F, respectively.

第8図は制御部10の構成を示した図で下記の電気回路が
収納されている。
FIG. 8 is a diagram showing the configuration of the control unit 10 in which the following electric circuits are housed.

47は計数回路で、流量パルス信号aの数を計数し、その
計数値を給油量信号cとして出力し、表示器11で給油量
として表示させる。
A counting circuit 47 counts the number of flow rate pulse signals a, outputs the counted value as a lubrication amount signal c, and displays it on the display 11 as the lubrication amount.

なおこの計数値はノズル検知スイッチ13がノズル7の検
知をしている間出力されているノズル検知信号bの消失
で帰零される。
Note that this count value is reset to zero by the disappearance of the nozzle detection signal b output while the nozzle detection switch 13 is detecting the nozzle 7.

48は油種判定回路で、油種センサー46から出力される油
種信号dをもとに給油すべきか否か(当該給油装置の油
種と一致するか否か)を判定し、許可すべきときのみ許
可信号e(ワンパルス)を出力する一方ノズル検知信号
bの消失と同時に開弁信号fを出力し、さらに一定時間
の間切替信号hを出力する。
An oil type determination circuit 48 determines whether or not to refuel based on the oil type signal d output from the oil type sensor 46 (whether or not it matches the oil type of the refueling device), and permits it. Only at this time, the permission signal e (one pulse) is output, while the nozzle detection signal b disappears, the valve opening signal f is output, and the switching signal h is output for a certain period of time.

49はモーター制御回路で、許可信号eの入力からノズル
検知信号bの入力までの間(ノズル7がノズルケース12
へ戻されるまでの間)付勢信号iを出力する。
Reference numeral 49 is a motor control circuit, which operates between the input of the permission signal e and the input of the nozzle detection signal b (nozzle 7
(While being returned to), the energizing signal i is output.

50は弁制御回路で、付勢信号iが入力されている間切替
信号jを出力する。
A valve control circuit 50 outputs a switching signal j while the energizing signal i is being input.

次に第1図,第2図,第3A図,第3B図,第6図,第8
図,第9図をもとに第1の実施例を示す。
Next, Fig. 1, Fig. 2, Fig. 3A, Fig. 3B, Fig. 6, Fig. 8
A first embodiment will be described with reference to FIGS.

ノズル7がノズルケース12に収納されている給油待機時
(筒先8が上方を向いている)には三方切替弁15のポー
トEとポートFとが繋がっているので作動管18を介して
作用室40へは加圧空気が送られてきておらずダイアフラ
ム39は第3A図の状態にあり、前回給油時の残油が残油収
納室41内に収納されている。
When the nozzle 7 is stored in the nozzle case 12 and waiting for refueling (the cylinder tip 8 faces upward), the port E and the port F of the three-way switching valve 15 are connected to each other, so that the working chamber is connected via the working pipe 18. No pressurized air is sent to 40, the diaphragm 39 is in the state shown in FIG. 3A, and the residual oil from the previous refueling is stored in the residual oil storage chamber 41.

ノズル7がノズルケース12から外されてノズル検知信号
bが消失すると計数回路47の前回計数値が帰零され同時
に油種判定回路48からは開弁信号fと切替信号hとが出
力される。
When the nozzle 7 is removed from the nozzle case 12 and the nozzle detection signal b disappears, the previous count value of the counting circuit 47 is reset to zero, and at the same time, the oil type determination circuit 48 outputs the valve opening signal f and the switching signal h.

開弁信号fの発生で遮断弁43が開かれて送気管16の加圧
空気がエジェクタ44を通過後油種センサー46へ送られ
る。
The shutoff valve 43 is opened by the generation of the valve opening signal f, and the pressurized air in the air supply pipe 16 is sent to the oil type sensor 46 after passing through the ejector 44.

一方、切替信号jの発生でそれまでポートAとポートB
とが繋がっていた三方切替弁45が切替わってポートAと
ポートCとが繋がり、ガス吸引管17の開口35を通しての
吸引が始まる。
On the other hand, when switching signal j is generated, port A and port B
The three-way switching valve 45 that was connected to and is switched so that port A and port C are connected and suction through the opening 35 of the gas suction pipe 17 begins.

吸引されたガスは三方切替弁45を通過後エジェクタ44で
遮断弁43の方向からくる加圧空気と混合希釈されて油種
センサー46へ送られる。
After passing through the three-way switching valve 45, the sucked gas is mixed and diluted with the pressurized air coming from the direction of the shutoff valve 43 by the ejector 44 and sent to the oil type sensor 46.

油種センサー46からはガスの種類に応じた油種信号dが
出力され油種判定回路48が油種間違い無と判定すると許
可信号eが発生されるが油種間違い有りと判定すると図
示しない報知が行なわれる。
An oil type signal d corresponding to the type of gas is output from the oil type sensor 46, and when the oil type determination circuit 48 determines that there is no error in the oil type, a permission signal e is generated, but if it is determined that there is an error in the oil type, a notification not shown is issued. Is performed.

許可信号eの発生でモーター2は付勢されて給油が開始
され、一方このモーター付勢と同時に弁制御回路50から
は切替信号jが出力されてそれまでポートEとポートF
とが連通状態にあった三方切替弁15が切替わってポート
EとポートDとを繋ぎ、作動管18を介して加圧空気を作
用室40へ送入する。
When the permission signal e is generated, the motor 2 is energized to start refueling, and at the same time when the motor is energized, the switching signal j is output from the valve control circuit 50, and the port E and the port F until then.
The three-way switching valve 15 that had been in communication with and is switched to connect the port E and the port D, and the pressurized air is sent into the working chamber 40 via the operation pipe 18.

すると第3B図に示したようにスプリング42の付勢に抗し
てダイアフラム39が残油収納室41の方向へ変位し、残油
収納室41内に収納されていた前回給油時の残油を通孔36
を介して排出させる。
Then, as shown in FIG. 3B, the diaphragm 39 is displaced in the direction of the residual oil storage chamber 41 against the bias of the spring 42, and the residual oil stored in the residual oil storage chamber 41 at the time of the previous refueling is removed. Through hole 36
To be discharged through.

そして給油が始まるとパルス発信器6から出力される流
量パルス信号aの数が計数回路47で計数され、その計数
値が給油量として表示器11で表示される。
When refueling starts, the number of flow rate pulse signals a output from the pulse transmitter 6 is counted by the counting circuit 47, and the counted value is displayed on the display 11 as the refueling amount.

給油が終了してノズル7をノズルケース12へ戻す(筒先
8が上方を向くように収納される)とノズル検知スイッ
チ13がノズル7を検知してノズル検知信号bが発生され
る。
When refueling is completed and the nozzle 7 is returned to the nozzle case 12 (the cylinder tip 8 is stored so as to face upward), the nozzle detection switch 13 detects the nozzle 7 and the nozzle detection signal b is generated.

ノズル検知信号bの発生を受けて開弁信号fの消失すな
わち遮断弁43の閉弁、付勢信号iの消失によるモーター
2の消勢と三方切替弁15の切替すなわちポートEとポー
トFとの連通が行なわれる。
In response to the generation of the nozzle detection signal b, the valve opening signal f disappears, that is, the shutoff valve 43 is closed, and the motor 2 is deenergized due to the disappearance of the energizing signal i, and the three-way switching valve 15 is switched, that is, the ports E and F. Communication is conducted.

ポートEとポートFとの連通によってそれまで作用室40
に作用していた加圧空気が断たれて作用室40が大気圧と
なるのでスプリング42の付勢力によってダイアフラム39
が作用室40の方向へ変位し弁機構25の直近下流側の残油
は通孔36を介して残油収納室41内へ吸引収納され次の給
油を待つことになる。
Due to the communication between port E and port F, the working chamber 40
Since the pressurized air acting on the working chamber 40 is cut off and the working chamber 40 becomes atmospheric pressure, the diaphragm 39 is urged by the spring 42.
Is displaced toward the working chamber 40, and the residual oil immediately downstream of the valve mechanism 25 is sucked and stored in the residual oil storage chamber 41 through the through hole 36 and waits for the next oil supply.

なお本実施例のようにノズル内に複数の弁機構がある場
合において先に請求項で示した弁機構とは最下流側の弁
機構を示すものである。
When there are a plurality of valve mechanisms in the nozzle as in the present embodiment, the valve mechanism described in the above claims refers to the valve mechanism on the most downstream side.

またこの第1の実施例の場合には第2図に示した通孔3
7,38は不要となる。
In the case of this first embodiment, the through hole 3 shown in FIG.
7,38 is no longer needed.

次に第2の実施例を第1図,第2図,第3A図,第3B図,
第7図,第8図,第10図をもとに説明を続けるが第1の
実施例と同一機能部分は同一記号を付してあらわし、重
複説明は省略する。
Next, a second embodiment is shown in FIG. 1, FIG. 2, FIG. 3A, FIG. 3B,
The description will be continued based on FIG. 7, FIG. 8 and FIG. 10, but the same functional parts as those in the first embodiment are designated by the same reference numerals, and the duplicate description will be omitted.

まず第1の実施例と第2の実施例との違いは前者が作用
室40へ独立した空気回路で加圧空気を送入しているのに
対して後者はガス吸引管17へ送入される加圧空気を利用
することにより独立した空気回路を省略している点にあ
り、他の機構に変わりはない。
First, the difference between the first embodiment and the second embodiment is that the former sends pressurized air to the working chamber 40 by an independent air circuit, whereas the latter sends to the gas suction pipe 17. There is no change in the other mechanism because the independent air circuit is omitted by using the pressurized air.

ノズル7をノズルケース12から外し、遮断弁43の開放と
三方切替弁45におけるポートAとポートCとの連通によ
ってガス吸引管17によるガスの吸引が行なわれると第7
図に示したようにガスはガス吸引管17,ポートA,ポート
C,分岐管51の順に流れてエジェクタ44を通過する加圧空
気と混合される。
When the nozzle 7 is removed from the nozzle case 12, and the gas is sucked by the gas suction pipe 17 by opening the shutoff valve 43 and communicating the ports A and C in the three-way switching valve 45, the seventh
As shown in the figure, the gas is the gas suction pipe 17, port A, port
C and the branch pipe 51 flow in this order and are mixed with the pressurized air passing through the ejector 44.

一方、作動管18を介して作用室40からも空気が吸引され
るが残油回収室41の容積を広げる方向に働くので特に問
題はない。
On the other hand, air is also sucked from the working chamber 40 via the actuating pipe 18, but there is no particular problem because it works in the direction of expanding the volume of the residual oil recovery chamber 41.

油種間違い無との判定が終わってモーター2が付勢さ
れ、同時に切替信号hの消失によって三方切替弁45のポ
ートAとポートBが繋がると加圧空気がポートB,ポート
A,ガス吸引管17へ流れてクリーニングを開始し、さらに
作動管18へも流入し、ダイアフラム39がスプリング42の
付勢に抗して変位され、残油収納室41内の残油が通孔36
から排出されることになる。
When it is judged that the oil type is correct, the motor 2 is energized, and at the same time, when the port A and the port B of the three-way switching valve 45 are connected due to the disappearance of the switching signal h, the pressurized air is supplied to the port B and the port.
A, cleaning is started by flowing to the gas suction pipe 17, further flowing into the actuation pipe 18, the diaphragm 39 is displaced against the bias of the spring 42, and the residual oil in the residual oil storage chamber 41 is passed through. 36
Will be discharged from.

そして給油が終了してノズル7がノズルケース12へ戻さ
れるとモーター2の消勢と同時に遮断弁43の閉止が行な
われるので作用室40への加圧空気の供給が無くなりスプ
リング42の付勢力でダイアフラム39が残油収納室41を広
げる方向に変位し、弁機構25の下流側に残った油を残油
収納室41へ吸引回収する。
When refueling is completed and the nozzle 7 is returned to the nozzle case 12, the shutoff valve 43 is closed at the same time as the motor 2 is deenergized, so that pressurized air is not supplied to the working chamber 40 and the spring 42 urges it. The diaphragm 39 is displaced in the direction of expanding the residual oil storage chamber 41, and the oil remaining on the downstream side of the valve mechanism 25 is sucked and collected in the residual oil storage chamber 41.

よって第2の実施例では第1図に示した通孔37,38の他
第8図に示した弁制御回路50と三方切替弁15とが不要と
なり、さらにガス吸引管17と作動管18とをノズル7にお
いて分岐させることにより第1の実施例よりも部品の点
数を減少させることができる。
Therefore, in the second embodiment, the valve control circuit 50 and the three-way switching valve 15 shown in FIG. 8 in addition to the through holes 37 and 38 shown in FIG. By branching out at the nozzle 7, the number of parts can be reduced as compared with the first embodiment.

続けて第3の実施例を説明すると、一方端が作用室40に
繋がった作動管18の他方端を通孔38に接続し、ダイアフ
ラム39を空気の圧力で変位させるようにするとモーター
2の回転時に作用室40の拡張すなわち残油の排出が、モ
ーター2の停止時に残油収納室41の拡張すなわち残油の
吸引回収が行なわれ第1,第2の実施例とまったく同様の
働きをさせることができる。
Continuing to explain the third embodiment, when the other end of the working tube 18 whose one end is connected to the working chamber 40 is connected to the through hole 38 and the diaphragm 39 is displaced by the pressure of air, the rotation of the motor 2 occurs. Sometimes the working chamber 40 is expanded, that is, the residual oil is discharged, and when the motor 2 is stopped, the residual oil storage chamber 41 is expanded, that is, the residual oil is sucked and recovered, and the same operation as in the first and second embodiments is performed. You can

なお、このとき通孔37は不要である。At this time, the through hole 37 is unnecessary.

また第1,第2,第3の実施例において給油に先立って筒先
8を下方へ向けたときに通孔36から残油収納室41内の油
が少し流出するが、これを阻止するためには通孔36を小
さくしたりあるいは通孔36に海綿状の耐油性スポンジを
設けておくことで足りる。
Further, in the first, second and third embodiments, when the cylinder tip 8 is directed downward prior to refueling, a little oil in the residual oil storage chamber 41 flows out from the through hole 36. It suffices to reduce the size of the through hole 36 or to provide a sponge-like oil-resistant sponge in the through hole 36.

また、第4A図に示したように残油収納室41内に弾力性を
有する耐油性スポンジ52を詰めておくと作用室へ加圧空
気あるいは油圧力が作用したとき第4B図に示した如くス
ポンジ52に吸収した残油を開孔36から排出させられるの
で前記の場合と同様の効果を得ることができるとともに
油の排出を完全に制御できる。
Further, as shown in FIG. 4A, when the residual oil storage chamber 41 is filled with the elastic oil resistant sponge 52, when pressurized air or oil pressure acts on the working chamber, as shown in FIG. 4B. Since the residual oil absorbed by the sponge 52 can be discharged from the opening 36, the same effect as the above case can be obtained and the discharge of oil can be completely controlled.

次に第2図,第5図をもとに第4の実施例を説明する
と、残油収納室41は単に通孔36と繋がった空の室で、給
油が終了してノズル7がノズルケース12に戻されること
により筒先8が上方を向くと弁機構25の下流直近の残油
が通孔36を介して残油収納室41へ自然流下で流入し、次
回給油時に筒先8を下方へ向けて給油口へセットしたと
き徐々に排出される。
Next, a fourth embodiment will be described with reference to FIGS. 2 and 5. The residual oil storage chamber 41 is an empty chamber simply connected to the through hole 36, and when the refueling is completed and the nozzle 7 is the nozzle case. When the cylinder tip 8 faces upward by being returned to 12, the residual oil immediately downstream of the valve mechanism 25 flows into the residual oil storage chamber 41 through the through hole 36 in a natural flow, and the cylinder tip 8 is directed downward at the next refueling. When it is set to the oil filler port, it is gradually discharged.

なおこの場合には残油収納室41の空気抜として通孔37を
設けると効果的であり、一方通孔38は不要となる。
In this case, it is effective to provide the through hole 37 as a vent for the residual oil storage chamber 41, and the one through hole 38 is unnecessary.

(ホ)効果 以上詳述したように残油収納室を設け、弁機構の筒先側
直近からノズルの姿勢による自然流入出あるいは強制手
段により残油の回収,排出をさせるようにしたので、ノ
ズルの筒先を下方へ向けたとき残油が一気に排出されて
車の汚損や引火事故さらにはコンタミプルーフの誤判断
の原因になる恐れがなくなり安心して使用できる給油ノ
ズルが得られる。
(E) Effect As described in detail above, the residual oil storage chamber is provided, and the residual oil is collected and discharged from the vicinity of the cylinder tip side of the valve mechanism by natural inflow and outflow by the posture of the nozzle or by the forced means. When the cylinder tip is directed downward, the residual oil is discharged at once, and there is no risk of causing vehicle stains, fire accidents, or erroneous determination of the contamination proof, and a refueling nozzle that can be used with confidence can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は給油装置の構成を示す図、第2図は給油ノズル
の構造をしめす図、第3A図,第4A図,第5図はそれぞれ
異なる実施例の給油ノズルを上方から見た図、第3B図は
第3A図の異なる状態を,第4B図は第4A図の異なる状態を
示す図、第6図は第1の実施例における空気回路を示す
図、第7図は第2の実施例における空気回路を示す図、
第8図は給油装置の電気回路を示す図、第9図は第1の
実施例の動作フローを第10図は第2の実施例の動作フロ
ーを示す図である。 1……ポンプ、2……モーター、5……流量計 6……パルス発信器、7……給油ノズル、8……筒先 10……制御部、13……ノズル検知スイッチ 15,45……三方切替弁、17……ガス吸引管 18……作動管、21……主弁、22……副弁 23,25……弁機構、24……負圧発生弁 36,37,38……通孔、39……ダイアフラム 40……作用室、41……残油収納室、43……遮断弁 44……エジェクタ、46……センサー、52……スポンジ
FIG. 1 is a diagram showing the structure of a fueling device, FIG. 2 is a diagram showing the structure of a fueling nozzle, and FIGS. 3A, 4A, and 5 are views of the fueling nozzles of different embodiments as seen from above, FIG. 3B shows a different state of FIG. 3A, FIG. 4B shows a different state of FIG. 4A, FIG. 6 shows an air circuit in the first embodiment, and FIG. 7 shows a second embodiment. Figure showing the air circuit in the example,
FIG. 8 is a diagram showing an electric circuit of the oil supply apparatus, FIG. 9 is an operation flow of the first embodiment, and FIG. 10 is an operation flow of the second embodiment. 1 ... Pump, 2 ... Motor, 5 ... Flowmeter 6 ... Pulse transmitter, 7 ... Oil supply nozzle, 8 ... Cylinder tip 10 ... Control section, 13 ... Nozzle detection switch 15,45 ... Three-way Switching valve, 17 …… Gas suction pipe 18 …… Operating pipe, 21 …… Main valve, 22 …… Sub valve 23,25 …… Valve mechanism, 24 …… Negative pressure generation valve 36, 37, 38 …… Through hole , 39 …… diaphragm 40 …… working chamber, 41 …… residual oil storage chamber, 43 …… shut-off valve 44 …… ejector, 46 …… sensor, 52 …… sponge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】本体内を貫流する流路と、この流路が開閉
される弁機構と、下流端に筒先を備え、ホースを介して
送油装置に接続された給液ノズルにおいて、前記弁機構
直近の筒先側流路に繋がる残油収納室を設けたことを特
徴とする給油ノズル。
1. A liquid supply nozzle comprising a flow passage that flows through a main body, a valve mechanism that opens and closes the flow passage, a tip of a cylinder at a downstream end, and is connected to an oil feeding device via a hose. A refueling nozzle characterized in that a residual oil storage chamber is provided which is connected to the flow path on the cylinder tip side in the immediate vicinity of the mechanism.
JP17743589A 1989-07-10 1989-07-10 Refueling nozzle Expired - Fee Related JPH0678118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17743589A JPH0678118B2 (en) 1989-07-10 1989-07-10 Refueling nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17743589A JPH0678118B2 (en) 1989-07-10 1989-07-10 Refueling nozzle

Publications (2)

Publication Number Publication Date
JPH0343400A JPH0343400A (en) 1991-02-25
JPH0678118B2 true JPH0678118B2 (en) 1994-10-05

Family

ID=16030896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17743589A Expired - Fee Related JPH0678118B2 (en) 1989-07-10 1989-07-10 Refueling nozzle

Country Status (1)

Country Link
JP (1) JPH0678118B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846339B2 (en) * 2004-10-26 2011-12-28 ダイセン・メンブレン・システムズ株式会社 Air diffuser and diffuser system
JP4716805B2 (en) * 2005-06-23 2011-07-06 三菱電線工業株式会社 Porous membrane material and diffuser
JP2007117871A (en) * 2005-10-27 2007-05-17 Mitsubishi Cable Ind Ltd Porous membrane material and air diffuser

Also Published As

Publication number Publication date
JPH0343400A (en) 1991-02-25

Similar Documents

Publication Publication Date Title
KR970004745B1 (en) Liquid delivery apparatus
JP2010030622A (en) Vapor recovery system
JPH0678118B2 (en) Refueling nozzle
JPH0723186B2 (en) Refueling device with gas sensor and oil type determination method in refueling device with gas sensor
JPH0223438B2 (en)
JPH0551098A (en) Oil feeding system
JPH0114114B2 (en)
JPH0369442A (en) Oil feeder with residual oil recovery device
JP4826811B2 (en) Lubrication device
JPH0443518Y2 (en)
JPS6241959B2 (en)
JPS63640Y2 (en)
JP3019115B2 (en) Refueling device
JP3387640B2 (en) Refueling device
JP2931045B2 (en) Refueling device with oil type discrimination function
SU848389A1 (en) Filling system
JPH044240B2 (en)
JPH02205597A (en) Oil feed apparatus with residual oil discharge means
JP3262129B2 (en) Refueling device
JPH06559B2 (en) Liquid supply device
JPS6154676B2 (en)
JP3099888B2 (en) Oiling nozzle in oiling device with oil type discrimination sensor
JPH0764396B2 (en) Liquid supply device
JPH09249299A (en) Refueling nozzle
JPS6215437B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees