JPH0677527A - Si light emitting element and its manufacture - Google Patents

Si light emitting element and its manufacture

Info

Publication number
JPH0677527A
JPH0677527A JP23016092A JP23016092A JPH0677527A JP H0677527 A JPH0677527 A JP H0677527A JP 23016092 A JP23016092 A JP 23016092A JP 23016092 A JP23016092 A JP 23016092A JP H0677527 A JPH0677527 A JP H0677527A
Authority
JP
Japan
Prior art keywords
layer
porous
conductive polymer
type
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23016092A
Other languages
Japanese (ja)
Other versions
JP3140573B2 (en
Inventor
Masao Yamada
雅雄 山田
Jiei Korinzu Jiyooji
ジェイ コリンズ ジョージ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23016092A priority Critical patent/JP3140573B2/en
Priority to US08/053,562 priority patent/US5331180A/en
Priority to US08/179,038 priority patent/US5427977A/en
Publication of JPH0677527A publication Critical patent/JPH0677527A/en
Application granted granted Critical
Publication of JP3140573B2 publication Critical patent/JP3140573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To realize a new Si light emitting element capable of electric light emission wherein fragility is reinforced, by constituting a quantum wire type porous Si layer, a conductive polymer layer forming a PN junction with the porous Si layer, and electrodes corresponding with them. CONSTITUTION:On the single surface of an insulative substrate 5, an ITO film or a thin gold film as an electrode 3 for an Si layer is formed, a B-doped P-type poly Si layer 6 is deposited on the film and dipped in hydrofluoric acid, and anodic oxidation is performed, thereby forming a quantum-sized porous Si layer 1 in the surface layer region of the poly Si layer 6. On the layer 1, a conductive polymer layer 2 having N-type conductivity is deposited, thereon an ITO film as an electrode 4 for a polymer layer is formed by sputtering, an etching mask 7 is formed, the ITO is sputtered and etched, and the conductive polymer layer 2 is subjected to ashing. Hence the ITO being the electrode 3 for the Si layer is exposed, ohmic contacts 8, 8' of metal are formed for the electrodes 3, 4, and an Si light emitting element can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光素子に関し、特に発
光が可能なヘテロダイオード型Si発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device, and more particularly to a hetero diode type Si light emitting device capable of emitting light.

【0002】近年、Siの寸法を微小化して量子効果を
生じさせることにより、可視領域発光を得る試みが行な
われている。
In recent years, attempts have been made to obtain visible light emission by reducing the size of Si to generate a quantum effect.

【0003】[0003]

【従来の技術】Siは近赤外光に相当する間接遷移型バ
ンドギャップを有し、従来、発光は困難であろうと考え
られ、発光素子への応用は見捨てられていた。しかし、
Siにおいても、そのサイズを量子効果が発現する程度
(数十〜百Å)に微小化すると、バンド構造が変化する
ことが見いだされた。
2. Description of the Related Art Si has an indirect transition type bandgap corresponding to near-infrared light, and it has been conventionally thought that it would be difficult to emit light, and its application to a light emitting element has been abandoned. But,
Also in Si, it was found that the band structure changes when the size is miniaturized to the extent that the quantum effect is exhibited (tens to hundreds of liters).

【0004】バンド構造は擬似的に直接遷移型となり、
サブバンド形成と共にバンドギャップエネルギの実効的
増大 ΔEg=h2 {(1/4m* e 2 )+(1/4m* h 2 )} (ここに、hはプランク定数、dは量子サイズ径)が見
られる。
The band structure becomes a pseudo direct transition type,
Subband of the band gap energy with the formation effectively increases ΔEg = h 2 {(1 / 4m * e d 2) + (1 / 4m * h d 2)} ( here, h is Planck's constant, d is the quantum size diameter ) Can be seen.

【0005】Siの発光が電気的手段で達成されれば、
Si基板を用いた光電子集積回路やディスプレイが実現
できる。量子サイズの細線を含むポーラスSiは、弗酸
水溶液中でのSiの陽極酸化過程で比較的簡単に、しか
も大面積に亘って形成できる。したがって、低コストな
表示素子への応用が期待される。
If the light emission of Si is achieved by electrical means,
Optoelectronic integrated circuits and displays using Si substrates can be realized. Porous Si containing quantum-size thin wires can be formed relatively easily over a large area in the process of anodizing Si in a hydrofluoric acid aqueous solution. Therefore, application to low-cost display devices is expected.

【0006】[0006]

【発明が解決しようとする課題】量子細線状のポーラス
Siは、発光の可能性を有しているが、電気的発光装置
としての具体的構成は未だ知られていない。また、量子
細線状のSi領域は脆弱である。ポーラスSiは、直径
数十Å程度の曲折した柱状Siが互いに空間的に分離し
た集合体である。このため、機械的強度が著しく弱い。
Although the quantum wire-like porous Si has a possibility of emitting light, its specific constitution as an electroluminescent device has not been known yet. Also, the quantum wire-shaped Si region is fragile. Porous Si is an assembly in which bent columnar Si having a diameter of several tens of liters is spatially separated from each other. Therefore, the mechanical strength is extremely weak.

【0007】本発明の目的は、電気的にポーラスSi、
すなわちSi量子細線束を発光させることができ、かつ
その脆弱さを補強した新規なSi発光素子およびその製
造方法を提供することである。
An object of the present invention is to electrically porous Si,
That is, it is an object of the present invention to provide a novel Si light emitting device capable of emitting light from a Si quantum wire bundle and reinforcing its fragility, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明のSi発光素子
は、p型導電性を有する量子細線状のポーラスSi層
と、n型導電性を有し、前記ポーラスSi層とpn接合
を形成する導電性ポリマー層と、前記ポーラスSi層、
導電性ポリマー層のそれぞれに対する電極とを有する。
The Si light emitting device of the present invention has a quantum wire-like porous Si layer having p-type conductivity and an n-type conductivity, and forms a pn junction with the porous Si layer. A conductive polymer layer and the porous Si layer,
An electrode for each of the conductive polymer layers.

【0009】導電性ポリマーは、ポリピロール誘導体、
ポリアセチレン誘導体ないしポリアニリン誘導体で形成
することが好ましい。また、導電性ポリマー層は、ポー
ラスSi層上に、電気化学的成膜法または蒸気成膜法で
積層することが好ましい。
The conductive polymer is a polypyrrole derivative,
It is preferably formed of a polyacetylene derivative or a polyaniline derivative. The conductive polymer layer is preferably laminated on the porous Si layer by an electrochemical film forming method or a vapor film forming method.

【0010】[0010]

【作用】p型ポーラスSi層とn型の導電性ポリマー層
を接合し、それぞれの電極を通して順方向あるいは逆方
向にバイアス電圧を印加すると、電子がポーラスSi層
に注入されて再結合発光する。発光波長は量子細線径に
依存する。
When the p-type porous Si layer and the n-type conductive polymer layer are joined and a bias voltage is applied in the forward direction or the reverse direction through the respective electrodes, electrons are injected into the porous Si layer and recombination light emission occurs. The emission wavelength depends on the quantum wire diameter.

【0011】ポーラスSi層に接合した導電性ポリマー
層は、脆弱な量子細線束を補強する役割も果たす。以
下、本発明を実施例に基づいてより詳しく述べる。
The conductive polymer layer bonded to the porous Si layer also serves to reinforce the fragile quantum wire bundle. Hereinafter, the present invention will be described in more detail based on examples.

【0012】[0012]

【実施例】図1は、実施例によるSi発光素子の製造工
程の主要部を示す断面図である。図1(A)に示すよう
に、透明石英で形成された絶縁物基板5の片面にSi層
用電極3としてITO膜または極めて薄い金膜を形成す
る。この上に、Bドープのp型ポリSi層6を堆積す
る。
EXAMPLE FIG. 1 is a sectional view showing a main part of a manufacturing process of a Si light emitting device according to an example. As shown in FIG. 1A, an ITO film or an extremely thin gold film is formed as a Si layer electrode 3 on one surface of an insulating substrate 5 made of transparent quartz. On top of this, a B-doped p-type poly-Si layer 6 is deposited.

【0013】たとえば、Siソースとして水素希釈のシ
ランガス、p型ドーパントとしてジボランを用い、プラ
ズマCVDにより厚さ数千Åから数μm、キャリア濃度
7×1017cm-3のp型ポリSi層を成膜する。
For example, a silane gas diluted with hydrogen is used as a Si source, and diborane is used as a p-type dopant, and a p-type poly-Si layer having a thickness of several thousand Å to several μm and a carrier concentration of 7 × 10 17 cm -3 is formed by plasma CVD. To film.

【0014】次に、図2(A)に示すように、弗酸水溶
液(HF10〜48重量%)中にポリSi層6を浸漬
し、直流バイアス電源EB の陽極に接続し、対向して浸
漬した白金等の参照電極を直流バイアス電源EB の陰極
に接続する。
Next, as shown in FIG. 2A, the poly-Si layer 6 is dipped in an aqueous solution of hydrofluoric acid (HF 10 to 48% by weight), connected to the anode of the DC bias power source E B , and opposed to each other. The immersed reference electrode such as platinum is connected to the cathode of the DC bias power source E B.

【0015】電流密度10〜70mA/cm2 で直流通
電を行い、陽極酸化を行い、ポリSi層6表面よりポー
ラスSi領域1を形成する。ポリSiのポーラス化は、
一旦表面が穿孔されるはじめると、その屈曲面に電界が
集中するので、深さ方向に優先的に陽極酸化が進行す
る。時間の経過と共に、孔径はあまり広がらないが、深
く穿孔される。
Direct current is applied at a current density of 10 to 70 mA / cm 2 and anodic oxidation is performed to form a porous Si region 1 from the surface of the poly Si layer 6. The porosity of poly-Si is
Once the surface starts to be perforated, the electric field concentrates on the bent surface, so that anodic oxidation preferentially proceeds in the depth direction. With the passage of time, the hole diameter does not expand so much, but deep holes are drilled.

【0016】陽極酸化反応には、正孔の存在が必要であ
る。孔底部と較べ、孔側壁面は平坦なため電界が弱く、
その表面に空乏層が広がっているため、正孔の供給が少
ない。正孔は曲率半径が小さく、電界の集中する孔底部
で優先的に生じる。このため、陽極酸化は深さ方向に優
先的に進む。酸化膜は直ちに弗酸水溶液に溶解する。
The presence of holes is necessary for the anodizing reaction. Compared to the bottom of the hole, the side wall surface of the hole is flat, so the electric field is weak,
Since the depletion layer spreads on the surface, the supply of holes is small. Holes have a small radius of curvature and are preferentially generated at the bottom of the hole where the electric field is concentrated. Therefore, anodic oxidation preferentially proceeds in the depth direction. The oxide film is immediately dissolved in the hydrofluoric acid solution.

【0017】しかし、エッチングに伴うボイドの発生等
で穿孔は、必ずしも表面から垂直には進行しない。むし
ろ、図2(B)の拡大図に示すように、曲折しながら深
くなる。
However, perforations do not always proceed vertically from the surface due to the generation of voids and the like due to etching. Rather, as shown in the enlarged view of FIG. 2B, it becomes deeper while bending.

【0018】したがって、穿孔径はエッチング時間のみ
でなく、HF水溶液濃度や温度によっても決まる。穿孔
率が50%を越えると、図示したように互いに空孔11
によって分離されたSi量子細線10が形成される。S
i量子細線径は40〜50Åにすることができる。
Therefore, the perforation diameter is determined not only by the etching time but also by the HF aqueous solution concentration and temperature. When the perforation rate exceeds 50%, holes 11 are formed as shown in the figure.
The Si quantum wires 10 separated by are formed. S
The i quantum wire diameter can be 40 to 50 Å.

【0019】このようにして、HF水溶液に浸漬したポ
リSi層6の表層領域に量子サイズのポーラスSi層1
が形成される。なお、p型ポリ層6の代わりに、アクセ
プタをドープしたp型非晶質Si層を用いることもでき
る。本明細書において、特に断らない限り、「ポリS
i」は「非晶質Si」を含むものとする。
In this way, the quantum-sized porous Si layer 1 is formed in the surface layer region of the poly-Si layer 6 dipped in the HF aqueous solution.
Is formed. Instead of the p-type poly layer 6, an acceptor-doped p-type amorphous Si layer may be used. In the present specification, unless otherwise specified, "poly S
“I” includes “amorphous Si”.

【0020】図1(B)に示すように、ポーラスSi層
1の上に、n型導電性を有する導電性ポリマー層2を堆
積する。たとえば、ポリビニルアルコール(PVA)と
三塩化鉄(FeCl3 )を水またはエチルアルコールに
溶解させ、これをスピンコート法によってSi層表面に
塗布し、乾燥、熱処理によって重合させる。ここで、F
eCl3 は重合の酸化(促進)剤である。
As shown in FIG. 1B, a conductive polymer layer 2 having n-type conductivity is deposited on the porous Si layer 1. For example, polyvinyl alcohol (PVA) and iron trichloride (FeCl 3 ) are dissolved in water or ethyl alcohol, and this is applied to the surface of the Si layer by spin coating, dried and heat-treated to polymerize. Where F
eCl 3 is a polymerization oxidizer (promoter).

【0021】次に、−15℃に冷却し、ポリビニルアル
コール膜をピロールと水蒸気に曝すと、ポリピロール誘
導体膜(ポリピロール−ポリビニルアルコール複合膜)
が得られる。このような蒸気成膜法により、n型導電性
を有する導電性ポリマー層2が形成される。
Next, when the polyvinyl alcohol film was cooled to -15 ° C. and exposed to pyrrole and water vapor, a polypyrrole derivative film (polypyrrole-polyvinyl alcohol composite film) was obtained.
Is obtained. By such a vapor deposition method, the conductive polymer layer 2 having n-type conductivity is formed.

【0022】導電ポリマー層2は、蒸気成膜法以外で形
成してもよい。たとえば、PVA、ピロール、FeCl
3 の混合物を水またはエチルアルコールに溶解して塗
布、乾燥、熱処理してポリピロール−ポリビニルアルコ
ール複合膜を形成する重合法、あるいはPVA、ピロー
ル、FeCl3 の混合溶液中にポリSi層を直接浸漬し
て電界で重合させつつ堆積する電気化学的成膜法等を用
いることができる。
The conductive polymer layer 2 may be formed by a method other than the vapor deposition method. For example, PVA, pyrrole, FeCl
Polymerization method in which the mixture of 3 is dissolved in water or ethyl alcohol, coated, dried, and heat-treated to form a polypyrrole-polyvinyl alcohol composite film, or the polySi layer is directly immersed in a mixed solution of PVA, pyrrole, and FeCl 3. It is possible to use an electrochemical film forming method or the like in which the film is deposited while being polymerized by an electric field.

【0023】これら導電性ポリマー層形成方法の詳細
は、たとえば以下の論文を参照されたい(T.Ojio and
S.Miyata, Polymer Journal, 18,95(1986), Y.E.Whang,
J.H.Han, T.Motobe, T.Watanabe and S.Miyata, Synth
etic Metals, 45,151(1991), J.H.Han, T.Motobe, Y.E.
Whang and S.Miyata, Synthetic Metals, 45,261(199
1))。
For details of these conductive polymer layer forming methods, see, for example, the following paper (T. Ojio and
S. Miyata, Polymer Journal, 18 , 95 (1986), YEWhang,
JHHan, T. Motobe, T. Watanabe and S. Miyata, Synth
etic Metals, 45 , 151 (1991), JHHan, T.Motobe, YE
Whang and S. Miyata, Synthetic Metals, 45 , 261 (199
1)).

【0024】図1(C)に示すように、n型の導電性ポ
リマー層2上に、ポリマー層用の電極4としてITO膜
をスパッタ成膜する。ポリマー層用電極4の上にホトレ
ジスト膜を塗布し、露光、現像してホトレジストのエッ
チングマスク7を形成する。
As shown in FIG. 1C, an ITO film is sputter-deposited as an electrode 4 for the polymer layer on the n-type conductive polymer layer 2. A photoresist film is applied on the polymer layer electrode 4, exposed and developed to form a photoresist etching mask 7.

【0025】図1(D)に示すように、このマスク7を
用いて、まずポリマー層用電極4であるITOをスパッ
タエッチングし、次に酸素プラズマ中で導電性ポリマー
層2をアッシングする。
As shown in FIG. 1D, using this mask 7, ITO, which is the polymer layer electrode 4, is first sputter-etched, and then the conductive polymer layer 2 is ashed in oxygen plasma.

【0026】さらに、塩素系ないし弗酸系のガスプラズ
マ中でポリSi層6をエッチングする。エッチングされ
た領域には、Si層用電極3であるITOが露出する。
その後、エッチングマスクは除去する。
Further, the poly-Si layer 6 is etched in a chlorine or hydrofluoric acid gas plasma. The ITO that is the Si layer electrode 3 is exposed in the etched region.
After that, the etching mask is removed.

【0027】その後、ITOからなる電極3、4に対し
て、Al等の金属によるオーミックコンタクト8、8′
を形成すれば、Si発光素子が完成する。導電性ポリマ
ー層2は、Si量子細線の少なくとも頂頭部と結合し、
脆弱なポーラスSi層1の機械的強度を補強する。特
に、電界重合成膜法の場合、導電性ポリマー層2は、電
界によって空孔11上部にまで侵入するので、より好ま
しいといえる。
After that, ohmic contacts 8 and 8'of a metal such as Al are made to the electrodes 3 and 4 made of ITO.
Is formed, the Si light emitting element is completed. The conductive polymer layer 2 is bonded to at least the top of the Si quantum wire,
Reinforce the mechanical strength of the brittle porous Si layer 1. In particular, in the case of the electric field polymerization film formation method, the conductive polymer layer 2 can be said to be more preferable because it penetrates into the upper portion of the pores 11 by the electric field.

【0028】上述の製造工程は、大面積化が容易であ
る。たとえば、X−Yマトリクス方式のディスプレイを
作成することができる。図3は、透明な絶縁物基板上に
多数のSi発光素子Zijが互いに分離され、マトリク
ス状に配置された表示装置を示す。図3(A)は平面
図、図3(B)は画素部の拡大斜視図である。
The above manufacturing process is easy to increase the area. For example, an XY matrix type display can be created. FIG. 3 shows a display device in which a large number of Si light emitting devices Zij are separated from each other on a transparent insulating substrate and arranged in a matrix. FIG. 3A is a plan view and FIG. 3B is an enlarged perspective view of a pixel portion.

【0029】基板20上にストライプ状のSi層用電極
(下層透明電極)YjがY方向に形成され、その上にp
型ポーラスSi層とn型導電性ポリマー層で構成された
発光素子Zijが形成され、その上に導電性ポリマー層
用電極(上層金属電極)Xijが形成されている。な
お、上層金属電極形成前に平坦化処理を行なってもよい
ことは当業者に自明であろう。
A stripe-shaped Si layer electrode (lower transparent electrode) Yj is formed on the substrate 20 in the Y direction, and p is formed thereon.
A light emitting device Zij composed of a type porous Si layer and an n-type conductive polymer layer is formed, and a conductive polymer layer electrode (upper metal electrode) Xij is formed thereon. It will be apparent to those skilled in the art that the planarization treatment may be performed before forming the upper metal electrode.

【0030】Si発光素子からの輻射光は、下方の透明
基板側から放射されるので、ストライプ状電極Yjは透
明でなければならないが、Xiは金属(不透明)でよ
い。高反射率金属を用いることにより、外部量子効率を
高めることもできる。なお、マトリクス状発光素子群の
うち、信号電圧が印加されたZijのみが発光する。な
お、各発光素子にさらにスイッチングトランジスタ等を
結合してもよい。
Since the radiated light from the Si light emitting element is emitted from the lower transparent substrate side, the striped electrode Yj must be transparent, but Xi may be a metal (opaque). External quantum efficiency can also be increased by using a high-reflectance metal. Of the matrix of light emitting elements, only Zij to which the signal voltage is applied emits light. A switching transistor or the like may be further coupled to each light emitting element.

【0031】これらSi発光素子は、順方向電圧なら5
V以上のバイアス条件下で、また逆方向電圧なら20V
程度のバイアス条件で発光する。発光強度は印加電圧
(したがって流れる電流)に依存するが、発光波長はS
i量子細線径に依存する。径が細いほど短波長光が発光
する。
These Si light emitting elements have a forward voltage of 5
20V for reverse voltage under bias condition of V or more
It emits light under a bias condition of a certain degree. The emission intensity depends on the applied voltage (and therefore the flowing current), but the emission wavelength is S
i depends on the quantum wire diameter. The smaller the diameter, the shorter the wavelength of light emitted.

【0032】裏面発光型に代え、表面発光型とすること
もできる。この場合は上側の電極を透明電極とする。ま
た、絶縁基板の代わりにSi単結晶基板を用い、p型S
i層も単結晶とすることもできる。
Instead of the backside light emitting type, it is also possible to use a surface light emitting type. In this case, the upper electrode is a transparent electrode. In addition, a Si single crystal substrate is used instead of the insulating substrate, and p-type S
The i layer can also be a single crystal.

【0033】導電性ポリマーは、上記実施例以外にも他
のポリピロール誘導体を用いても、あるいはポリアニリ
ン誘電体やポリアセチレン誘電体を用いてもよい。ただ
し、ポリアニリン系やポリアセチレン系は、酸素雰囲気
では耐久性に欠ける。
As the conductive polymer, other polypyrrole derivatives other than those in the above examples may be used, or a polyaniline dielectric or a polyacetylene dielectric may be used. However, the polyaniline type and the polyacetylene type lack durability in an oxygen atmosphere.

【0034】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。たとえば、
種々の変更、改良、組み合わせ等が可能なことは当業者
に自明であろう。
The present invention has been described above with reference to the embodiments.
The present invention is not limited to these. For example,
It will be apparent to those skilled in the art that various changes, improvements, combinations and the like can be made.

【0035】[0035]

【発明の効果】以上実施例を用いて説明したように、本
発明によれば、比較的容易に量子細線状のポーラスSi
を用い、その脆弱さを補強したSi発光素子を提供する
ことができる。
As described above with reference to the embodiments, according to the present invention, quantum wire-like porous Si can be relatively easily formed.
It is possible to provide a Si light-emitting element whose fragility is reinforced by using.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例によるSi発光素子の製造工程の主要部
を示す断面図である。
FIG. 1 is a cross-sectional view showing a main part of a manufacturing process of an Si light emitting device according to an example.

【図2】ポーラスSi層の形成方法およびポーラス領域
の概略構成を示す断面図である。
FIG. 2 is a cross-sectional view showing a method for forming a porous Si layer and a schematic configuration of a porous region.

【図3】X−Yマトリクス形表示装置を示す平面図およ
び概略斜視図である。
FIG. 3 is a plan view and a schematic perspective view showing an XY matrix type display device.

【符号の説明】[Explanation of symbols]

1 ポーラスSi層 2 導電性ポリマー層 3 Si層用電極 4 ポリマー層用電極 5 絶縁物基板 6 ポリSi層 7 エッチングマスク 8、8′ オーミックコンタクト 10 Si量子細線 11 空孔 20 基板 Zij Si発光素子 1 Porous Si Layer 2 Conductive Polymer Layer 3 Electrode for Si Layer 4 Electrode for Polymer Layer 5 Insulator Substrate 6 Poly Si Layer 7 Etching Mask 8, 8 ′ Ohmic Contact 10 Si Quantum Wire 11 Void 20 Substrate Zij Si Light-Emitting Element

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 p型導電性を有する量子細線状のポーラ
スSi層(1)と、 n型導電性を有し、前記ポーラスSi層とpn接合を形
成する導電性ポリマー層(2)と、 前記ポーラスSi層(1)、導電性ポリマー層(2)の
それぞれに対する電極(3)、(4)とを有するSi発
光素子。
1. A quantum wire-like porous Si layer (1) having p-type conductivity, a conductive polymer layer (2) having n-type conductivity and forming a pn junction with the porous Si layer, A Si light emitting device having electrodes (3) and (4) for the porous Si layer (1) and the conductive polymer layer (2), respectively.
【請求項2】 前記導電性ポリマー(2)がポリピロー
ル誘導体、ポリアセチレン誘導体ないしポリアニリン誘
導体である請求項1記載のSi発光素子。
2. The Si light emitting device according to claim 1, wherein the conductive polymer (2) is a polypyrrole derivative, a polyacetylene derivative or a polyaniline derivative.
【請求項3】 前記電極の一方(3)は絶縁基板(5)
上に形成され、前記ポーラスSi層(1)は、前記電極
の一方(3)上に形成されたp型ポリSi層(6)の表
面部に形成された請求項1ないし2記載のSi発光素
子。
3. One of the electrodes (3) is an insulating substrate (5).
The Si light emission according to claim 1 or 2, wherein the porous Si layer (1) is formed on the surface of a p-type poly-Si layer (6) formed on one of the electrodes (3). element.
【請求項4】 前記絶縁物基板(5)および前記電極の
一方(3)が、前記Si発光素子からの輻射光に対して
透明である請求項3記載のSi発光素子。
4. The Si light-emitting device according to claim 3, wherein the insulator substrate (5) and one of the electrodes (3) are transparent to radiated light from the Si light-emitting device.
【請求項5】 p型のSi層に量子細線状のポーラスS
i領域(1)を形成する工程と、 前記ポーラスSi領域(1)上にn型導電性ポリマー層
(2)を電気化学的成膜法または蒸気成膜法で積層する
工程とを含むSi発光素子の製造方法。
5. A quantum wire-shaped porous S on a p-type Si layer.
Si light emission including a step of forming an i region (1) and a step of stacking an n-type conductive polymer layer (2) on the porous Si region (1) by an electrochemical film forming method or a vapor film forming method. Device manufacturing method.
【請求項6】 前記p型のSi層がポリSi層(6)で
あり、ポーラスSi領域(1)を形成する工程が弗酸水
溶液中での陽極酸化によってポリSi層の表層に互いに
連絡する孔を形成することにより、量子細線状のSi領
域を形成する工程を含む請求項5記載のSi発光素子の
製造方法。
6. The p-type Si layer is a poly-Si layer (6), and the step of forming the porous Si region (1) communicates with the surface layer of the poly-Si layer by anodic oxidation in an aqueous solution of hydrofluoric acid. The method for manufacturing a Si light emitting device according to claim 5, further comprising the step of forming a quantum wire-shaped Si region by forming a hole.
JP23016092A 1992-04-30 1992-08-28 Si light emitting device and method of manufacturing the same Expired - Fee Related JP3140573B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23016092A JP3140573B2 (en) 1992-08-28 1992-08-28 Si light emitting device and method of manufacturing the same
US08/053,562 US5331180A (en) 1992-04-30 1993-04-28 Porous semiconductor light emitting device
US08/179,038 US5427977A (en) 1992-04-30 1994-01-06 Method for manufacturing porous semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23016092A JP3140573B2 (en) 1992-08-28 1992-08-28 Si light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0677527A true JPH0677527A (en) 1994-03-18
JP3140573B2 JP3140573B2 (en) 2001-03-05

Family

ID=16903543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23016092A Expired - Fee Related JP3140573B2 (en) 1992-04-30 1992-08-28 Si light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3140573B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505478A (en) * 2004-06-30 2008-02-21 ソウル オプト デバイス カンパニー リミテッド LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE USING THE SAME
US7439091B2 (en) 2006-03-17 2008-10-21 Epistar Corporation Light-emitting diode and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505478A (en) * 2004-06-30 2008-02-21 ソウル オプト デバイス カンパニー リミテッド LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE USING THE SAME
US7804098B2 (en) 2004-06-30 2010-09-28 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US7871839B2 (en) 2004-06-30 2011-01-18 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US7964880B2 (en) 2004-06-30 2011-06-21 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
JP4841550B2 (en) * 2004-06-30 2011-12-21 ソウル オプト デバイス カンパニー リミテッド LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE USING THE SAME
US8168988B2 (en) 2004-06-30 2012-05-01 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US8198643B2 (en) 2004-06-30 2012-06-12 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US8492775B2 (en) 2004-06-30 2013-07-23 Seoul Opto Device Co. Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US7439091B2 (en) 2006-03-17 2008-10-21 Epistar Corporation Light-emitting diode and method for manufacturing the same

Also Published As

Publication number Publication date
JP3140573B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US5427977A (en) Method for manufacturing porous semiconductor light emitting device
JP3281533B2 (en) Cold electron emission display device and semiconductor cold electron emission element
JP2002359398A (en) Light emitting element and display device applying the same
JP2002368258A (en) Light-emitting element and light-emitting device applied therewith
US6017811A (en) Method of making improved electrical contact to porous silicon
EP1793404A3 (en) Field emission-type electron source and manufacturing method thereof and display using the electron source
US6017773A (en) Stabilizing process for porous silicon and resulting light emitting device
KR100284519B1 (en) Light emitting device and manufacturing method thereof
JP2008130712A (en) Three terminal crystal silicon element
US20230157068A1 (en) Array substrate and manufacturing method thereof
JP3140573B2 (en) Si light emitting device and method of manufacturing the same
JPH0645644A (en) Si light-emitting device and its manufacture
JPH10269932A (en) Electron emission element
JPH05206514A (en) Light-emitting element
JP2001126610A (en) Electron emission device
JP3106569B2 (en) Light emitting element
JPH0690018A (en) Light emitting element and its manufacture
US20120146069A1 (en) Oxide Based LED BEOL Integration
KR20120118053A (en) Electronic device and method for manufacturing same
JPH0537013A (en) Injection type light emitting element and manufacture thereof
US6869814B2 (en) Silicon-based ultra-violet LED
JPH08274375A (en) Porous semiconductor light emitting element, and its manufacture
JP3539305B2 (en) Field emission type electron source and method of manufacturing the same
JPH0613653A (en) Si light emitting device and its manufacture
JPH0697499A (en) Light emitting element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001205

LAPS Cancellation because of no payment of annual fees