JPH05206514A - Light-emitting element - Google Patents

Light-emitting element

Info

Publication number
JPH05206514A
JPH05206514A JP3450792A JP3450792A JPH05206514A JP H05206514 A JPH05206514 A JP H05206514A JP 3450792 A JP3450792 A JP 3450792A JP 3450792 A JP3450792 A JP 3450792A JP H05206514 A JPH05206514 A JP H05206514A
Authority
JP
Japan
Prior art keywords
type
silicon
single crystal
light
porous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3450792A
Other languages
Japanese (ja)
Inventor
Shusuke Mimura
秀典 三村
Toshirou Futaki
登史郎 二木
Takahiro Matsumoto
貴裕 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3450792A priority Critical patent/JPH05206514A/en
Priority to US08/008,566 priority patent/US5285078A/en
Priority to DE4301940A priority patent/DE4301940A1/de
Publication of JPH05206514A publication Critical patent/JPH05206514A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a charge-injection type light-emitting element using a p-n junction, which can be used for optical communication, a self-light emission type display, a light source, an optical integrated circuit and the like using porous silicon. CONSTITUTION:In order to accomplish a charge-injection type light-emitting element in which p-n junction is used, it is necessary that holes are injected from a p-type semiconductor and electrons are injected from an n-type semiconductor into a light-emitting layer, and they are recoupled on the light-emitting layer. Therefore, porous silicon is formed on a p-type and n-type single crystal silicon substrate, and amorphous silicon carbon, containing fine crystal having the conductive type different from single crystal silicon, is deposited on the porous silicon. As a result, a charge-injection type light-emitting element, in which p-n junction is used, can be obtained for the first time using a silicon semiconductor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信、自発光型ディ
スプレイ、光源、光集積回路等に用いることのできる発
光素子、特にpn接合を用いた電荷注入型発光素子(L
ED)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device which can be used for optical communication, a self-luminous display, a light source, an optical integrated circuit, etc., and more particularly, a charge injection type light emitting device (L
ED).

【0002】[0002]

【従来の技術】シリコン半導体は間接遷移半導体である
ため発光素子の作製は実現不可能であると考えられてお
り、そのため従来pn接合を用いた発光素子はIII −V
属化合物半導体、II−VI属化合物半導体、およびIV−VI
属化合物半導体で作製されていた。しかし、シリコン半
導体は化合物半導体に比べ、資源が豊富、単結晶作製技
術が高く大面積のものを安価に供給できる。また、デバ
イス設計・作製技術が高く現状の化合物半導体では実現
することが難しい高集積度でかつ高信頼性のある論理、
演算、駆動、受光素子等を同一基板上に作り込める等の
利点により、シリコンを用いた発光素子、特に最終的に
はレーザへの応用が可能なpn接合を用いた電荷注入型
発光素子の実現が切望されていた。しかし、1990
年、L.T.Canhamにより単結晶シリコンを弗酸
溶液中で陽極化成した多孔質シリコンが室温で強いホト
ルミネッセンスを示すことが示された(Applied
Physics Letters 57,1990,
p.1046)。このことは、シリコンでも発光素子が
実現できる可能性があることを示しており、その後この
ホトルミネッセンスの発生メカニズムについて盛んに研
究が行われてた。しかしながら、多孔質シリコンと良好
なpn接合を形成し、LEDが作製可能な材料が見いだ
せなかったため、この多孔質シリコンを用いたpn接合
型の電荷注入型発光素子は実現されていなかった。
2. Description of the Related Art Since a silicon semiconductor is an indirect transition semiconductor, it is considered impossible to manufacture a light emitting device. Therefore, a conventional light emitting device using a pn junction is III-V.
Group II compound semiconductors, Group II-VI compound semiconductors, and IV-VI
It was made of a genus compound semiconductor. However, compared with compound semiconductors, silicon semiconductors have more resources, have a high single-crystal manufacturing technology, and can supply large-area ones at low cost. In addition, highly integrated and highly reliable logic, which is difficult to realize with current compound semiconductors with high device design and fabrication technology,
Realization of a light emitting element using silicon, and finally a charge injection type light emitting element using a pn junction that can be finally applied to a laser, due to advantages such as calculation, driving, and light receiving element can be formed on the same substrate. Was longed for. But 1990
Year, L. T. It was shown by Canham that porous silicon obtained by anodizing single crystal silicon in a hydrofluoric acid solution exhibits strong photoluminescence at room temperature (Applied).
Physics Letters 57, 1990,
p. 1046). This indicates that there is a possibility that a light emitting device can be realized by using silicon, and thereafter, active research has been conducted on the mechanism of this photoluminescence generation. However, since a good pn junction with porous silicon was formed and no material capable of producing an LED was found, a pn junction type charge injection type light emitting device using this porous silicon was not realized.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来皆無で
あったシリコンを用いた発光素子、特にpn接合を用い
て電荷を注入して発光させるLEDを実現することを目
的としたものである。
SUMMARY OF THE INVENTION It is an object of the present invention to realize a light emitting element using silicon, which has never existed in the past, and in particular, an LED which emits light by injecting charges using a pn junction. ..

【0004】[0004]

【課題を解決するための手段】本発明は、p型またはn
型単結晶シリコン基板上に形成された多孔質シリコンと
前記単結晶シリコンと異なる伝導型を持つ微結晶を含有
する非晶質シリコンカーボン膜からなるpn接合を用い
た電荷注入型発光素子である。
SUMMARY OF THE INVENTION The present invention is p-type or n-type.
A charge injection type light emitting device using a pn junction composed of an amorphous silicon carbon film containing porous silicon formed on a single crystal silicon substrate and microcrystals having a conductivity type different from that of the single crystal silicon.

【0005】[0005]

【作用】pn接合を用いた電荷注入型発光素子を実現す
るためには、発光層にp型半導体から正孔を注入し、か
つn型半導体から電子を注入し、発光層で再結合させる
ことが必要である。
In order to realize the charge injection type light emitting device using the pn junction, holes are injected from the p type semiconductor into the light emitting layer and electrons are injected from the n type semiconductor, and the light emitting layer is recombined. is necessary.

【0006】本発明者らはp型またはn型単結晶シリコ
ン基板(面方位(111)及び(100)、抵抗率0.
05〜50Ωcm)の上に発光層である多孔質シリコン
を陽極化成法(エチルアルコール:弗酸(48%の水溶
液)=0:1〜10:1の水溶液中で、陽極に単結晶シ
リコンをまた陰極に白金等の電極をつなぎ、1mA/c
2 〜200mA/cm2 の電流を流し単結晶シリコン
を加工する方法)で30秒〜10分間処理し、その後n
型またはp型半導体として広いバンドギャップ(2.0
〜2.4eV)と高い導電率(10-2〜101 S/c
m)を持つ微結晶を含有する非晶質シリコンカーボン膜
を多孔質シリコン上に堆積すると良好なpn接合が得ら
れることを見いだした。
The present inventors have found that p-type or n-type single crystal silicon substrates (plane orientations (111) and (100), resistivity 0.
Porous silicon, which is a light emitting layer, is formed on the positive electrode (05 to 50 Ωcm) by anodizing method (ethyl alcohol: hydrofluoric acid (48% aqueous solution) = 0: 1 to 10: 1 in an aqueous solution and monocrystalline silicon is applied to the anode. Connect an electrode such as platinum to the cathode, 1mA / c
m 2 to 200 mA / cm 2 current for 30 seconds to 10 minutes, and then n
Band gap (2.0
~ 2.4 eV) and high conductivity (10 -2 to 10 1 S / c)
It has been found that a good pn junction can be obtained by depositing an amorphous silicon carbon film containing microcrystals having m) on porous silicon.

【0007】LED発光するような良好なpn接合を作
製するためには多孔質シリコンの作製方法(基板の比抵
抗、陽極化成の方法等)はもちろんのこと、特に多孔質
シリコンと微結晶を含有する非晶質シリコンカーボン膜
の界面特性にダメージを与えないよう、微結晶を含有す
る非晶質シリコンカーボン膜の堆積条件を最適化するこ
とが非常に重要である。
In order to produce a good pn junction that emits light from an LED, not only the method for producing porous silicon (resistivity of the substrate, anodization method, etc.) but also particularly porous silicon and microcrystals are contained. It is very important to optimize the deposition conditions of the amorphous silicon carbon film containing microcrystals so as not to damage the interface characteristics of the amorphous silicon carbon film.

【0008】これらについて本発明者らは鋭意研究を行
った。その結果、p型単結晶シリコン基板を用いた場合
には、面方位(111)及び(100)または抵抗率
0.1〜40Ωcmのp型単結晶シリコンを用い、エチ
ルアルコール:弗酸(48%の水溶液)=0.1:1〜
5:1の水溶液中で電流密度5〜50mA/cm2 、陽
極化成時間1〜5分において多孔質シリコンを作製しさ
らにKOH溶液に3分間浸し多孔質シリコンの表面の不
純物層を取り除くことにより、p型単結晶シリコン基板
から多孔質シリコン層へ良好に正孔が注入でき、LED
が作製可能な多孔質シリコン層が作製できることを見い
だした。また、電子サイクロトロン共鳴プラズマCVD
法により、ガス圧0.01〜0.05Torr、基板温
度150〜350°C、投入電力200〜350W、S
iH4 :CH4 :PH3 :H2 =1:1:0.01:2
00〜1:3:0.01:200において微結晶を含有
する非晶質シリコンカーボン膜を作製することにより、
n型半導体である微結晶を含有する非晶質シリコンカー
ボン膜から多孔質シリコン上に電子が良好に注入できる
ような微結晶を含有する非晶質シリコンカーボン膜の堆
積条件を見いだした。その結果、pn接合を用いた電荷
注入型の発光素子が実現できたわけである。
The inventors of the present invention have conducted intensive studies on these. As a result, when a p-type single crystal silicon substrate was used, p-type single crystal silicon having plane orientations (111) and (100) or a resistivity of 0.1 to 40 Ωcm was used, and ethyl alcohol: hydrofluoric acid (48% Aqueous solution) = 0.1-1:
By making porous silicon in a 5: 1 aqueous solution at a current density of 5 to 50 mA / cm 2 and anodization time of 1 to 5 minutes and further immersing it in a KOH solution for 3 minutes to remove the impurity layer on the surface of the porous silicon, Holes can be satisfactorily injected from the p-type single crystal silicon substrate into the porous silicon layer,
It was found that a porous silicon layer that can be manufactured can be manufactured. Also, electron cyclotron resonance plasma CVD
Method, gas pressure 0.01 to 0.05 Torr, substrate temperature 150 to 350 ° C., input power 200 to 350 W, S
iH4: CH4: PH3: H2 = 1: 1: 0.01: 2
By forming an amorphous silicon carbon film containing fine crystals at 00: 1: 3: 0.01: 200,
The deposition conditions of the amorphous silicon carbon film containing the microcrystals which allows the electrons to be favorably injected onto the porous silicon from the amorphous silicon carbon film containing the microcrystals which are n-type semiconductors have been found. As a result, a charge injection type light emitting device using a pn junction was realized.

【0009】さらに、n型単結晶シリコン基板の場合
は、n型単結晶シリコン基板から多孔質シリコン層へ良
好に電子が注入できる多孔質シリコン層の作製条件は、
多孔質シリコンを作製する際、光を当てなければならな
いということを除いては、p型単結晶シリコン基板を用
いた場合と同じ条件であること、またp型半導体である
微結晶を含有する非晶質シリコンカーボン膜から多孔質
シリコン上に正孔が良好に注入できるような微結晶を含
有する非晶質シリコンカーボン膜の堆積条件は原料ガス
としてPH3 の代わりにB2 H6 を用いればn型の微結
晶を含有する非晶質シリコンカーボン膜の堆積条件と同
じであることを見いだした。
Further, in the case of the n-type single crystal silicon substrate, the conditions for producing the porous silicon layer from which the electrons can be favorably injected into the porous silicon layer from the n-type single crystal silicon substrate are:
When producing porous silicon, the same conditions are used as when a p-type single crystal silicon substrate is used, except that light must be applied, and non-crystal containing a p-type semiconductor is used. The deposition condition of the amorphous silicon carbon film containing fine crystals that allows holes to be well injected into the porous silicon from the amorphous silicon carbon film is n-type by using B2 H6 instead of PH3 as the source gas. It has been found that the deposition conditions for the amorphous silicon carbon film containing microcrystals are the same.

【0010】なお、上記に示したLEDが作製可能な条
件については、この範囲外ではなぜLEDが作製不可能
かその理由は不明な点が多い。しかし、現状分かってい
る理由について下記に記述すると、抵抗率に関しては、
40Ωcmを越えると基板の抵抗が高くなり、基板から
多孔質シリコンへ良好に電荷が注入されなくなるためで
ある。エチルアルコールと弗酸の比率については、エチ
ルアルコール:弗酸=0.1:1未満になると陽極化成
の際生じる泡のため、多孔質シリコンが均一にできない
ためである。電流密度については、50mA/cm2
越えると、除々にシリコンの電界研磨が起こり始めてく
るためである。また、電子サイクロトロン共鳴プラズマ
CVD法のガス圧については、0.01Torr未満で
はエッチング効果で下地の多孔質シリコンにダメージを
与えるためである。また、0.05Torrを越える
と、プラズマが安定せず微結晶を含有する非晶質シリコ
ンカーボンが作製不可能となるためである。基板温度に
ついては、150°C未満では微結晶を含有する非晶質
シリコンカーボンが作製不可能となり、また350°C
以上では多孔質シリコンの表面状態が変化し発光しなく
なるためである。
Regarding the conditions under which the above-mentioned LED can be manufactured, there are many unclear reasons why the LED cannot be manufactured outside this range. However, if you describe below the reason that is currently known, regarding the resistivity,
This is because if the resistance exceeds 40 Ωcm, the resistance of the substrate becomes high, and the electric charge cannot be well injected from the substrate to the porous silicon. With respect to the ratio of ethyl alcohol and hydrofluoric acid, if the ratio of ethyl alcohol: hydrofluoric acid is less than 0.1: 1, porous silicon cannot be made uniform because of bubbles generated during anodization. This is because when the current density exceeds 50 mA / cm 2 , silicon electropolishing gradually begins to occur. Further, when the gas pressure of the electron cyclotron resonance plasma CVD method is less than 0.01 Torr, the underlying porous silicon is damaged by the etching effect. Also, if it exceeds 0.05 Torr, the plasma is not stable and it becomes impossible to produce amorphous silicon carbon containing fine crystals. Regarding the substrate temperature, if the temperature is lower than 150 ° C, it becomes impossible to produce amorphous silicon carbon containing fine crystals, and the temperature is 350 ° C.
This is because the surface state of the porous silicon changes and light emission is stopped in the above.

【0011】なお、p型またはn型の微結晶を含有する
非晶質シリコンカーボン膜の代わりにp型またはn型の
非晶質シリコンカーボンを用いても原理的に発光素子は
実現できる。しかし、p型またはn型の非晶質シリコン
カーボンのバンドギャップと導電率はバンドギャップ
2.0eVの所で、導電率10-5S/cmと微結晶を含
有する非晶質シリコンカーボン膜に比べてバンドギャッ
プ、導電率共に低い値を示すため、発光輝度が低下する
と思われる。さらに、p型またはn型の微結晶を含有す
るシリコン、p型またはn型の非晶質シリコンを用いて
も原理的に発光素子は実現できる。しかし、微結晶を含
有する非晶質シリコン、非晶質シリコン共に微結晶を含
有する非晶質シリコンカーボンほどバンドギャップが広
い所で導電率を高くすることができないため当然発光輝
度は低下するものと考えられる。
In principle, a light emitting device can be realized by using p-type or n-type amorphous silicon carbon instead of the amorphous silicon carbon film containing p-type or n-type microcrystals. However, p-type or n-type amorphous silicon carbon has a bandgap and conductivity of 2.0 eV, and an amorphous silicon carbon film having a conductivity of 10 −5 S / cm and microcrystals is formed. Since the bandgap and the electrical conductivity are lower than those in the comparative example, it is considered that the emission luminance is lowered. Furthermore, in principle, a light emitting element can be realized by using silicon containing p-type or n-type microcrystals or p-type or n-type amorphous silicon. However, as compared with amorphous silicon containing microcrystals and amorphous silicon carbon containing microcrystals, it is not possible to increase the conductivity in a place where the band gap is wide, and thus the emission brightness is naturally lowered. it is conceivable that.

【0012】[0012]

【実施例】以下に本発明の実施例について、図1
(a),(b)、図2(a),(b)、図3、図4、図
5(a),(b)を参照して説明する。
EXAMPLE An example of the present invention will be described below with reference to FIG.
Description will be given with reference to (a), (b), FIG. 2 (a), (b), FIG. 3, FIG. 4, FIG. 5 (a), and (b).

【0013】実施例1 まず、p型単結晶シリコン基板を用いた場合である。図
1(a)はp型単結晶シリコン基板を用いた場合の本発
明の発光素子の構造図である。p型単結晶シリコン基板
((100)面、抵抗率3〜5Ωcm)の裏面にAuを
蒸着してオーミックコンタクトをとる。次に、多孔質化
したい部分を除いてワックスでマスクをし、図2(a)
に示すようにエチルアルコール:弗酸(48%の水溶
液)=1:1の溶液中に浸す。定電流電源を用い、その
陰極側に白金電極を付け、その陽極側に単結晶シリコン
基板を付ける。このようにして電流を30mA/cm2
に固定し約3分間陽極化成を行った。その後KOH溶液
に3分間浸し多孔質シリコンの表面の不純物層を取り除
いた。次に表面のワックスを有機溶剤で解かし、純水で
洗浄した後電子サイクロトロン共鳴プラズマCVD装置
に入れn型の微結晶を含有する非晶質シリコンカーボン
膜を150Å堆積した。堆積条件はガス圧0.05To
rr、投入電力300W、SiH4 :CH4 :PH3 :
H2 =1:2:0.01:200、基板温度300°C
である。次に電子ビーム蒸着装置を用い、透明電極であ
るインジウムティンオキサイド(ITO)を600Å堆
積した。
Example 1 First, a case of using a p-type single crystal silicon substrate. FIG. 1A is a structural diagram of a light emitting device of the present invention when a p-type single crystal silicon substrate is used. Au is deposited on the back surface of the p-type single crystal silicon substrate ((100) surface, resistivity 3 to 5 Ωcm) to make ohmic contact. Next, a mask is made with wax except for the portion to be made porous, and then, as shown in FIG.
Immerse in a solution of ethyl alcohol: hydrofluoric acid (48% aqueous solution) = 1: 1 as shown in FIG. Using a constant current power source, a platinum electrode is attached to the cathode side and a single crystal silicon substrate is attached to the anode side. In this way, the current is 30 mA / cm 2
It was fixed to and anodized for about 3 minutes. Then, it was immersed in a KOH solution for 3 minutes to remove the impurity layer on the surface of the porous silicon. Next, the wax on the surface was thawed with an organic solvent, washed with pure water, and then placed in an electron cyclotron resonance plasma CVD apparatus to deposit an amorphous silicon carbon film containing n-type microcrystals at 150 Å. Deposition conditions are gas pressure 0.05To
rr, input power 300 W, SiH4: CH4: PH3:
H2 = 1: 2: 0.01: 200, substrate temperature 300 ° C
Is. Next, using an electron beam evaporation apparatus, 600 liters of indium tin oxide (ITO), which is a transparent electrode, was deposited.

【0014】図3にこのようにして作成した素子の電圧
電流特性を示す。ITO側に負電圧を印加した場合が順
方向で、正電圧を印加した場合が逆方向と、良好な整流
特性が得られていることがわかる。このことより、p型
単結晶基板と多孔質シリコンとn型の微結晶を含有する
非晶質シリコンカーボンとの間で良好なpn接合が形成
され、p型単結晶基板から多孔質シリコンへ正孔がまた
n型の微結晶を含有する非晶質シリコンカーボンから電
子が良好に注入されていることがわかる。
FIG. 3 shows the voltage-current characteristics of the element thus produced. It can be seen that good rectification characteristics are obtained, in which the forward direction is obtained when a negative voltage is applied to the ITO side and the reverse direction is obtained when a positive voltage is applied. As a result, a good pn junction is formed between the p-type single crystal substrate and the porous silicon and the amorphous silicon carbon containing n-type microcrystals, and the p-type single crystal substrate is directly converted into porous silicon. It can be seen that the holes are also well injected with electrons from the amorphous silicon carbon containing n-type crystallites.

【0015】図5(a)にITO側に10Vの負電圧を
印加した場合における発光スペクトルを示す。発光波長
は約600〜800nmであった。
FIG. 5A shows an emission spectrum when a negative voltage of 10 V is applied to the ITO side. The emission wavelength was about 600 to 800 nm.

【0016】実施例2 次に、n型単結晶シリコン基板を用いた場合である。図
1(b)はn型単結晶シリコン基板を用いた場合の本発
明の発光素子の構造図である。n型単結晶シリコン基板
((100)面、抵抗率3〜5Ωcm)の裏面にAlを
蒸着してオーミックコンタクトをとる。次に、多孔質化
したい部分を除いてワックスでマスクをし、エチルアル
コール:弗酸(48%の水溶液)=1:1の溶液中に浸
す。定電流電源を用い、その陰極側に白金電極を付け、
その陽極側にn型シリコン基板を付ける。このようにし
て電流を30mA/cm2 に固定し約3分間陽極化成を
行った。この際、図2(b)に示すように、多孔質シリ
コンを形成する面にタングステンランプ光を照射し陽極
化成を行った。その後KOH溶液に3分間浸し多孔質シ
リコンの表面の不純物層を取り除いた。その後ワックス
を有機溶剤で落とし、純水で洗浄した後電子サイクロト
ロン共鳴プラズマCVD装置に入れp型の微結晶を含有
する非晶質シリコンカーボン膜を150Å堆積した。堆
積条件はガス圧0.05Torr、投入電力300W、
SiH4 :CH4 :B2 H6 :H2 =1:2:0.0
1:200、基板温度300°Cである。次に電子ビー
ム蒸着装置を用い、ITOを600Å堆積した。
Example 2 Next, a case where an n-type single crystal silicon substrate was used. FIG. 1B is a structural diagram of a light emitting device of the present invention when an n-type single crystal silicon substrate is used. Ohmic contact is made by evaporating Al on the back surface of the n-type single crystal silicon substrate ((100) surface, resistivity 3 to 5 Ωcm). Next, the portion to be made porous is masked with a wax and immersed in a solution of ethyl alcohol: hydrofluoric acid (48% aqueous solution) = 1: 1. Using a constant current power supply, attach a platinum electrode to the cathode side,
An n-type silicon substrate is attached to the anode side. In this way, the current was fixed at 30 mA / cm 2 and anodization was performed for about 3 minutes. At this time, as shown in FIG. 2 (b), the surface on which the porous silicon was formed was irradiated with a tungsten lamp light to perform anodization. Then, it was immersed in a KOH solution for 3 minutes to remove the impurity layer on the surface of the porous silicon. After that, the wax was removed with an organic solvent, washed with pure water, placed in an electron cyclotron resonance plasma CVD apparatus, and an amorphous silicon carbon film containing p-type microcrystals was deposited by 150 l. The deposition conditions are gas pressure of 0.05 Torr, input power of 300 W,
SiH4: CH4: B2 H6: H2 = 1: 2: 0.0
The temperature is 1: 200 and the substrate temperature is 300 ° C. Next, using an electron beam evaporation device, 600 liters of ITO was deposited.

【0017】図4にこのようにして作成した素子の電圧
電流特性を示す。ITO側に正電圧を印加した場合が順
方向で、負電圧を印加した場合が逆方向と、良好な整流
特性が得られていることがわかる。このことより、n型
単結晶基板と多孔質シリコンとp型の微結晶を含有する
非晶質シリコンカーボンとの間でも良好なpn接合が形
成され、n型単結晶基板から多孔質シリコンへ電子がま
たp型の微結晶を含有する非晶質シリコンカーボンから
正孔が良好に注入されていることがわかる。
FIG. 4 shows the voltage-current characteristics of the element thus produced. It can be seen that good rectification characteristics are obtained, in which the positive direction is applied to the ITO side and the reverse direction is applied when the negative voltage is applied. As a result, a good pn junction is formed between the n-type single crystal substrate and the porous silicon and the amorphous silicon carbon containing p-type microcrystals, and electrons are transferred from the n-type single crystal substrate to the porous silicon. It is also understood that holes are well injected from the amorphous silicon carbon containing p-type microcrystals.

【0018】図5(b)にITO側に10Vの正電圧を
印加した場合における発光スペクトルを示す。発光波長
は約500〜750nmであった。
FIG. 5B shows an emission spectrum when a positive voltage of 10 V is applied to the ITO side. The emission wavelength was about 500 to 750 nm.

【0019】[0019]

【発明の効果】本発明により従来実現されていなかった
多孔質シリコンを用いたpn接合型の電荷注入型発光素
子が実現できる様になった。また本発明のLEDは30
0°C以下の低温プロセスで作製可能なことより、論
理、演算、駆動、受光素子等を作製した後、素子部分を
ワックス等で覆い、本発明のLEDを作製すれば、論
理、演算、駆動、受光素子等を破壊することなくモノシ
リックに発光素子と論理、演算、駆動、受光素子等を作
り込みことができるため、非常に利点が多い。今後光通
信、自発光型ディスプレイ、光源、光集積回路等の分野
にもシリコンが進出してくるものと考えられる。
According to the present invention, a pn junction type charge injection type light emitting device using porous silicon, which has not been realized in the past, can be realized. The LED of the present invention is 30
Since it can be manufactured by a low temperature process of 0 ° C. or less, if the element of the present invention is covered with wax after manufacturing the logic, operation, drive, light receiving element, etc., the logic, operation, drive Since the light emitting element and the logic, operation, driving, light receiving element and the like can be monolithically incorporated without destroying the light receiving element and the like, there are many advantages. Silicon is expected to enter the fields of optical communication, self-luminous displays, light sources, optical integrated circuits, etc.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)はp型単結晶シリコン基板を用いた場合
の本発明の発光素子の構造図、(b)はn型単結晶シリ
コン基板を用いた場合の本発明の発光素子の構造図であ
る。
FIG. 1A is a structural diagram of a light emitting device of the present invention when a p-type single crystal silicon substrate is used, and FIG. 1B is a structure of a light emitting device of the present invention when an n-type single crystal silicon substrate is used. It is a figure.

【図2】(a)、(b)は陽極化成法を説明するための
図である。
2A and 2B are views for explaining the anodization method.

【図3】発光素子の電圧電流特性を示す図である。FIG. 3 is a diagram showing voltage-current characteristics of a light emitting element.

【図4】発光素子の電圧電流特性を示す図ある。FIG. 4 is a diagram showing voltage-current characteristics of a light emitting element.

【図5】(a)、(b)はITO側に10Vの正電圧を
印加した場合における発光スペクトルを示す図である。
5 (a) and 5 (b) are diagrams showing an emission spectrum when a positive voltage of 10 V is applied to the ITO side.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年5月19日[Submission date] May 19, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】これらについて本発明者らは鋭意研究を行
った。その結果、p型単結晶シリコン基板を用いた場合
には、面方位(111)及び(100)または抵抗率
0.1〜40Ωcmのp型単結晶シリコンを用い、エチ
ルアルコール:弗酸(48%の水溶液)=0.1:1〜
5:1の水溶液中で電流密度5〜50mA/cm2 、陽
極化成時間1〜5分において多孔質シリコンを作製しさ
らにKOH溶液に数秒間浸し多孔質シリコンの表面の不
純物層を取り除くことにより、p型単結晶シリコン基板
から多孔質シリコン層へ良好に正孔が注入でき、LED
が作製可能な多孔質シリコン層が作製できることを見い
だした。また、電子サイクロトロン共鳴プラズマCVD
法により、ガス圧0.001〜0.005Torr、基
板温度150〜350°C、投入電力200〜350
W、SiH4 :CH4 :PH3 :H2=1:1:0.0
1:200〜1:3:0.01:200において微結晶
を含有する非晶質シリコンカーボン膜を作製することに
より、n型半導体である微結晶を含有する非晶質シリコ
ンカーボン膜から多孔質シリコン上に電子が良好に注入
できるような微結晶を含有する非晶質シリコンカーボン
膜の堆積条件を見いだした。その結果、pn接合を用い
た電荷注入型の発光素子が実現できたわけである。
The inventors of the present invention have conducted intensive studies on these. As a result, when a p-type single crystal silicon substrate was used, p-type single crystal silicon having plane orientations (111) and (100) or a resistivity of 0.1 to 40 Ωcm was used, and ethyl alcohol: hydrofluoric acid (48% Aqueous solution) = 0.1-1:
By making porous silicon in a 5: 1 aqueous solution at a current density of 5 to 50 mA / cm 2 and anodization time of 1 to 5 minutes and further immersing it in a KOH solution for several seconds to remove the impurity layer on the surface of the porous silicon, Holes can be satisfactorily injected from the p-type single crystal silicon substrate into the porous silicon layer,
It was found that a porous silicon layer that can be manufactured can be manufactured. Also, electron cyclotron resonance plasma CVD
Method, gas pressure 0.001 to 0.005 Torr , substrate temperature 150 to 350 ° C., input power 200 to 350
W, SiH4: CH4: PH3: H2 = 1: 1: 0.0
By forming an amorphous silicon carbon film containing microcrystals at 1: 200 to 1: 3: 0.01: 200, the amorphous silicon carbon film containing microcrystals that is an n-type semiconductor is porous. The deposition conditions of an amorphous silicon carbon film containing fine crystals that enable good injection of electrons on silicon have been found. As a result, a charge injection type light emitting device using a pn junction was realized.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】なお、上記に示したLEDが作製可能な条
件については、この範囲外ではなぜLEDが作製不可能
かその理由は不明な点が多い。しかし、現状分かってい
る理由について下記に記述すると、抵抗率に関しては、
40Ωcmを越えると基板の抵抗が高くなり、基板から
多孔質シリコンへ良好に電荷が注入されなくなるためで
ある。エチルアルコールと弗酸の比率については、エチ
ルアルコール:弗酸=0.1:1未満になると陽極化成
の際生じる泡のため、多孔質シリコンが均一にできない
ためである。電流密度については、50mA/cm2
越えると、除々にシリコンの電界研磨が起こり始めてく
るためである。また、電子サイクロトロン共鳴プラズマ
CVD法のガス圧については、0.001Torr未満
ではエッチング効果で下地の多孔質シリコンにダメージ
を与えるためである。また、0.005Torrを越え
ると、プラズマが安定せず微結晶を含有する非晶質シリ
コンカーボンが作製不可能となるためである。基板温度
については、150°C未満では微結晶を含有する非晶
質シリコンカーボンが作製不可能となり、また350°
C以上では多孔質シリコンの表面状態が変化し発光しな
くなるためである。
Regarding the conditions under which the above-mentioned LED can be manufactured, there are many unclear reasons why the LED cannot be manufactured outside this range. However, if you describe below the reason that is currently known, regarding the resistivity,
This is because if the resistance exceeds 40 Ωcm, the resistance of the substrate becomes high, and the electric charge cannot be well injected from the substrate to the porous silicon. With respect to the ratio of ethyl alcohol and hydrofluoric acid, if the ratio of ethyl alcohol: hydrofluoric acid is less than 0.1: 1, porous silicon cannot be made uniform because of bubbles generated during anodization. This is because when the current density exceeds 50 mA / cm 2 , silicon electropolishing gradually begins to occur. Further, the gas pressure of the electron cyclotron resonance plasma CVD method is less than 0.001 Torr , because the underlying porous silicon is damaged by the etching effect. Also, if it exceeds 0.005 Torr , the plasma is not stabilized and it becomes impossible to produce amorphous silicon carbon containing fine crystals. Regarding the substrate temperature, if the temperature is lower than 150 ° C, it becomes impossible to produce amorphous silicon carbon containing fine crystals, and if the temperature is 350 ° C.
This is because if C or higher, the surface state of the porous silicon changes and no light is emitted.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】なお、p型またはn型の微結晶を含有する
非晶質シリコンカーボン膜の代わりにp型またはn型の
非晶質シリコンカーボンを用いても原理的に発光素子は
実現できる。しかし、p型またはn型の非晶質シリコン
カーボンのバンドギャップと導電率はバンドギャップ
2.0eVの所で、導電率10-5S/cmと微結晶を含
有する非晶質シリコンカーボン膜に比べてバンドギャッ
プ、導電率共に低い値を示すため、発光輝度が低下す
る。さらに、p型またはn型の微結晶を含有するシリコ
ン、p型またはn型の非晶質シリコンを用いても原理的
に発光素子は実現できる。しかし、微結晶を含有する非
晶質シリコン、非晶質シリコン共に微結晶を含有する非
晶質シリコンカーボンほどバンドギャップが広い所で導
電率を高くすることができないため当然発光輝度は低下
する。
In principle, a light emitting device can be realized by using p-type or n-type amorphous silicon carbon instead of the amorphous silicon carbon film containing p-type or n-type microcrystals. However, p-type or n-type amorphous silicon carbon has a bandgap and conductivity of 2.0 eV, and an amorphous silicon carbon film having a conductivity of 10 −5 S / cm and microcrystals is formed. The bandgap and the conductivity are both lower than those of the conventional products, so the emission brightness is reduced.
It Furthermore, in principle, a light emitting element can be realized by using silicon containing p-type or n-type microcrystals or p-type or n-type amorphous silicon. However, as the amorphous silicon containing microcrystals and the amorphous silicon carbon containing microcrystals in both amorphous silicon cannot increase the conductivity in a place where the band gap is wide, the emission brightness is naturally lowered.
To do.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】実施例1 まず、p型単結晶シリコン基板を用いた場合である。図
1(a)はp型単結晶シリコン基板を用いた場合の本発
明の発光素子の構造図である。p型単結晶シリコン基板
((100)面、抵抗率3〜5Ωcm)の裏面にAu、
又はAlを蒸着してオーミックコンタクトをとる。次
に、多孔質化したい部分を除いてワックスでマスクを
し、図2(a)に示すようにエチルアルコール:弗酸
(48%の水溶液)=1:1の溶液中に浸す。定電流電
源を用い、その陰極側に白金電極を付け、その陽極側に
単結晶シリコン基板を付ける。このようにして電流を3
0mA/cm2 に固定し約3分間陽極化成を行った。そ
の後KOH溶液に3秒間浸し多孔質シリコンの表面の不
純物層を取り除いた。次に表面のワックスを有機溶剤で
解かし、純水で洗浄した後電子サイクロトロン共鳴プラ
ズマCVD装置に入れn型の微結晶を含有する非晶質シ
リコンカーボン膜を150Å堆積した。堆積条件はガス
0.005Torr、投入電力300W、SiH4 :
CH4 :PH3 :H2 =1:2:0.01:200、基
板温度300°Cである。次に電子ビーム蒸着装置を用
い、透明電極であるインジウムティンオキサイド(IT
O)を600Å堆積した。
Example 1 First, a case of using a p-type single crystal silicon substrate. FIG. 1A is a structural diagram of a light emitting device of the present invention when a p-type single crystal silicon substrate is used. Au on the back surface of the p-type single crystal silicon substrate ((100) surface, resistivity 3 to 5 Ωcm) ,
Alternatively, Al is deposited to make ohmic contact. Next, the portion to be made porous is masked with a wax and immersed in a solution of ethyl alcohol: hydrofluoric acid (48% aqueous solution) = 1: 1 as shown in FIG. 2 (a). Using a constant current power source, a platinum electrode is attached to the cathode side and a single crystal silicon substrate is attached to the anode side. In this way the current is 3
It was fixed at 0 mA / cm 2 and anodized for about 3 minutes. Then, it was immersed in a KOH solution for 3 seconds to remove the impurity layer on the surface of the porous silicon. Next, the wax on the surface was thawed with an organic solvent, washed with pure water, and then placed in an electron cyclotron resonance plasma CVD apparatus to deposit an amorphous silicon carbon film containing n-type microcrystals at 150 Å. The deposition conditions are as follows : gas pressure 0.005 Torr , input power 300 W, SiH4:
CH4: PH3: H2 = 1: 2: 0.01: 200, and the substrate temperature is 300.degree. Next, using an electron beam vapor deposition apparatus, indium tin oxide (IT
O) was deposited at 600Å.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】実施例2 次に、n型単結晶シリコン基板を用いた場合である。図
1(b)はn型単結晶シリコン基板を用いた場合の本発
明の発光素子の構造図である。n型単結晶シリコン基板
((100)面、抵抗率3〜5Ωcm)の裏面にAl又
はAu−Sbを蒸着してオーミックコンタクトをとる。
次に、多孔質化したい部分を除いてワックスでマスクを
し、エチルアルコール:弗酸(48%の水溶液)=1:
1の溶液中に浸す。定電流電源を用い、その陰極側に白
金電極を付け、その陽極側にn型シリコン基板を付け
る。このようにして電流を30mA/cm2 に固定し約
3分間陽極化成を行った。この際、図2(b)に示すよ
うに、多孔質シリコンを形成する面にタングステンラン
プ光を照射し陽極化成を行った。その後KOH溶液に
秒間浸し多孔質シリコンの表面の不純物層を取り除い
た。その後ワックスを有機溶剤で落とし、純水で洗浄し
た後電子サイクロトロン共鳴プラズマCVD装置に入れ
p型の微結晶を含有する非晶質シリコンカーボン膜を1
50Å堆積した。堆積条件はガス圧0.05Torr、
投入電力300W、SiH4 :CH4 :B2 H6 :H2
=1:2:0.01:200、基板温度300°Cであ
る。次に電子ビーム蒸着装置を用い、ITOを600Å
堆積した。
Example 2 Next, a case where an n-type single crystal silicon substrate was used. FIG. 1B is a structural diagram of a light emitting device of the present invention when an n-type single crystal silicon substrate is used. An n-type single crystal silicon substrate ((100) surface, resistivity 3 to 5 Ωcm) was formed on the back surface with Al or
Deposits Au—Sb to form an ohmic contact.
Next, except for the portion to be made porous, a mask is made with wax, and ethyl alcohol: hydrofluoric acid (48% aqueous solution) = 1:
Immerse in the solution of 1. Using a constant current power source, a platinum electrode is attached to the cathode side and an n-type silicon substrate is attached to the anode side. In this way, the current was fixed at 30 mA / cm 2 and anodization was performed for about 3 minutes. At this time, as shown in FIG. 2 (b), the surface on which the porous silicon was formed was irradiated with a tungsten lamp light to perform anodization. Then add 3 to KOH solution
It was immersed for 2 seconds to remove the impurity layer on the surface of the porous silicon. Then, the wax is removed with an organic solvent, washed with pure water, and then placed in an electron cyclotron resonance plasma CVD apparatus to form an amorphous silicon carbon film containing p-type microcrystals.
50Å accumulated. The deposition conditions are gas pressure of 0.05 Torr,
Input power 300W, SiH4: CH4: B2 H6: H2
= 1: 2: 0.01: 200, and the substrate temperature is 300 ° C. Next, using an electron beam vapor deposition device, 600 liters of ITO
Deposited.

【手続補正6】[Procedure correction 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 p型またはn型単結晶シリコン基板上に
形成された多孔質シリコンと前記単結晶シリコンと異な
る伝導型をもつ微結晶を含有する非晶質シリコンカーボ
ン膜からなるpn接合を用いた電荷注入型発光素子。
1. A pn junction comprising a porous silicon formed on a p-type or n-type single crystal silicon substrate and an amorphous silicon carbon film containing microcrystals having a conductivity type different from that of the single crystal silicon. Charge injection type light emitting device.
JP3450792A 1992-01-24 1992-01-24 Light-emitting element Withdrawn JPH05206514A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3450792A JPH05206514A (en) 1992-01-24 1992-01-24 Light-emitting element
US08/008,566 US5285078A (en) 1992-01-24 1993-01-22 Light emitting element with employment of porous silicon and optical device utilizing light emitting element
DE4301940A DE4301940A1 (en) 1992-01-24 1993-01-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3450792A JPH05206514A (en) 1992-01-24 1992-01-24 Light-emitting element

Publications (1)

Publication Number Publication Date
JPH05206514A true JPH05206514A (en) 1993-08-13

Family

ID=12416177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3450792A Withdrawn JPH05206514A (en) 1992-01-24 1992-01-24 Light-emitting element

Country Status (1)

Country Link
JP (1) JPH05206514A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033928A (en) * 1993-11-02 2000-03-07 Matsushita Electric Industrial Co., Ltd. Method of manufacturing aggregate of semiconductor micro-needles
US6239453B1 (en) 1996-06-19 2001-05-29 Matsushita Electric Industrial Co., Ltd. Optoelectronic material, device using the same, and method for manufacturing optoelectronic material
US6734451B2 (en) 1993-11-02 2004-05-11 Matsushita Electric Industrial Co., Ltd. Aggregate of semiconductor micro-needles and method of manufacturing the same, and semiconductor apparatus and method of manufacturing the same
US6943048B2 (en) 2000-03-09 2005-09-13 Matsushita Electric Industrial Co., Ltd. Method for manufacturing optoelectronic material
EP2229963A2 (en) 2003-10-30 2010-09-22 Kyocera Corporation Biomedical member and method for producing the same
CN116111078A (en) * 2023-04-12 2023-05-12 贝特瑞新材料集团股份有限公司 Negative electrode material, preparation method thereof and lithium ion battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734451B2 (en) 1993-11-02 2004-05-11 Matsushita Electric Industrial Co., Ltd. Aggregate of semiconductor micro-needles and method of manufacturing the same, and semiconductor apparatus and method of manufacturing the same
US6087197A (en) * 1993-11-02 2000-07-11 Matsushita Electric Industrial Co., Ltd. Aggregate of semiconductor micro-needles and method of manufacturing the same, and semiconductor apparatus and method of manufacturing the same
US6177291B1 (en) 1993-11-02 2001-01-23 Matsushita Electric Industrial Co., Ltd. Method of making aggregate of semiconductor micro-needles
US6033928A (en) * 1993-11-02 2000-03-07 Matsushita Electric Industrial Co., Ltd. Method of manufacturing aggregate of semiconductor micro-needles
US6489629B1 (en) 1993-11-02 2002-12-03 Matsushita Electric Industrial Co., Ltd. Aggregate of semiconductor micro-needles and method of manufacturing the same, and semiconductor apparatus and method of manufacturing the same
US6239453B1 (en) 1996-06-19 2001-05-29 Matsushita Electric Industrial Co., Ltd. Optoelectronic material, device using the same, and method for manufacturing optoelectronic material
US6730934B2 (en) 1996-06-19 2004-05-04 Matsushita Electric Industrial Co., Ltd. Optoelectronic material, device using the same and method for manufacturing optoelectronic material
US6838743B2 (en) 1996-06-19 2005-01-04 Matsushita Electric Industrial Co., Ltd. Optoelectronic material, device using the same and method for manufacturing optoelectronic material
US6943048B2 (en) 2000-03-09 2005-09-13 Matsushita Electric Industrial Co., Ltd. Method for manufacturing optoelectronic material
EP2229963A2 (en) 2003-10-30 2010-09-22 Kyocera Corporation Biomedical member and method for producing the same
US7820577B2 (en) 2003-10-30 2010-10-26 Kyocera Corporation Biomedical member and method for producing the same
CN116111078A (en) * 2023-04-12 2023-05-12 贝特瑞新材料集团股份有限公司 Negative electrode material, preparation method thereof and lithium ion battery
CN116111078B (en) * 2023-04-12 2023-11-10 贝特瑞新材料集团股份有限公司 Negative electrode material, preparation method thereof and lithium ion battery

Similar Documents

Publication Publication Date Title
US5620557A (en) Sapphireless group III nitride semiconductor and method for making same
US5247533A (en) Gallium nitride group compound semiconductor laser diode
US7867800B2 (en) Light-emitting semiconductor device using group III nitrogen compound
US5285078A (en) Light emitting element with employment of porous silicon and optical device utilizing light emitting element
CA2054242C (en) Light-emitting semiconductor device using gallium nitride group compound
JP2666237B2 (en) Group III nitride semiconductor light emitting device
US5959401A (en) Light-emitting semiconductor device using group III nitride compound
JP3078611B2 (en) Light emitting semiconductor device including IIB-VIA group semiconductor layer
US5905276A (en) Light emitting semiconductor device using nitrogen-Group III compound
JP3654738B2 (en) Group 3 nitride semiconductor light emitting device
US5895938A (en) Semiconductor device using semiconductor BCN compounds
Matsunami et al. SiC blue LED's by liquid-phase epitaxy
JPH05206514A (en) Light-emitting element
JPH0936427A (en) Semiconductor device and fabrication thereof
US4065780A (en) Tunnel injection of minority carriers in semi-conductors
KR100289595B1 (en) Group III-nitride semiconductor light emitting device
JPH06283755A (en) Light emitting element
JPH0697499A (en) Light emitting element
US4161814A (en) Tunnel injection of minority carriers in semi-conductors
JP3637236B2 (en) LIGHT EMITTING THIN FILM AND OPTICAL DEVICE MANUFACTURING METHOD
JP3016241B2 (en) Group III nitride semiconductor light emitting device
US3413507A (en) Injection el diode
JPH0697500A (en) Light emitting element
JP2001126610A (en) Electron emission device
JPH06283753A (en) Light emitting element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408