JPH0677127A - Compound semiconductor device and its manufacture - Google Patents

Compound semiconductor device and its manufacture

Info

Publication number
JPH0677127A
JPH0677127A JP4223840A JP22384092A JPH0677127A JP H0677127 A JPH0677127 A JP H0677127A JP 4223840 A JP4223840 A JP 4223840A JP 22384092 A JP22384092 A JP 22384092A JP H0677127 A JPH0677127 A JP H0677127A
Authority
JP
Japan
Prior art keywords
growth
crystal
compound semiconductor
selective growth
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4223840A
Other languages
Japanese (ja)
Inventor
Masaru Miyazaki
勝 宮▲崎▼
Takeyuki Hiruma
健之 比留間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4223840A priority Critical patent/JPH0677127A/en
Publication of JPH0677127A publication Critical patent/JPH0677127A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve controllability of threshold voltages of FETs in producing FETs having different threshold voltages and resistor elements from a single wafer by forming an epitaxially grown layer of varying thickness on a single wafer with good controllability. CONSTITUTION:The fundamental structure of a HIGFET is obtained such that a gate electrode 8 is formed by working a refractory gate metal, an n-type semiconductor regions 5 are formed by ion implantation using the gate electrode 8 as a mask, and a source electrode 6 and a drain electrode 7 are formed on those regions. The threshold voltage of a HIGFET varies with the crystal thickness. Since the thickness of an epitaxially grown layer is a function of the selective growth rate, it is possible to precisely vary the thickness of a growing layer on a wafer surface by means of the selective growth rate. That is, threshold voltages of HIGFETs can be varied by controlling the selective growth rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化合物半導体装置とその
製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor device and its manufacturing method.

【0002】[0002]

【従来の技術】HEMT(High Electron Mobility Tra
nsistor)やHIGFET (Hetrostructure I
nsulated Gate Field Effect Transistor)等のエピタ
キシャル層を用いた化合物半導体素子は超高周波や超高
速動作の特徴を持ち、単体として、あるいはこれらを集
積した回路として用いられている。従来のエピタキシャ
ル層を用いたFETでは、まず、ウエハ全面にエピタキ
シャル結晶層を成長させ、所要の素子領域をメサ分離し
て素子を形成していた。
2. Description of the Related Art HEMT (High Electron Mobility Tra)
nsistor) and HIGFET (Hetrostructure I
A compound semiconductor device using an epitaxial layer such as a nsulated gate field effect transistor) has characteristics of ultrahigh frequency and ultrahigh speed operation, and is used as a single unit or as a circuit in which these are integrated. In a conventional FET using an epitaxial layer, first, an epitaxial crystal layer is grown on the entire surface of a wafer, and a required element region is separated by mesa to form an element.

【0003】[0003]

【発明が解決しようとする課題】FETはしきい電圧を
設計値に精度よく合わせることが必要であるが、次のよ
うな項目においてこれを変動させる要因がある。(1)
エピタキシャル結晶成長における成長層の膜厚及びキャ
リヤ濃度のばらつき、(2)ゲート形成における結晶膜
厚削れ及びキャリヤ濃度変化、(3)ゲート形成後の特
性変動。
In the FET, it is necessary to accurately match the threshold voltage with the design value. However, there are factors that change this in the following items. (1)
Variations in the film thickness and carrier concentration of the growth layer during epitaxial crystal growth, (2) Crystal thickness reduction and carrier concentration change during gate formation, and (3) Characteristic variation after gate formation.

【0004】そこでこれらを低減するためにプロセスの
構築に多大の検討がなされてきているが、装置上やプロ
セス上でどうしても制御し切れない問題が残り、従来で
は、しきい電圧の変動幅を予め把握しておき、エピタキ
シャル結晶成長において成長層の膜厚やキャリヤ濃度で
調整した、仕様の異なるウエハを作り、これらを使って
試作し、しきい電圧が設計の許容範囲に入ったものだけ
を選別して使っていた。このため結果として、使えない
無駄なウエハができ、歩留まりが上がらない欠点があっ
た。
Therefore, in order to reduce these, a great deal of consideration has been given to the construction of the process, but there remains a problem that the control cannot be performed on the device or the process, and in the past, the fluctuation range of the threshold voltage was previously set. Understand, make wafers with different specifications adjusted by the thickness of the growth layer and carrier concentration during epitaxial crystal growth, make prototypes using these, and select only those whose threshold voltage is within the design allowable range. I was using it. Therefore, as a result, there is a disadvantage that useless wafers are generated and the yield is not increased.

【0005】また、一般に集積回路はしきい電圧の異な
るFETや抵抗を使って構成されている。このため、従
来の技術ではエピタキシャル結晶成長層はウエハ全面で
同一の厚さにしていたので、このウエハからしきい電圧
の異なるFETや抵抗素子を製作する場合には、結晶に
イオン打ち込みをしてキャリヤ濃度を加減したり、結晶
を削ったりする煩雑な工程を追加する必要があった。こ
のため製作日数が長くなるほかに、この工程によってし
きい電圧の制御性をさらに悪くしてしまう欠点があっ
た。
Further, an integrated circuit is generally constructed by using FETs and resistors having different threshold voltages. Therefore, in the conventional technique, the epitaxial crystal growth layer has the same thickness on the entire surface of the wafer. Therefore, when FETs or resistance elements having different threshold voltages are manufactured from this wafer, the crystal is ion-implanted. It was necessary to add a complicated process such as adjusting the carrier concentration or shaving the crystal. For this reason, the number of manufacturing days is increased, and the controllability of the threshold voltage is further deteriorated by this process.

【0006】本発明は、上記の問題点を解決する目的で
なされたものである。
The present invention has been made to solve the above problems.

【0007】[0007]

【課題を解決するための手段】本発明では、同一ウエハ
面内に厚さのことなるエピタキシャル結晶成長層を制御
性良く得ることによって上記課題を解決した。
In the present invention, the above-mentioned problems are solved by obtaining an epitaxial crystal growth layer having a different thickness in the same wafer surface with good controllability.

【0008】このため、選択成長によって得られるエピ
タキシャル結晶成長層の膜厚はパターンのサイズやパタ
ーンの粗密よって異なった値になる原理を本発明では用
いている。例えば、GaAs選択成長の場合には、約1
00×100μm2 の大きさの区切り(これを基本セル
と呼び、この面積をs0 で表す)のなかに結晶成長させ
る領域(これを窓と呼び、これら全窓面積をsで表す)
を設け、この比s/s0 (これを選択成長率と呼び、s
/s0 で表す)と成長膜厚tの関係を示すと図1のよう
になる。これからs/s0=1 の全面成長膜厚に比べ、
選択成長率の小さい領域では成長膜厚は厚くなり(約3
倍)、この範囲で成長膜厚を可変できる事がわかる。
For this reason, the present invention uses the principle that the film thickness of the epitaxial crystal growth layer obtained by selective growth has different values depending on the size of the pattern and the density of the pattern. For example, in the case of GaAs selective growth, about 1
A region in which crystals are grown in a division of a size of 00 × 100 μm 2 (this is called a basic cell and this area is represented by s 0 ) (this is called a window, and the total window area is represented by s)
And this ratio s / s 0 (this is called the selective growth rate, s
/ S 0 ) and the growth film thickness t are shown in FIG. From now on, compared to the total grown film thickness of s / s 0 = 1
In the region where the selective growth rate is small, the grown film thickness becomes thick (about 3
It is understood that the grown film thickness can be varied within this range.

【0009】この面積依存性を予め装置、成長条件(温
度,ガス組成,ガス種等)につき詳しく調べて、データ
ベースをもち、これをもとに素子設計を行って、所望の
しきい電圧をもつ多種類のFETを同一ウエハに形成す
ることが可能となった。実際には、膜厚の変化させたい
幅は中心値にたいして±50%位である。また、例え
ば、GaAlAsなど、混晶結晶を選択成長によって得
る場合には、パターンのサイズやパターンの粗密によっ
てエピタキシャル結晶成長層の膜厚と、混晶の組成が変
わる。しかし、組成比の変化はFETの特性を変えるほ
ど大きくないので、この場合も膜厚変化に注目するだけ
でよい。
This area dependency is investigated in advance in detail about the apparatus and growth conditions (temperature, gas composition, gas species, etc.), and a database is provided, and based on this, element design is carried out to obtain a desired threshold voltage. It has become possible to form many types of FETs on the same wafer. In reality, the width of the film to be changed is about ± 50% with respect to the central value. When a mixed crystal such as GaAlAs is obtained by selective growth, the film thickness of the epitaxial crystal growth layer and the composition of the mixed crystal change depending on the size of the pattern and the density of the pattern. However, since the change in the composition ratio is not so large as to change the characteristics of the FET, it is sufficient to pay attention to the change in the film thickness in this case as well.

【0010】[0010]

【作用】選択成長は気相エピタキシャル成長技術によっ
て行なわれる。選択成長前の表面は結晶成長を阻止する
ために例えばSiO2 のマスク材の領域と、これの一部
を取り除いて窓を開け、露出した結晶面の領域とから成
る。SiO2 マスク材の表面領域に到達した結晶成長用
の原料は、ここでは結晶成長用の核が無いので浮遊して
結晶面の領域まで移動しここで成長する。このため選択
成長率が小さい領域ほど結晶成長用の原料が集まり、厚
い成長層が得られる。成長温度700℃で、GaAsの
場合、SiO2 のマスク材を結晶成長用の原料が移動で
きる距離は約200μmである。本発明では、結晶成長
用の原料がマスク材を移動できる距離以内で基本セルの
面積を決めて、これを基準として選択成長率と成長層膜
厚の関係が決められ、これらの成長層を用いて各種の素
子が構成されている。
The selective growth is performed by the vapor phase epitaxial growth technique. The surface before the selective growth is composed of a mask material region of, for example, SiO 2 in order to prevent crystal growth, and a region of the crystal surface exposed by removing a part of the mask material and opening a window. The raw material for crystal growth that has reached the surface region of the SiO 2 mask material floats because it has no nucleus for crystal growth here, moves to the region of the crystal plane, and grows there. Therefore, the raw material for crystal growth gathers in a region where the selective growth rate is small, and a thick growth layer can be obtained. At the growth temperature of 700 ° C., in the case of GaAs, the distance that the raw material for crystal growth can move through the SiO 2 mask material is about 200 μm. In the present invention, the area of the basic cell is determined within a distance in which the raw material for crystal growth can move the mask material, and the relationship between the selective growth rate and the thickness of the growth layer is determined based on this, and these growth layers are used. And various elements are configured.

【0011】[0011]

【実施例】〈実施例1〉GaAsICに使用されるHI
GFETの断面図を図2に示す。半絶縁性基板1の表面
にSiO2 のマスク材2を被着して所望の窓を開け、こ
の部分だけに選択的にエピタキシャル成長3,4させた
結晶を用いている。図3はこの結晶の詳細を示したもの
で、おもにバッファ層と能動層とから構成され、基板結
晶100上にアンドープGaAsバッファ層101,p
−GaAsバリヤ層102,n+−GaAsチャネル層
103,アンドープGaAlAs/GaAsキャップ層
104/105を順番に成長した構造である。
EXAMPLES Example 1 HI used for GaAs IC
A cross-sectional view of the GFET is shown in FIG. A SiO 2 mask material 2 is deposited on the surface of the semi-insulating substrate 1 to open a desired window, and a crystal selectively epitaxially grown 3 or 4 is used only in this portion. FIG. 3 shows the details of this crystal, which is mainly composed of a buffer layer and an active layer, and is composed of an undoped GaAs buffer layer 101, p on a substrate crystal 100.
This is a structure in which a -GaAs barrier layer 102, an n + -GaAs channel layer 103, and an undoped GaAlAs / GaAs cap layer 104/105 are sequentially grown.

【0012】HIGFETはこの上に高耐熱性のゲート
金属(例えばWSix)を加工してゲート電極8を形成
し、これをマスクにn型半導体層5をイオン打ち込みで
形成して、これらの領域にそれぞれソース電極6とドレ
イン電極7を形成した工程によって得られた構造を基本
としている。HIGFETのしきい電圧は図3に示した
結晶の厚みtn,ta,tcによって変化する。そこ
で、図1で述べたように、エピタキシャル成長層の厚さ
tは選択成長率の関数であるので、選択成長率によって
ウエハ面内で成長層の厚さを精密に変えることが可能で
あり、これを制御することによってHIGFETのしき
い電圧を変えることができる。
In the HIGFET, a high heat resistant gate metal (for example, WSix) is processed on the HIGFET to form a gate electrode 8. The n-type semiconductor layer 5 is formed by ion implantation using this as a mask, and these regions are formed in these regions. Each is based on the structure obtained by the process of forming the source electrode 6 and the drain electrode 7. The threshold voltage of the HIGFET changes depending on the crystal thicknesses tn, ta and tc shown in FIG. Therefore, as described in FIG. 1, since the thickness t of the epitaxial growth layer is a function of the selective growth rate, it is possible to precisely change the thickness of the growth layer within the wafer surface by the selective growth rate. It is possible to change the threshold voltage of the HIGFET by controlling the.

【0013】図4にエピタキシャル成長層の厚さtを制
御して変えるためのパターン例を示す。これは結晶成長
したウエハ内の一領域を上から見た図柄とその断面図で
ある。基本セルA,B,Cはいずれもs0 の面積があ
り、SiO2 のマスク材42で被われている。これらに
それぞれ窓a,b,cが開けられ、これらはそれぞれs
1<s2<s3 の面積の関係になっている。この結果、エ
ピタキシャル成長層の厚さtは断面図で示すとおり、t
1>t2>t3 の関係でえられている。これらの結晶領域
にそれぞれFETを形成すると、しきい電圧の大きさ
(絶対値)はVt1>Vt2>Vt3の関係でえられる。基
本セルの大きさの例は50×50μm2 である。選択成
長率は、この場合それぞれs1/s0,s2/s0,s3
0で表し、比較的狭い範囲(例えば40,50,60
%)で変えておくとしきい電圧の変動は小さくなる。こ
れを装置上やプロセス上で制御しきれないしきい電圧の
変動幅に予め選べば、同一ウエハ内でしきい電圧が設計
の許容範囲にあるFETを必ず作ることができる。
FIG. 4 shows an example of a pattern for controlling and changing the thickness t of the epitaxial growth layer. This is a pattern and a cross-sectional view of a region in a wafer on which crystal growth has been seen from above. Each of the basic cells A, B, and C has an area of s 0 and is covered with the SiO 2 mask material 42. The windows a, b, and c are opened in these, respectively, and these are s
The area relation is 1 <s 2 <s 3 . As a result, the thickness t of the epitaxial growth layer is t as shown in the sectional view.
The relationship is 1 > t 2 > t 3 . When the FET is formed in each of these crystal regions, the magnitude of the threshold voltage is increased.
(Absolute value) is obtained by the relationship of Vt 1 > Vt 2 > Vt 3 . An example of the size of the basic cell is 50 × 50 μm 2 . In this case, the selective growth rates are s 1 / s 0 , s 2 / s 0 , s 3 /
It is represented by s 0 and is in a relatively narrow range (eg 40, 50, 60
%), The fluctuation of the threshold voltage becomes small. If this is selected in advance as a variation range of the threshold voltage that cannot be controlled on the device or in the process, it is possible to make an FET in which the threshold voltage is within the design allowable range in the same wafer.

【0014】この結果、使えない無駄なウエハがなくな
り、歩留まりが著しく向上した。これはしきい電圧の異
なるFETアレイを一回の選択成長で形成する方式で、
集積回路の構成にはこれらを多数配置しておき、配線層
形成の前に各単体素子のしきい電圧を測定して、設計値
に一番近い素子だけを選別して配線する構成法により1
00%の歩留まりが達成できる。この実施例ではしきい
電圧の異なるFETアレイを詳しく述べたが、ダイオー
ドアレイや抵抗素子アレイがこれらに加わっても良いこ
とはいうに及ばない。
As a result, wasteful wafers that cannot be used are eliminated, and the yield is remarkably improved. This is a method to form FET arrays with different threshold voltages by one-time selective growth.
A large number of these are arranged in the structure of the integrated circuit, the threshold voltage of each single element is measured before forming the wiring layer, and only the element closest to the design value is selected and wired by the configuration method.
A yield of 00% can be achieved. Although the FET arrays having different threshold voltages have been described in detail in this embodiment, it goes without saying that a diode array or a resistance element array may be added thereto.

【0015】〈実施例2〉次に実施例1と異なり基本セ
ル内の成長面積可変の他の例について述べる。図5,図
6はウエハ内の一部領域の上面図である。これらは基本
セル(面積s0=a×b)内にいずれもFET用の成長
領域(面積sr)と成長面積調整用のダミーパターン領
域(面積sd)とから構成されている。
<Embodiment 2> Different from Embodiment 1, another example of changing the growth area in the basic cell will be described. 5 and 6 are top views of a partial region in the wafer. Each of these is composed of a growth region (area sr) for FET and a dummy pattern region (area sd) for adjusting growth area in a basic cell (area s 0 = a × b).

【0016】図5の例では間隔gを調整して選択成長率
(sd+sr)/s0を変える構造である。図6の例では
サイズmと間隔gを調整して選択成長率(sr+Σs
d)/s0 を変える構造である。ここでは、選択成長率
を変える基本的な構造を示したにすぎず、本発明の主旨
から言って、基本セル,FET,ダミーパターンの形状
やサイズに限定されるものではない。また、基本セル内
に、2個以上の素子用結晶成長層を設けて用いても良
い。
The example of FIG. 5 has a structure in which the spacing g is adjusted to change the selective growth rate (sd + sr) / s 0 . In the example of FIG. 6, the size m and the interval g are adjusted so that the selective growth rate (sr + Σs
This is a structure for changing d) / s 0 . Here, only the basic structure for changing the selective growth rate is shown, and the shape and size of the basic cell, FET, and dummy pattern are not limited from the point of the present invention. Further, two or more element crystal growth layers may be provided and used in the basic cell.

【0017】〈実施例3〉本発明をE−FET,D−F
ET及び抵抗素子(R)を用いて構成される集積回路の
基本構成例について述べる。
<Embodiment 3> The present invention is applied to E-FET and DF.
A basic configuration example of an integrated circuit configured by using the ET and the resistance element (R) will be described.

【0018】図7はこれらの素子単体をウエハの上面及
び断面から見た概要を示したもので、回路を構成する前
の状態である。ゲート電圧が0Vでソース−ドレイン間
に電流が流れない素子をE−FET、電流が流れるもの
をD−FETで表し、これらは同図に示したように結晶
膜厚の違いによって形成する事ができる。また抵抗素子
は、同じく結晶膜厚の違いによってシート抵抗が決ま
り、これによって任意の値の素子を形成する事ができ
る。これらの結晶膜厚の調整は実施例1と2で述べるよ
うな選択成長率を変えることで、同一ウエハ上に形成す
ることが可能となる。この結果、集積回路の工程は、従
来法に比べて大幅に簡略化することができた。
FIG. 7 shows an outline of these elements alone as seen from the upper surface and cross section of the wafer, which is in a state before the circuit is formed. An element in which current does not flow between the source and drain with a gate voltage of 0 V is represented by E-FET, and an element through which current flows is represented by D-FET. These elements may be formed by the difference in crystal film thickness as shown in FIG. it can. Similarly, in the resistance element, the sheet resistance is determined by the difference in the crystal film thickness, so that an element having an arbitrary value can be formed. These crystal film thicknesses can be adjusted on the same wafer by changing the selective growth rate as described in the first and second embodiments. As a result, the process of the integrated circuit can be greatly simplified as compared with the conventional method.

【0019】以上、本発明を実施例によって述べてきた
が、本発明の主旨からして、結晶成長する材料や構造に
限定されるものではなく、GaAsMESFETのよう
な同一結晶層、HEMTやHIGFETのようなInG
aAs系のヘテロ接合系結晶層等に本発明は適用される
ことは言うに及ばない。また、選択結晶成長に際する選
択成長率を基本セルを単位として表してきたが、この基
本セルはウエハ内で必ずしも同一面積である必要がな
く、厚さを変える基本が明確になっていれば良い。
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the material and structure for crystal growth, and the same crystal layer such as GaAs MESFET, HEMT or HIGFET can be used. InG like
It goes without saying that the present invention is applied to an aAs-based heterojunction crystal layer or the like. Also, the selective growth rate in selective crystal growth has been expressed in units of basic cells, but this basic cell does not necessarily have to have the same area in the wafer, and if the basics of changing the thickness are clear. good.

【0020】[0020]

【発明の効果】本発明による化合物半導体装置及びこの
製造方法による効果は以下の通りである。
The effects of the compound semiconductor device and the manufacturing method according to the present invention are as follows.

【0021】(1)同一ウエハ内に結晶膜厚の異なる領
域を任意に作ることができるので、特性の異なる素子を
一回の、一枚の製作で得ることが可能になった。これに
よって、しきい電圧がプロセスのばらつきで変わって
も、しきい電圧の異なるFETアレイや立上り電圧や耐圧
の異なるダイオードアレイやシート抵抗の異なる抵抗素
子アレイを配置しておき、設計値に一番近い素子だけを
選別して用いることで100%の歩留まりが達成できる
ようになった。
(1) Since regions having different crystal film thicknesses can be arbitrarily formed in the same wafer, it is possible to obtain devices having different characteristics by one production at a time. As a result, even if the threshold voltage changes due to process variations, FET arrays with different threshold voltages, diode arrays with different rising voltages and withstand voltages, and resistance element arrays with different sheet resistances should be placed in the design value. A 100% yield can be achieved by selecting and using only close elements.

【0022】(2)同一ウエハ内に結晶膜厚の異なる領
域を任意に作ることができるので、特性の異なる素子を
一回の、一枚の製作で得ることが可能になった。これに
よって、しきい電圧の異なるFETや抵抗素子を任意に
形成でき、配線層でこれらを集積化して歩留まりの高い
集積回路が従来よりも少ない工数でえられるようになっ
た。
(2) Since regions having different crystal film thicknesses can be arbitrarily formed in the same wafer, it becomes possible to obtain devices having different characteristics by one production at a time. As a result, FETs and resistance elements having different threshold voltages can be arbitrarily formed, and an integrated circuit having a high yield can be obtained by integrating these elements in a wiring layer with a smaller number of steps than in the prior art.

【0023】(3)同一ウエハ内に結晶膜厚の異なる領
域を選択的に任意に作ることができるので、特性の異な
る素子を一回の、一枚の製作で得ることが可能になっ
た。これによって、各素子の領域が分離されているの
で、ウエハ内の凹凸が小さくなり歩留まりの高い集積回
路が従来よりも少ない工数でえられるようになった。
(3) Since regions having different crystal film thicknesses can be selectively and arbitrarily formed in the same wafer, it becomes possible to obtain devices having different characteristics by one production at a time. As a result, since the regions of the respective elements are separated, the unevenness in the wafer is reduced, and an integrated circuit with a high yield can be obtained with less man-hours than the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる選択成長率と成長膜厚の実験結
果による特性図。
FIG. 1 is a characteristic diagram based on experimental results of a selective growth rate and a grown film thickness used in the present invention.

【図2】本発明の実施例1に用いるHIGFETの断面
図。
FIG. 2 is a sectional view of a HIGFET used in Example 1 of the present invention.

【図3】本発明の実施例1に用いるHIGFETの結晶
構造の断面図。
FIG. 3 is a sectional view of a crystal structure of a HIGFET used in Example 1 of the present invention.

【図4】本発明の実施例1に用いる選択成長率の異なる
基本セルの形状とその断面図。
FIG. 4 is a cross-sectional view showing the shapes of basic cells having different selective growth rates used in Example 1 of the present invention.

【図5】本発明の実施例2に用いる基本セルの形状の説
明図。
FIG. 5 is an explanatory diagram of the shape of a basic cell used in Example 2 of the present invention.

【図6】本発明の実施例2に用いる他の基本セルの形状
の説明図。
FIG. 6 is an explanatory diagram of the shape of another basic cell used in Example 2 of the present invention.

【図7】本発明の実施例3に用いるしきい電圧の異なる
二種類のFETと抵抗素子の形状の説明図。
FIG. 7 is an explanatory diagram of the shapes of two types of FETs and resistance elements having different threshold voltages used in Example 3 of the present invention.

【符号の説明】[Explanation of symbols]

2,42,52,62…SiO2 マスク材、40,5
0,60…基本セル、3,4,101,102,10
3,104,105…エピタキシャル結晶層、8,78
…ゲート電極、6,76…ソース電極、7,77…ドレ
イン電極。
2, 42, 52, 62 ... SiO 2 mask material, 40, 5
0, 60 ... Basic cell, 3, 4, 101, 102, 10
3, 104, 105 ... Epitaxial crystal layer, 8, 78
... gate electrode, 6,76 ... source electrode, 7,77 ... drain electrode.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一回のエピタキシャル成長によ
って同一ウエハ内に主として結晶膜厚の異なる領域を任
意に設けてなることを特徴とする化合物半導体装置。
1. A compound semiconductor device characterized in that regions having different crystal film thicknesses are arbitrarily provided in the same wafer by at least one epitaxial growth.
【請求項2】請求項1において、選択成長のマスクとな
る材料によって被われた面積の割合を調節することによ
り選択成長膜厚を制御する化合物半導体装置。
2. The compound semiconductor device according to claim 1, wherein the selective growth film thickness is controlled by adjusting the ratio of the area covered by the material serving as the selective growth mask.
【請求項3】請求項1において、少なくとも一回のエピ
タキシャル成長によって同一ウエハ内に主として結晶膜
厚の異なる領域を任意に設けて、これらをFETアレ
イ,ダイオードアレイや抵抗素子アレイとして配置し
て、設計値に一番近い素子だけを選別して用いる化合物
半導体装置。
3. The design according to claim 1, wherein an area mainly having a different crystal film thickness is arbitrarily provided in the same wafer by at least one epitaxial growth, and these areas are arranged as a FET array, a diode array or a resistance element array. A compound semiconductor device that selects and uses only the element closest to the value.
【請求項4】少なくとも一回のエピタキシャル成長によ
って同一ウエハ内に主として結晶膜厚の異なる領域を任
意に設けて、これらをしきい電圧の異なるFET、立上
り電圧や耐圧の異なるダイオードや抵抗値の異なる抵抗
素子として配置して、これらを用いて集積回路を構成す
る化合物半導体装置。
4. An area mainly having a different crystal film thickness is arbitrarily provided in the same wafer by at least one epitaxial growth, and FETs having different threshold voltages, diodes having different rising voltages and withstand voltages, and resistors having different resistance values are provided. A compound semiconductor device which is arranged as an element and which is used to form an integrated circuit.
【請求項5】化合物半導体基板に選択成長のマスクとな
る材料を形成し、これに選択成長率で規格化した任意の
窓を開けて、結晶面を露出する工程と、エピタキシャル
結晶成長層を得る工程と、これらの結晶成長層を用いて
FETやダイオードまたは抵抗素子を形成する工程と、
これらの素子を接続する配線工程とからなる化合物半導
体装置の製造方法。
5. A step of forming a material serving as a mask for selective growth on a compound semiconductor substrate, opening an arbitrary window standardized by the selective growth rate to expose a crystal plane, and obtaining an epitaxial crystal growth layer. A step and a step of forming an FET, a diode or a resistance element using these crystal growth layers,
A method of manufacturing a compound semiconductor device, which comprises a wiring process for connecting these elements.
【請求項6】化合物半導体基板に選択成長のマスクとな
る材料を形成し、これに選択成長率で規格化した任意の
窓を開けて、結晶面を露出する工程と、エピタキシャル
結晶成長層を得る工程と、これらの結晶成長層を用いて
FETやダイオードまたは抵抗素子を形成する工程から
なる化合物半導体素子の製造方法。
6. A step of forming a material serving as a mask for selective growth on a compound semiconductor substrate, opening an arbitrary window standardized by a selective growth rate to expose a crystal plane, and obtaining an epitaxial crystal growth layer. A method of manufacturing a compound semiconductor device, which comprises steps and steps of forming an FET, a diode, or a resistance element using these crystal growth layers.
JP4223840A 1992-08-24 1992-08-24 Compound semiconductor device and its manufacture Pending JPH0677127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4223840A JPH0677127A (en) 1992-08-24 1992-08-24 Compound semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4223840A JPH0677127A (en) 1992-08-24 1992-08-24 Compound semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0677127A true JPH0677127A (en) 1994-03-18

Family

ID=16804552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4223840A Pending JPH0677127A (en) 1992-08-24 1992-08-24 Compound semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0677127A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297884B2 (en) 2005-07-29 2007-11-20 Omron Corporation Switching arrangement
WO2010103792A1 (en) * 2009-03-11 2010-09-16 住友化学株式会社 Semiconductor substrate, method for manufacturing semiconductor substrate, electronic device and method for manufacturing electronic device
JP2015103555A (en) * 2013-11-21 2015-06-04 ルネサスエレクトロニクス株式会社 Semiconductor device and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297884B2 (en) 2005-07-29 2007-11-20 Omron Corporation Switching arrangement
WO2010103792A1 (en) * 2009-03-11 2010-09-16 住友化学株式会社 Semiconductor substrate, method for manufacturing semiconductor substrate, electronic device and method for manufacturing electronic device
JP2010239130A (en) * 2009-03-11 2010-10-21 Sumitomo Chemical Co Ltd Semiconductor substrate, method for manufacturing semiconductor substrate, electronic device, and method for manufacturing electronic device
CN102341889A (en) * 2009-03-11 2012-02-01 住友化学株式会社 Semiconductor substrate, method for manufacturing semiconductor substrate, electronic device and method for manufacturing electronic device
US8823141B2 (en) 2009-03-11 2014-09-02 Sumitomo Chemical Company, Limited Semiconductor wafer, method of producing semiconductor wafer, electronic device, and method of producing electronic device
TWI476821B (en) * 2009-03-11 2015-03-11 Sumitomo Chemical Co Semiconductor substrate, method for manufacturing semiconductor substrate, electronic device and method for manufacturing electronic device
JP2015103555A (en) * 2013-11-21 2015-06-04 ルネサスエレクトロニクス株式会社 Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
DE10024510B4 (en) Semiconductor device and method of making same
US4346513A (en) Method of fabricating semiconductor integrated circuit device utilizing selective etching and epitaxial refill
US3938241A (en) Vertical channel junction field-effect transistors and method of manufacture
US5350709A (en) Method of doping a group III-V compound semiconductor
US4837178A (en) Method for producing a semiconductor integrated circuit having an improved isolation structure
WO2004023544A1 (en) Semiconductor device and method for manufacturing semiconductor device
JPH0677127A (en) Compound semiconductor device and its manufacture
JPH0328816B2 (en)
US7321251B2 (en) Bias circuit and method of producing semiconductor device
JPH01236657A (en) Semiconductor device and manufacture thereof
JPH05198587A (en) Hetero junction bipolar transistor
JPS60229375A (en) Manufacture of compound semiconductor device
JP3401407B2 (en) Method for manufacturing semiconductor device
JP4419575B2 (en) RESISTANCE ELEMENT AND ITS MANUFACTURING METHOD, BIAS CIRCUIT AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP2914429B2 (en) Manufacturing method of semiconductor integrated circuit
JPH04199641A (en) Semiconductor device and manufacture thereof
KR930009811B1 (en) Mes fet transistor and manufacturing method thereof
EP0096686A1 (en) Semiconductor tetrode
JPH1012630A (en) High-frequency integrated circuit device
JP2005166947A (en) Etching method, semiconductor device, and manufacturing method thereof
JPH0199263A (en) Semiconductor integrated circuit and manufacture thereof
JPS6332273B2 (en)
JPS5898974A (en) Vertical mis-fet and manufacture thereof
KR960000520B1 (en) A semiconductor device and a method for fabricating the same
KR100269394B1 (en) Manufacturing method of semiconductor device