JPH0676220B2 - Method for manufacturing foam plate and firing furnace used therefor - Google Patents

Method for manufacturing foam plate and firing furnace used therefor

Info

Publication number
JPH0676220B2
JPH0676220B2 JP61116880A JP11688086A JPH0676220B2 JP H0676220 B2 JPH0676220 B2 JP H0676220B2 JP 61116880 A JP61116880 A JP 61116880A JP 11688086 A JP11688086 A JP 11688086A JP H0676220 B2 JPH0676220 B2 JP H0676220B2
Authority
JP
Japan
Prior art keywords
foam plate
cooling
firing
furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61116880A
Other languages
Japanese (ja)
Other versions
JPS62275034A (en
Inventor
了 永井
繁夫 吉田
聡 北川
貴俊 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Industry Co Ltd
Original Assignee
Takasago Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Industry Co Ltd filed Critical Takasago Industry Co Ltd
Priority to JP61116880A priority Critical patent/JPH0676220B2/en
Publication of JPS62275034A publication Critical patent/JPS62275034A/en
Publication of JPH0676220B2 publication Critical patent/JPH0676220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Tunnel Furnaces (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は発泡板の製造方法およびそれに用いられる焼成
炉に関する。
TECHNICAL FIELD The present invention relates to a method for producing a foam plate and a firing furnace used therefor.

さらに詳しくは、焼成後の発泡板を加圧冷却手段の直接
接触により急冷しつつ押圧し、その後発泡板の表面温度
を再上昇させることで発泡板内におけるひずみ応力が緩
和され、性能の優れた発泡板をうることができるととも
に、急冷することで生産速度すなわち生産性を高めるこ
とができる発泡板製造方法およびそれに用いられる燃焼
炉に関する。
More specifically, the foamed plate after firing is pressed while being rapidly cooled by the direct contact of the pressure cooling means, and then the surface stress of the foamed plate is re-raised to alleviate the strain stress in the foamed plate, resulting in excellent performance. The present invention relates to a foamed plate manufacturing method capable of obtaining a foamed plate and increasing a production rate, that is, productivity by rapidly cooling, and a combustion furnace used for the method.

[従来の技術] 従来より発泡板は、軽量で取扱いが容易であり、保温
性、耐火性、耐久性などに優れているためプレハブ住宅
などにおいて多用されている。
[Prior Art] Conventionally, foamed plates have been widely used in prefabricated houses and the like because they are lightweight, easy to handle, and excellent in heat retention, fire resistance, and durability.

かかる発泡板は、一般に天然ガラス、人工ガラス、多孔
質火山岩、火成岩、堆積岩、凝灰岩などを主原料とし、
これらを加熱発泡せしめ、その後えられた発泡板を加圧
ロールなどで加圧して融着させ同時に成形することでえ
られる。以上の工程は、通常、炉内にて連続的に行なわ
れ、炉内を走行するベルト上に供給された膨張性物質は
昇温、焼成、冷却の各工程を経た後に所望の形状の発泡
板として炉内より搬出される。
Such foam plate is generally made of natural glass, artificial glass, porous volcanic rock, igneous rock, sedimentary rock, tuff, etc. as main raw materials,
These can be obtained by heat-foaming them, and then pressing the obtained foam plate with a pressure roll or the like to fuse them and simultaneously molding. The above steps are usually performed continuously in the furnace, and the expansive substance supplied onto the belt running in the furnace is heated, fired, and cooled, and then the foamed plate having a desired shape is obtained. Is discharged from the furnace.

ところで前記冷却工程において発泡板の表面を急冷する
と、該表面付近は急速に温度が降下し、表面付近と内部
の温度分布が不均一となり、そのため表面付近には引張
り応力が、また内部には圧縮応力が発生し、これらの応
力により発泡板が破損してしまうという問題が生じる。
By the way, when the surface of the foamed plate is rapidly cooled in the cooling step, the temperature near the surface rapidly drops, and the temperature distribution in the vicinity of the surface and in the interior becomes uneven, so that tensile stress is generated near the surface and compression is generated inside. There is a problem that stress is generated and the foam plate is damaged by these stresses.

とくに徐冷点からひずみ点に至るあいだに熱ひずみ応力
を生じ易く、発泡板の肉厚方向の温度不均一が数℃以上
になり発泡体が熱応力により破損してしまうという問題
がある。
In particular, there is a problem that thermal strain stress is likely to occur between the annealing point and the strain point, the temperature nonuniformity in the thickness direction of the foam plate becomes several degrees Celsius or more, and the foam is damaged by the heat stress.

そこでかかる熱応力による発泡板の破損を防止するため
に、従来においては、冷却方法として発泡板の上面およ
び下面にエアーを吹き付けるという方法が採用されてお
り、このばあい発泡板の温度分布の均一性を保つために
冷却時間を長く設定し、徐々に発泡板を冷却するように
している。
Therefore, in order to prevent damage to the foam plate due to such thermal stress, conventionally, a method of blowing air on the upper surface and the lower surface of the foam plate has been adopted as a cooling method, and in this case, the temperature distribution of the foam plate is uniform. In order to maintain the property, the cooling time is set long and the foam plate is gradually cooled.

また、発泡板の加圧は実公昭53-50759に示されるよう
に、発泡板の下面にベルトコンベアを介して加圧してい
た。
Further, as shown in Japanese Utility Model Publication No. 53-50759, the foam plate was pressed against the lower surface of the foam plate via a belt conveyor.

[発明が解決しようとする問題点] しかしながら前述したエアー吹付けによる冷却方法は、
冷却速度を速く設定することができずしたがって冷却に
時間がかかり、発泡板の生産効率を高めようとする際の
大きな障害になるという問題があった。
[Problems to be Solved by the Invention] However, the cooling method by air blowing described above is
There is a problem in that the cooling rate cannot be set fast and therefore it takes a long time to cool, which is a major obstacle in increasing the production efficiency of the foam plate.

この問題は発泡板の肉厚が増加するほど全工程時間にし
める冷却時間のウェートが大きくなるため一層顕著なも
のとなっていた。
This problem becomes more remarkable as the thickness of the foam plate increases and the weight of the cooling time that can be included in the entire process time increases.

さらに従来方法においては、発泡板の下面にベルトコン
ベアを介して該発泡板を加圧していたので、厚さ方向の
寸法精度が低くなるとともに発泡板の下面の平滑性がえ
られないという問題があった。
Furthermore, in the conventional method, since the foam plate is pressed against the bottom surface of the foam plate via the belt conveyor, there is a problem that the dimensional accuracy in the thickness direction becomes low and the bottom surface of the foam plate cannot be smooth. there were.

本発明は斜上の事情に鑑み、前記従来例の有する欠点が
解消された発泡板の製造方法およびそれに用いられる焼
成炉を提供することを目的とする。すなわち、ロールな
どの加圧冷却手段により直接に発泡体を急冷すること
で、冷却時間を短縮することができ、もって生産効率を
アップし、製品のコストダウンを図ることができるとと
もに、ベルトコンベアを介することなく直接に発泡板を
加圧することで、厚さ方向の寸法精度が高く、上下面と
ともに優れた平滑性を有する発泡板の製造方法およびそ
れに用いられる焼成炉を提供することを目的とする。そ
のばあい急冷による熱応力の発生は、急冷後に発泡板を
ひずみ温度雰囲気内を通して再度表面温度を昇温せしめ
発泡板の温度分布の不均一を解消することで緩和される
ので、発泡板が破損するということはない。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for manufacturing a foam plate in which the drawbacks of the conventional example are eliminated and a firing furnace used therefor. That is, by directly quenching the foam by a pressure cooling means such as a roll, the cooling time can be shortened, and thus the production efficiency can be improved and the cost of the product can be reduced, and the belt conveyor can be used. An object of the present invention is to provide a method for producing a foam plate having high dimensional accuracy in the thickness direction and having excellent smoothness along with the upper and lower surfaces by directly pressing the foam plate without intervention, and a firing furnace used therefor. . In that case, the occurrence of thermal stress due to rapid cooling is mitigated by eliminating the uneven temperature distribution of the foam plate by raising the surface temperature again after passing through the strain temperature atmosphere after quenching, so the foam plate is damaged. There is nothing to do.

[問題点を解決するための手段] 本発明の製造方法は、発泡性無機質原料を焼成炉内で加
熱、押圧して発泡板を製造するに際し、前記焼成炉内の
冷却帯に設けられかつ前記発泡板の上面および下面と直
接に接触する加圧冷却手段により焼成後の発泡板を急冷
し、その後該発泡板の表面温度を、雰囲気温度が350〜9
00℃である前記冷却帯の雰囲気で再度上昇させることを
特徴としている。
[Means for Solving Problems] In the production method of the present invention, when a foamable inorganic raw material is heated and pressed in a firing furnace to produce a foam plate, the method is provided in a cooling zone in the firing furnace, and The foamed plate after firing is rapidly cooled by a pressure cooling means that is in direct contact with the upper surface and the lower surface of the foamed plate, and then the surface temperature of the foamed plate is set to an ambient temperature of 350 to 9
It is characterized in that the temperature is raised again in the atmosphere of the cooling zone which is 00 ° C.

また、本発明の焼成炉は、炉内を走行するベルトコンベ
ア上で発泡性無機質原料を加熱、押圧して発泡板を形成
する連続焼成炉であって、該焼成炉内には入口から出口
に向って順に昇温帯、焼成帯および冷却帯が設けられて
おり、前記冷却帯には前記発泡板の上面および下面と直
接に接触回転する少なくとも一対の冷却ロールが設けら
れており、該冷却ロールの内部には前記発泡板を冷却す
るための流体が流れており、前記ベルトコンベアが最初
の冷却ロールの直前に発泡板と分かれロールの外側を走
行し、かつ、最後の冷却ロールの直後から炉の出口付近
までには発泡板を搬送するための搬送ロールが設けられ
てなることを特徴としている。
The firing furnace of the present invention is a continuous firing furnace that heats and presses a foamable inorganic raw material on a belt conveyor running in the furnace to form a foam plate, and the firing furnace has an inlet from an outlet. A temperature raising zone, a firing zone and a cooling zone are provided in that order, and the cooling zone is provided with at least a pair of cooling rolls that rotate in direct contact with the upper surface and the lower surface of the foam plate. A fluid for cooling the foam plate is flowing inside, the belt conveyor runs outside the roll separated from the foam plate immediately before the first cooling roll, and the furnace immediately after the last cooling roll. It is characterized in that a transport roll for transporting the foam plate is provided up to the vicinity of the outlet.

[作用] 本発明の発泡板の製造方法におて、発泡板は該発泡板の
上面および下面と直接接触回転するロールにより急速に
冷却されるとともに、急冷後においてひずみ温度雰囲気
内を通過することで再度表面温度が上昇し発泡板の温度
分布の不均一が解消されるので、急冷による熱応力の発
生が緩和される。
[Operation] In the method for producing a foamed plate of the present invention, the foamed plate is rapidly cooled by a roll that rotates in direct contact with the upper surface and the lower surface of the foamed plate, and is passed through a strain temperature atmosphere after being rapidly cooled. Then, the surface temperature rises again and the non-uniformity of the temperature distribution of the foam plate is eliminated, so that the occurrence of thermal stress due to rapid cooling is mitigated.

また、上面、下面ともに直接にロールで加圧されるの
で、均一かつ確実な加圧が行なわれる。
Moreover, since the upper surface and the lower surface are directly pressed by the rolls, uniform and reliable pressing is performed.

[実施例] つぎに図面に基づき本発明の製造方法およびそれに用い
られる焼成炉を説明する。
[Examples] Next, a manufacturing method of the present invention and a firing furnace used therein will be described with reference to the drawings.

第1図は本発明の焼成炉の一実施例を示す概略説明図で
ある。図において(1)は焼成炉であって該焼成炉
(1)内には発泡板(2)を搬走するベルトコンベア
(3)が設置されている。該ベルトコンベア(3)は発
泡時の揮散成分を上下面から均一拡散させ、かつ、上下
面ともに均一な熱伝達を行なうためメッシュ状のものを
用いるのが好ましく、たとえばステンレスメッシュベル
トにセラミックコーティングしたもの、セラミックベル
トなどが用いられる。
FIG. 1 is a schematic explanatory view showing an embodiment of the firing furnace of the present invention. In the figure, (1) is a firing furnace, and a belt conveyor (3) for carrying a foam plate (2) is installed in the firing furnace (1). The belt conveyor (3) is preferably a mesh-shaped one in order to uniformly diffuse the volatilized components at the time of foaming from the upper and lower surfaces and to uniformly transfer heat to the upper and lower surfaces. For example, a stainless mesh belt is coated with ceramic. A thing, a ceramic belt, etc. are used.

被焼成体である発泡性無機質原料としては、天然ガラ
ス、人工ガラス、多孔質火山岩、火成岩、凝灰岩などか
らなる混合物をペレット化したものが用いられ、該ペレ
ットは供給ホッパー(4)よりベルトコンベア(3)上
に適宜の量供給される。供給されたペレットは、予備ロ
ーラ(5)によりならされてほぼ均一な厚さとなって焼
成炉(1)内へ送り込まれる。その後ペレットは昇温ゾ
ーンで昇温された後、焼成ゾーンで加熱され発泡する。
昇温は原料の粒度、配合などにより異なるが、たとえば
1分間に80℃の割合で昇温すればよく本発明においては
とくに限定されるものではない。焼成温度も昇温同様に
原料の粒度、発泡速度、原料の気孔径の均一性などによ
り異なるが概ね700〜1100℃が目安である。また焼成時
間も原料の溶融温度、原料の発泡速度、原料の気孔径の
均一性などに応じて適宜選定すればよい。
As the expandable inorganic raw material that is the object to be fired, a pelletized mixture of natural glass, artificial glass, porous volcanic rock, igneous rock, tuff, etc. is used, and the pellet is fed from a supply hopper (4) to a belt conveyor ( 3) An appropriate amount is supplied on top. The supplied pellets are leveled by the spare roller (5) to have a substantially uniform thickness and fed into the firing furnace (1). After that, the pellets are heated in the heating zone and then heated in the firing zone to foam.
The temperature rise depends on the particle size and blending of the raw materials, but is not particularly limited in the present invention as long as the temperature rises at a rate of 80 ° C. for 1 minute. The firing temperature also varies depending on the particle size of the raw material, the foaming rate, the uniformity of the pore diameter of the raw material, etc., as in the case of raising the temperature, but a rule of thumb is 700 to 1100 ° C. Further, the firing time may be appropriately selected depending on the melting temperature of the raw material, the foaming rate of the raw material, the uniformity of the pore diameter of the raw material, and the like.

本発明の製造方法においては、以上の焼成工程に続く冷
却工程に特徴がある。すなわち焼成により発泡した発泡
板(2)は、加圧冷却手段である加圧冷却ロール(6)
により加圧されて融着成形されると同時に冷却される
が、この際冷却はロール(6)と発泡板(2)との直接
接触により、発泡板(2)の中心部または中層部が軟化
点以下とならない範囲内で急速に行なわれる。そのばあ
い発泡板(2)の表面に急冷により発生する熱ひずみ応
力は、該発泡板(2)を冷却後にひずみ温度雰囲気内を
通過せしめ再度表面温度を上昇させることで緩和される
ので発泡板(2)が破損するということはない。
The manufacturing method of the present invention is characterized by the cooling step following the above firing step. That is, the foam plate (2) foamed by firing is a pressure cooling roll (6) which is a pressure cooling means.
It is cooled by being pressed by the fusion molding and at the same time, but at this time, the center portion or middle layer portion of the foam plate (2) is softened by the direct contact between the roll (6) and the foam plate (2). It is performed rapidly within the range of not less than the point. In that case, the thermal strain stress generated by the rapid cooling on the surface of the foam plate (2) is relaxed by allowing the foam plate (2) to pass through a strain temperature atmosphere after cooling and raising the surface temperature again. (2) is not damaged.

従来のエアー吹付けによる冷却方法においては、発泡板
(2)に吹付けられたエアーは該発泡板(2)を冷却す
るとともに、炉内に拡散するため冷却位置より出口側の
炉内の雰囲気温度を降下させる。したがって一旦冷却さ
れた発泡板は、冷却後再度温度上昇することなく炉内雰
囲気温度で徐冷され炉外へ搬出される。しかるに本発明
における冷却は加圧冷却ロール(6)による接触冷却で
あるので炉内への冷風の流れはない。そのため急冷後の
発泡板(2)表面は、雰囲気温度により再度上昇するこ
とができ、急冷による熱ひずみ応力を緩和することがで
きるのである。すなわち、加圧冷却ロール(6)による
急冷後において、発泡板(2)の中心部または中層部は
軟化点または除冷点にある一方、表面は接触急冷により
固定し引張応力が発生するが、再度の加熱によって前記
応力が緩和されるとともに中心部または中層部の熱が表
面へ移行して発泡体の温度の均一化を早めるので熱ひず
み応力が緩和される。
In the conventional cooling method by blowing air, the air blown to the foam plate (2) cools the foam plate (2) and diffuses into the furnace, so that the atmosphere in the furnace on the outlet side from the cooling position is the atmosphere. Lower the temperature. Therefore, the foam plate once cooled is gradually cooled to the ambient temperature of the furnace without being heated again after being cooled and is carried out of the furnace. However, since cooling in the present invention is contact cooling by the pressure cooling roll (6), there is no flow of cold air into the furnace. Therefore, the surface of the foamed plate (2) after the rapid cooling can be raised again depending on the ambient temperature, and the thermal strain stress due to the rapid cooling can be relaxed. That is, after being rapidly cooled by the pressure cooling roll (6), the center portion or middle layer portion of the foam plate (2) is at the softening point or the cooling point, while the surface is fixed by the contact quenching and tensile stress is generated. By the reheating, the stress is relieved, and the heat of the central portion or the middle layer portion is transferred to the surface to accelerate the uniformization of the temperature of the foam, so that the heat strain stress is relieved.

加圧冷却ロール(6)の冷却源としては水またはエアー
などの流体を用いることができる。ロール(6)の表面
温度は発泡板(2)の温度、粘性、生産スピードなどを
考慮して決定すればよく、任意に設定することができ
る。温度制御はたとえば冷却水もしくは冷却空気の流量
をコントロールすることで行えばよく、それにより加圧
冷却ロール(6)の表面温度を一定に保つことができ
る。本発明においては、もちろん前記以外の制御方法に
よってもロール(6)の表面温度を調整することが可能
である。
A fluid such as water or air can be used as a cooling source of the pressure cooling roll (6). The surface temperature of the roll (6) may be determined in consideration of the temperature, viscosity, production speed, etc. of the foam plate (2) and can be set arbitrarily. The temperature control may be carried out, for example, by controlling the flow rate of cooling water or cooling air, whereby the surface temperature of the pressurized cooling roll (6) can be kept constant. In the present invention, of course, the surface temperature of the roll (6) can be adjusted by a control method other than the above.

また前述した加圧冷却工程において、発泡板(2)は加
圧冷却ロール(6)直前でベルトコンベア(3)から離
れ、上面、下面ともに該ロール(6)により直接に、す
なわちベルトコンベア(3)を介することなく加圧され
るため発泡板(2)の両面を平滑にすることができる。
In the pressure cooling step described above, the foam plate (2) is separated from the belt conveyor (3) immediately before the pressure cooling roll (6), and both the upper surface and the lower surface are directly fed by the roll (6), that is, the belt conveyor (3). (2) Since the pressure is applied without passing through, it is possible to make both surfaces of the foam plate (2) smooth.

第1図に示すように、発泡板(2)は加圧冷却ロール
(6)により加圧冷却された後は、搬送ロール(7)上
を炉の出口方向へと移動する。
As shown in FIG. 1, the foam plate (2) is pressure cooled by the pressure cooling roll (6), and then moves on the transport roll (7) toward the exit of the furnace.

この移動中に前述したごとく、発泡板(2)の表面温度
は炉内の雰囲気温度によって再度上昇され、急冷により
生じた熱ひずみ応力が緩和される。
During this movement, as described above, the surface temperature of the foam plate (2) is raised again by the atmospheric temperature in the furnace, and the thermal strain stress generated by the rapid cooling is relaxed.

焼成炉内の雰囲気温度は、発泡板(2)の徐冷および再
昇温という観点から、350〜900℃の範囲内にあるのが好
ましい。この範囲内での最適値は、発泡板(2)の原料
の種類、ベルトコンベア(3)の移動速度などの諸条件
に応じて決定されるが、本発明の目的を達成するために
は発泡体(2)の転移温度以上に設定する必要がある。
またロールの表面温度の最適値も、発泡板(2)の原料
の種類、ベルトコンベア(3)の移動速度などに応じて
決定される。
The atmosphere temperature in the firing furnace is preferably in the range of 350 to 900 ° C. from the viewpoint of gradual cooling and re-heating of the foam plate (2). The optimum value within this range is determined according to various conditions such as the type of raw material of the foam plate (2) and the moving speed of the belt conveyor (3), but in order to achieve the object of the present invention, foaming is performed. It is necessary to set it above the transition temperature of the body (2).
The optimum value of the surface temperature of the roll is also determined according to the type of raw material of the foam plate (2), the moving speed of the belt conveyor (3), and the like.

本発明においては、発泡板(2)の中心部または中層部
が軟化点以下とならない範囲内でロールにより冷却が行
なわれるが、この際、前述したごとく表面は内部より温
度降下が早いので引張応力が発生し、内部には圧縮応力
が発生する。
In the present invention, the cooling is performed by the rolls within the range where the center or middle layer of the foam plate (2) does not become lower than the softening point. Occurs, and a compressive stress is generated inside.

急冷後において、発泡板(2)が軟化点以上の高温にあ
るときは、熱応力は短時間で緩和され、表面と内部の温
度差の存在にもかかわらず応力のない状態となるが徐冷
に時間がかかるので好ましくない。本発明において転移
温度雰囲気内で再度発泡板(2)を加熱することにより
安全かつ短時間に冷却を行なうことができる。
After the rapid cooling, when the foam plate (2) is at a high temperature above the softening point, the thermal stress is relieved in a short time and becomes stress-free in spite of the temperature difference between the surface and the inside, but is gradually cooled. It is not preferable because it takes time. In the present invention, by cooling the foam plate (2) again in the transition temperature atmosphere, cooling can be performed safely and in a short time.

つぎに実施例にもとづき本発明の製造方法およびそれに
用いる焼成炉を説明するが本発明はかかる実施例に限定
されるものではない。
Next, the production method of the present invention and the firing furnace used therefor will be explained based on examples, but the present invention is not limited to these examples.

実施例1 長野白土82.5%(重量%、以下同じ)、ソーダ灰12%、
ドロマイト5%、SiC0.5%からなる原料(軟化点:680
℃、転移点630℃)を配合造粒したものを供給ホッパよ
りベルトコンベア上へ供給し、以下のごとき条件で焼成
を行なった。焼成後の冷却は加圧冷却ロールによる接触
急冷法を採用した。
Example 1 Nagano clay 82.5% (weight%, the same applies hereinafter), soda ash 12%,
Raw material consisting of 5% dolomite and 0.5% SiC (softening point: 680
C., transition point 630.degree. C.) was mixed and granulated, and the mixture was supplied from a supply hopper onto a belt conveyor and fired under the following conditions. For cooling after firing, a contact quenching method using a pressure cooling roll was adopted.

焼成温度 :1020℃ 急冷後の発泡体 内部の温度 : 730〜680℃ 冷却加圧後の炉 内の雰囲気温度: 650〜630℃ コンベアの移動 速度 :28cm/分 えられた発泡板は表面にクラックなどの発生がなく、表
裏両面とも均質でかつ平滑な仕上り状態であった。
Baking temperature: 1020 ℃ Temperature inside the foam after quenching: 730 to 680 ℃ Ambient temperature in the furnace after cooling and pressurizing: 650 to 630 ℃ Moving speed of the conveyor: 28cm / min The foamed plate cracked on the surface There was no such occurrence, and both the front and back sides were in a homogeneous and smooth finished state.

実施例1の製造時間と発泡体の表面温度との関係を第2
図に示す。
Second, the relationship between the manufacturing time and the surface temperature of the foam in Example 1 is
Shown in the figure.

第2図において(a)は焼成開始地点、(b)は冷却開
始地点、(c)は冷却終了地点、(d)は炉の出口地点
を表わしている。第2図より明らかなように発泡板の表
面温度は、ロールによる接触冷却により急激に温度が低
下するがロールにより冷却された後、再び温度が上昇し
ている。その後再度温度は徐々に低下し、所定の温度
(120℃)に達するのに90分を要した。
In FIG. 2, (a) shows the firing start point, (b) shows the cooling start point, (c) shows the cooling end point, and (d) shows the exit point of the furnace. As is clear from FIG. 2, the surface temperature of the foam plate is rapidly lowered by the contact cooling by the rolls, but is increased again after being cooled by the rolls. After that, the temperature gradually decreased again, and it took 90 minutes to reach the predetermined temperature (120 ° C).

実施例2 長野白土64.5%、ガラス粉30%、ドロマイト5%、SiC
0.5%からなる原料(軟化点D:720℃、転移点:630℃)を
配合造粒したものを供給ホッパーよりベルトコンベア上
へ供給し、以下のごとき条件で焼成を行なった。焼成後
の冷却は加圧冷却ロールによる接触急冷却を採用した。
Example 2 Nagano clay 64.5%, glass powder 30%, dolomite 5%, SiC
A raw material consisting of 0.5% (softening point D: 720 ° C., transition point: 630 ° C.) was blended and granulated, and the mixture was fed onto a belt conveyor from a feed hopper, and fired under the following conditions. For cooling after firing, contact rapid cooling with a pressure cooling roll was adopted.

焼成温度 :1050℃ 急冷後の発泡体 内部の温度 : 770〜720℃ 冷却加圧後の炉 内の雰囲気温度: 680〜630℃ コンベアの移動 速度 :28cm/分 えられた発泡板は表面にクラックなどの発生がなく、表
裏両面とも均質でかつ平滑な仕上り状態であった。
Firing temperature: 1050 ℃ Temperature inside the foam after quenching: 770-720 ℃ Ambient temperature in the furnace after cooling and pressurizing: 680-630 ℃ Moving speed of conveyor: 28cm / min The foamed plate cracked on the surface There was no such occurrence, and both the front and back sides were in a homogeneous and smooth finished state.

実施例3 ガラス粉50%、珪石粉20%、硼砂14.5%、長野白土10
%、珪フッ化ソーダ5%、SiC0.5%からなる原料(軟化
点:580℃、転移点480℃)を配合造粒したものを供給ホ
ッパーよりベルトコンベア上へ供給し、以下のごとき条
件で焼成を行なった。焼成後の冷却は加圧冷却ロールに
よる接触急冷法を採用した。
Example 3 Glass powder 50%, silica stone powder 20%, borax 14.5%, Nagano clay 10
%, 5% sodium silicofluoride, and 0.5% SiC (softening point: 580 ° C, transition point 480 ° C) are blended and granulated, and then the mixture is supplied from the supply hopper onto the belt conveyor under the following conditions. Firing was performed. For cooling after firing, a contact quenching method using a pressure cooling roll was adopted.

焼成温度 : 730℃ 急冷後の発泡体 内部の温度 : 630〜580℃ 冷却加圧後の炉 内の雰囲気温度: 550〜480℃ コンベアの移動 速度 :28cm/分 えられた発泡板は表面にクラックなどの発生がなく、表
裏両面とも均質でかつ平滑な仕上り状態であった。
Firing temperature: 730 ℃ Temperature inside the foam after quenching: 630 to 580 ℃ Ambient temperature in the furnace after cooling and pressurizing: 550 to 480 ℃ Conveyor moving speed: 28 cm / min The foamed plate cracked on the surface There was no such occurrence, and both the front and back sides were in a homogeneous and smooth finished state.

比較例1 焼成後の冷却にエアー吹付け法を採用した以外は実施例
1と同様にして発泡板を製造した。
Comparative Example 1 A foam plate was produced in the same manner as in Example 1 except that an air blowing method was used for cooling after firing.

えられた発泡板表面には第3図に示すような多数のクラ
ックが認められた。
A large number of cracks as shown in FIG. 3 were recognized on the surface of the obtained foam plate.

比較例2 焼成後の冷却にエアー吹付け法を採用した以外は実施例
2と同様にして発泡板を製造した。
Comparative Example 2 A foam plate was produced in the same manner as in Example 2 except that the air blowing method was adopted for cooling after firing.

えられた発泡板表面には第4図に示すようなクラックが
認められた。
Cracks as shown in FIG. 4 were recognized on the surface of the obtained foam plate.

比較例3 焼成後の冷却にエアー吹付け法を採用した以外は実施例
3と同様にして発泡板を製造した。
Comparative Example 3 A foam plate was produced in the same manner as in Example 3 except that the air blowing method was used for cooling after firing.

えられた発泡体表面には第5図に示すようなクラックが
認められた。
Cracks as shown in FIG. 5 were recognized on the surface of the obtained foam.

比較例4 焼成後の冷却にエアー吹付け法を採用し、かつコンベア
の移動速度を19cm/分とした以外は実施例1と同様にし
て発泡板を製造した。
Comparative Example 4 A foam plate was produced in the same manner as in Example 1 except that the air blowing method was adopted for cooling after firing and the moving speed of the conveyor was 19 cm / min.

えられた発泡板は表面にクラックなどの発生がなく、表
裏両面とも均質な仕上り状態であった。
The obtained foam plate had no cracks on the surface, and both the front and back surfaces were in a homogeneous finished state.

比較例4の製造時間と発泡体の表面温度との関係を第2
図に示す。第2図より明らかなように発泡板の表面温度
は、エアー吹付けの冷却により急激に温度が低下し、吹
付け後は自然冷却により徐々に温度が低下している。所
定の温度(120℃)に達するのに130分を要した。
Second, the relationship between the manufacturing time and the surface temperature of the foam in Comparative Example 4 is
Shown in the figure. As is clear from FIG. 2, the surface temperature of the foam plate is rapidly lowered by cooling by blowing air, and is gradually lowered by natural cooling after blowing. It took 130 minutes to reach the prescribed temperature (120 ° C).

比較例5 焼成後の冷却にエアー吹付け法を採用し、かつコンベア
の移動速度を17cm/分とした以外は実施例2と同様にし
て発泡板を製造した。
Comparative Example 5 A foam plate was produced in the same manner as in Example 2 except that the air blowing method was used for cooling after firing and the moving speed of the conveyor was 17 cm / min.

えられた発泡板は表面にクラックなどの発生がなく、表
裏両面とも均質な仕上り状態であった。
The obtained foam plate had no cracks on the surface, and both the front and back surfaces were in a homogeneous finished state.

比較例6 焼成後の冷却にエアー吹付け法を採用し、発泡板下面を
ベルトコンベアを介して加圧し、かつコンベアの移動速
度を21cm/分とした以外は実施例3と同様にして発泡板
を製造した。
Comparative Example 6 A foam plate was prepared in the same manner as in Example 3 except that an air blowing method was adopted for cooling after firing, the lower surface of the foam plate was pressed through a belt conveyor, and the moving speed of the conveyor was 21 cm / min. Was manufactured.

えられた発泡板は表面にクラックなどの発生はなかった
が、下面の平滑性は実施例3より劣っていた。
The obtained foam plate had no surface cracks, but the lower surface was inferior in smoothness to Example 3.

第2図より、本発明の製造法によるときは、エアー吹付
けによる冷却法を採用する従来の製造法に比較して、短
時間に発泡体の表面温度を所定に温度にまで下げうるこ
とがわかる。
From FIG. 2, according to the manufacturing method of the present invention, it is possible to lower the surface temperature of the foam to a predetermined temperature in a short time as compared with the conventional manufacturing method which employs the cooling method by blowing air. Recognize.

[発明の効果] 以上詳説せるごとく、本発明の製造方法および焼成炉に
よれば発泡板に熱ひずみ応力による破損を生ぜしめるこ
となく冷却速度を大きくすることができる。すなわち昇
温から冷却に至る製造時間を短縮して生産効率をアップ
することが可能となり、それにより製品のコストダウン
を図ることができる。
[Effects of the Invention] As described in detail above, according to the manufacturing method and the firing furnace of the present invention, the cooling rate can be increased without causing damage to the foam plate due to thermal strain stress. That is, it becomes possible to shorten the manufacturing time from the temperature rise to the cooling and improve the production efficiency, and thereby reduce the cost of the product.

また加圧冷却はロールにより直接に発泡板の両面から行
なわれるので、厚さ方向の寸法精度が優れるとともに両
面とも均質かつ平滑で優れた仕上りの発泡板をうること
ができる。
Further, since the pressure cooling is performed directly from both sides of the foamed plate by the roll, it is possible to obtain a foamed plate which is excellent in dimensional accuracy in the thickness direction and is homogeneous and smooth on both sides.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の焼成炉の一実施例を示す概略説明図、
第2図は本発明の実施例1および比較例4における発泡
板の製造時間と表面温度との関係をあらわす図、第3〜
5図はそれぞれ比較例1〜3において製造された発泡板
の表面状態をあらわす図である。 (図面の主要符号) (1):焼成炉 (2):発泡板 (3):ベルトコンベア (6):加圧冷却ロール
FIG. 1 is a schematic explanatory view showing an embodiment of a firing furnace of the present invention,
FIG. 2 is a diagram showing the relationship between the manufacturing time and the surface temperature of the foam plate in Example 1 of the present invention and Comparative Example 4, and FIGS.
FIG. 5 is a view showing the surface condition of the foam plates manufactured in Comparative Examples 1 to 3, respectively. (Main symbols in the drawing) (1): Baking furnace (2): Foam plate (3): Belt conveyor (6): Pressurized cooling roll

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮澤 貴俊 大阪府豊中市新千里西町1丁目1番12号 ナショナル住宅産業株式会社内 (56)参考文献 実公 昭53−50759(JP,Y2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takatoshi Miyazawa 1-1-12 Shinsenri Nishimachi, Toyonaka City, Osaka Prefecture National Housing Industry Co., Ltd. (56) References

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】発泡性無機質原料を焼成炉内で加熱、押圧
して発泡板を製造するに際し、前記焼成炉内の冷却帯に
設けられかつ前記発泡板の上面および下面と直接に接触
する加圧冷却手段により焼成後の発泡板を急冷し、その
後該発泡板の表面温度を、雰囲気温度が350〜900℃であ
る前記冷却帯の雰囲気で再度上昇させることを特徴とす
る発泡板の製造方法。
1. When a foamable inorganic raw material is heated and pressed in a firing furnace to produce a foamed plate, a heating plate provided in a cooling zone in the firing furnace and directly contacting an upper surface and a lower surface of the foamed plate. A method for producing a foam plate, characterized in that the foam plate after firing is rapidly cooled by a pressure cooling means, and then the surface temperature of the foam plate is raised again in the atmosphere of the cooling zone in which the ambient temperature is 350 to 900 ° C. .
【請求項2】炉内を走行するベルトコンベア上で発泡性
無機質原料を加熱、押圧して発泡板を形成する連続焼成
炉であって、該焼成炉内には入口から出口に向って順に
昇温帯、焼成帯および冷却帯が設けられており、前記冷
却帯には前記発泡板の上面および下面と直接に接触回転
する少なくとも一対の冷却ロールが設けられており、該
冷却ロールの内部には前記発泡板を冷却するための流体
が流れており、前記ベルトコンベアが最初の冷却ロール
の直前に発泡板と分かれロールの外側を走行し、かつ、
最後の冷却ロールの直後から炉の出口付近までには発泡
板を搬送するための搬送ロールが設けられてなることを
特徴とする発泡板焼成炉。
2. A continuous firing furnace in which a foamable inorganic material is heated and pressed on a belt conveyor running in the furnace to form a foam plate, and the firing furnace is sequentially elevated from an inlet to an outlet. A temperature zone, a firing zone, and a cooling zone are provided, and the cooling zone is provided with at least a pair of cooling rolls that rotate in direct contact with the upper surface and the lower surface of the foam plate. A fluid for cooling the foam plate is flowing, the belt conveyor runs outside the roll separated from the foam plate immediately before the first cooling roll, and,
A foam plate baking furnace, characterized in that a carrier roll for carrying the foam plate is provided immediately after the last cooling roll to near the exit of the furnace.
【請求項3】前記冷却帯の雰囲気温度が350〜900℃であ
る特許請求の範囲第2項記載の焼成炉。
3. The firing furnace according to claim 2, wherein the ambient temperature of the cooling zone is 350 to 900 ° C.
JP61116880A 1986-05-21 1986-05-21 Method for manufacturing foam plate and firing furnace used therefor Expired - Fee Related JPH0676220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61116880A JPH0676220B2 (en) 1986-05-21 1986-05-21 Method for manufacturing foam plate and firing furnace used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61116880A JPH0676220B2 (en) 1986-05-21 1986-05-21 Method for manufacturing foam plate and firing furnace used therefor

Publications (2)

Publication Number Publication Date
JPS62275034A JPS62275034A (en) 1987-11-30
JPH0676220B2 true JPH0676220B2 (en) 1994-09-28

Family

ID=14697922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61116880A Expired - Fee Related JPH0676220B2 (en) 1986-05-21 1986-05-21 Method for manufacturing foam plate and firing furnace used therefor

Country Status (1)

Country Link
JP (1) JPH0676220B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO327599B1 (en) * 2005-11-17 2009-08-31 Has Holding As Underground oven for foaming glass materials
JP6417770B2 (en) * 2014-07-31 2018-11-07 Agc株式会社 Sheet glass forming apparatus and sheet glass forming method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530832Y2 (en) * 1976-09-30 1980-07-23

Also Published As

Publication number Publication date
JPS62275034A (en) 1987-11-30

Similar Documents

Publication Publication Date Title
US3532480A (en) Method of making multicellular glass
US3832429A (en) Method and apparatus for the production of sheet on block of agglomerated granules of polystryrene
US3056184A (en) Manufacture of uniform cellular ceramic articles
EP0291572B1 (en) Method of producing a porous ceramic panel
EP2297054B1 (en) Manufacturing method of cellular ceramic plates with asymmetrical cell structure
US2052324A (en) Art of ceramic kilning and making building units
US3151966A (en) Method of making glass foam
US4190416A (en) Process and apparatus for producing cellulated vitreous refractory material in prescribed shapes and products therefrom
JPH0676220B2 (en) Method for manufacturing foam plate and firing furnace used therefor
US3348933A (en) Method for making foam galss
US3800018A (en) Fabrication of cellular resinous products
US3745201A (en) Method of manufacturing ceramic foam bodies
US3163512A (en) Method of making cellular glass bodies
US1877138A (en) Process of bloating and annealing cellular blocks
JPS59162141A (en) Manufacture of foamed article using foamable ceramic as raw material
JPH02192475A (en) Ceramic foamed product and production thereof
JP2866708B2 (en) Continuous ceramic plate manufacturing equipment
JPS5839778B2 (en) Yellow-crowned Glass Hatsupoubanno Seizouhouhou Oyobi Souchi
CN1032913C (en) Production technology and apparatus for decorative glass block
USRE18844E (en) And sherman q
US3850715A (en) Method for cooling heat bloated inorganic articles
JP2637616B2 (en) Manufacturing method of inorganic foam board
RU2132834C1 (en) Method of fabricating porous building parts
JPS58122982A (en) Method and equipment for preparation of metallurgical coke
JPS58185207A (en) Manufacture of inorganic light foamed body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees