JPS62275034A - Production of foamed plate and kiln used therefor - Google Patents

Production of foamed plate and kiln used therefor

Info

Publication number
JPS62275034A
JPS62275034A JP11688086A JP11688086A JPS62275034A JP S62275034 A JPS62275034 A JP S62275034A JP 11688086 A JP11688086 A JP 11688086A JP 11688086 A JP11688086 A JP 11688086A JP S62275034 A JPS62275034 A JP S62275034A
Authority
JP
Japan
Prior art keywords
foam board
cooling
foamed plate
foamed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11688086A
Other languages
Japanese (ja)
Other versions
JPH0676220B2 (en
Inventor
Satoru Nagai
永井 了
Shigeo Yoshida
繁夫 吉田
Satoshi Kitagawa
聡 北川
Takatoshi Miyazawa
宮澤 貴俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National House Industrial Co Ltd
Takasago Industry Co Ltd
Original Assignee
National House Industrial Co Ltd
Takasago Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National House Industrial Co Ltd, Takasago Industry Co Ltd filed Critical National House Industrial Co Ltd
Priority to JP61116880A priority Critical patent/JPH0676220B2/en
Publication of JPS62275034A publication Critical patent/JPS62275034A/en
Publication of JPH0676220B2 publication Critical patent/JPH0676220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Tunnel Furnaces (AREA)

Abstract

PURPOSE:To produce a foamed plate excellent in performance in high productivity by pressing the foamed plate after calcination while quenching it by direct contact of a pressurization cooling means and thereafter reraising the surface temp. of the foamed plate. CONSTITUTION:A foamable mineral raw material obtained by pelletizing the mixture of artificial glass and porous volcanic rock or the like is fed on a belt conveyor 3 from a feed hopper 4 and evened by a preliminary roller 5 to regulation it to nearly uniform thickness and sent into a kiln 1. After raising it in temp. at a temp. raising zone of the kiln 1, it is heated in a calcination zone and foamed. The foamed plate 2 is directly brought into contact with pressurization cooling rolls 6 and quickly cooled in such a range that the central part of the foamed plate 2 is not reached to softening point or below. The surface of the foamed plate 2 after quenching is reraised in temp. by atmospheric temp. Thereby the ununiformity of temp. distribution of the foamed plate 2 is eliminated and the generation of thermal stress due to quenching is relaxed. Further since both the upper and the lower side are directly pressurized by the rolls 6, uniform and sure pressurization is performed and the foamed plate excellent in performance can be produced.

Description

【発明の詳細な説明】 3発明の詳細な説明   。[Detailed description of the invention] 3. Detailed description of the invention.

[産業上の利用分野] 本発明は発泡板の製造方法およびそれに用いられる焼成
炉に関する。
[Industrial Field of Application] The present invention relates to a method for manufacturing a foam board and a firing furnace used therein.

さらに詳しくは、焼成後の発泡板を加圧冷却手段の直接
接触により急冷しつつ押圧し、その後発泡板の表面温度
を再上昇させることで発泡板内におけるひずみ応力が緩
和され、性能の優れた発泡板をうることかできるととも
に、急冷することで生産速度すなわち生産性を高めるこ
とができる発泡板製造方法およびそれに用いられる焼成
炉に関する。
More specifically, the foamed board after firing is rapidly cooled and pressed by direct contact with a pressurized cooling means, and then the surface temperature of the foamed board is raised again to relieve the strain stress within the foamed board, resulting in excellent performance. The present invention relates to a method for manufacturing a foamed board that can increase the production rate, that is, productivity, by making the foamed board transparent and quenching it, and a firing furnace used therein.

[従来の技術] 従来より発泡板は、軽量で取扱いが容易であり、保温性
、耐火性、耐久性などに優れているためプレハブ住宅な
どにおいて多用されている。
[Prior Art] Foam boards have traditionally been widely used in prefabricated houses because they are lightweight, easy to handle, and have excellent heat retention, fire resistance, and durability.

かかる発泡板は、一般に天然ガラス、人ニガラス、多孔
質火山岩、火成岩、堆積岩、凝灰岩などを主原料とし、
これらを加熱発泡せしめ、その後えられた発泡板を加圧
ロールなどで加圧して融着させ同時に成形することでえ
られる。
Such foam boards are generally made of natural glass, human glass, porous volcanic rock, igneous rock, sedimentary rock, tuff, etc. as the main raw materials.
It can be obtained by heating and foaming these, and then pressurizing and fusing the resulting foam board with a pressure roll or the like, and molding at the same time.

以上の工程は、通常、炉内にて連続的に行なわれ、炉内
を走行するベルト上に供給された膨張性物質は昇温、焼
成、冷却の各工程を経た後に所望の形状の発泡板として
炉内より搬出される。
The above steps are usually carried out continuously in a furnace, and the expandable material supplied onto the belt running in the furnace undergoes the steps of heating, firing, and cooling, and then forms a foam plate in the desired shape. It is carried out from the furnace as

ところで前記冷却工程において発泡板の表面を急冷する
と、該表面付近は急速に温度が降下し、表面付近と内部
の温度分布が不均一となり、そのため表面付近には引張
り応力が、また内部には圧縮応力が発生し、これらの応
力により発泡板が破損してしまうという問題が生じる。
By the way, when the surface of the foam board is rapidly cooled in the cooling process, the temperature near the surface drops rapidly, and the temperature distribution near the surface and inside becomes uneven, resulting in tensile stress near the surface and compressive stress inside. A problem arises in that stress is generated and the foam board is damaged due to these stresses.

とくに徐冷点からひずみ点に至るあいだに熱ひずみ応力
を生じ易く、発泡板の肉厚方向の温度不均一が数℃以上
になり発泡体が熱応力により破損してしまうという問題
がある。
In particular, thermal strain stress is likely to occur between the annealing point and the strain point, and there is a problem in that the temperature non-uniformity in the thickness direction of the foam board becomes several degrees Celsius or more, causing the foam to break due to the thermal stress.

そこでかかる熱応力による発泡板の破損を防止するため
に、従来においては、冷却方法として発泡板の上面およ
び下面にエアーを吹き付けるという方法が採用されてお
り、このばあい発泡板の温度分布の均一性を保つために
冷却時間を長く設定し、徐々に発泡板を冷却するように
している。
In order to prevent damage to the foam board due to such thermal stress, a conventional method of cooling has been to blow air onto the top and bottom surfaces of the foam board.In this case, the temperature distribution of the foam board is uniform. In order to maintain its properties, the cooling time is set long and the foam board is gradually cooled down.

また、発泡板の加圧は実公昭53−50759に示され
るように、発泡板の下面にベルトコンベアを介して加圧
していた。
Further, as shown in Japanese Utility Model Publication No. 53-50759, the foam board was pressurized by applying pressure to the lower surface of the foam board via a belt conveyor.

[発明が解決しようとする問題点コ しかしながら前述したエアー吹付けによる冷却方法は、
冷却速度を速く設定することができずしたがって冷却に
時間がかかり、発泡板の生産効率を高めようとする際の
大きな障害になるという問題があった。
[Problems to be solved by the invention However, the above-mentioned cooling method using air blowing
There has been a problem in that the cooling rate cannot be set quickly, and therefore cooling takes time, which is a major hindrance when trying to improve the production efficiency of foam boards.

この問題は発泡板の肉厚が増加するほど全工程時間にし
める冷却時間のウエートが大きくなるため一層顕著なも
のとなっていた。
This problem has become more pronounced as the thickness of the foam board increases, since the cooling time takes up a larger portion of the total process time.

さらに従来方法においては、発泡板の下面にベルトコン
ベアを介して該発泡板を加圧していたので、厚さ方向の
寸法精度が低くなるとともに発泡板の下面の平滑性かえ
られないという問題があった。
Furthermore, in the conventional method, pressure was applied to the bottom surface of the foam board via a belt conveyor, which resulted in problems in that the dimensional accuracy in the thickness direction decreased and the smoothness of the bottom surface of the foam board could not be changed. Ta.

本発明は斜上の事情に鑑み、前記従来例の有する欠点が
解消された発泡板の製造方法およびそれに用いられる焼
成炉を提供することを目的とする。すなわち、ロールな
どの加圧冷却手段により直接に発泡体を急冷することで
、冷却時間を短縮することができ、もって生産効率をア
ップし、製品のコストダウンを図ることができるととも
に、ベルトコンベアを介することなく直接に発泡板を加
圧することで、厚さ方向の寸法精度が高く、上下面とと
もに優れた平滑性を有する発泡板の製造方法およびそれ
に用いられる焼成炉を提供することを目的とする。その
ばあい急冷による熱応力の発生は、急冷後に発泡板をひ
ずみ温度雰囲気内を通して再度表面温度を昇温せしめ発
泡板の温度分布の不均一を解消することで緩和されるの
で、発泡板が破損するということはない。
In view of the above-mentioned problem, the present invention aims to provide a method for manufacturing a foam board and a firing furnace used therein, which eliminates the drawbacks of the conventional example. In other words, by directly rapidly cooling the foam using a pressurized cooling means such as a roll, it is possible to shorten the cooling time, thereby increasing production efficiency and reducing product costs. The purpose of the present invention is to provide a method for manufacturing a foam board that has high dimensional accuracy in the thickness direction and excellent smoothness on both the upper and lower surfaces by directly pressurizing the foam board without using any media, and to provide a firing furnace used therein. . In that case, the occurrence of thermal stress due to rapid cooling can be alleviated by passing the foam board through a strain temperature atmosphere after quenching and raising the surface temperature again to eliminate uneven temperature distribution on the foam board, causing damage to the foam board. There is no such thing as doing so.

[問題点を解決するための手段] 本発明の製造方法は、発泡性無機質原料を焼成炉内で加
熱、押圧して発泡板を製造するに際し、前記焼成炉内の
冷却帯に設けられかつ前記発泡板の上面および下面と直
接に接触する加圧冷却手段により焼成後の発泡板を急冷
し、その後該発泡板の表面温度を前記温度帯の雰囲気で
再度上昇させることを特徴としている。
[Means for Solving the Problems] The manufacturing method of the present invention is such that when manufacturing a foam board by heating and pressing a foamable inorganic raw material in a firing furnace, the manufacturing method is provided in a cooling zone in the firing furnace and the The method is characterized in that the fired foam board is rapidly cooled by a pressurized cooling means that is in direct contact with the upper and lower surfaces of the foam board, and then the surface temperature of the foam board is raised again in an atmosphere within the above temperature range.

また前記方法に用いられる本発明の焼成炉は、炉内を走
行するベルトコンベア上で発泡性無機質原料を加熱、抑
圧して発泡板を形成する連続焼成炉において、該焼成炉
内の冷却帯に前記発泡板の上面および下面と接触回転す
る少なくとも一対のロールを設け、前記ベルトコンベア
が最初のロールの直前に発泡板と分かれロールの外側を
走行し、前記ロールがその内部に通ぜしめられた流体に
より前記発泡板を冷却することを特徴としている。
Further, the firing furnace of the present invention used in the above method is a continuous firing furnace in which a foamed inorganic raw material is heated and suppressed on a belt conveyor running inside the furnace to form a foam board, and a cooling zone in the firing furnace is provided. At least a pair of rolls are provided that rotate in contact with the upper and lower surfaces of the foam board, and the belt conveyor separates from the foam board just before the first roll and runs outside the rolls, and the roll is passed inside thereof. It is characterized in that the foam board is cooled by a fluid.

[作 用コ 本発明の発泡板の製造方法において、発泡板は該発泡板
の上面および下面と直接接触回転するロールにより急速
に冷却されるとともに、急冷後においてひずみ温度雰囲
気内を通過することで再度表面温度が上昇し発泡板の温
度分布の不均一が解消されるので、急冷による熱応力の
発生が緩和される。
[Function] In the method for manufacturing a foamed board of the present invention, the foamed board is rapidly cooled by rolls that rotate in direct contact with the upper and lower surfaces of the foamed board, and after being rapidly cooled, the foamed board is passed through a strain temperature atmosphere. Since the surface temperature rises again and the non-uniformity of the temperature distribution of the foam board is eliminated, the generation of thermal stress due to rapid cooling is alleviated.

また、上面、下面ともに直接にロールで加圧されるので
、均一かつ確実な加圧が行なわれる。
Furthermore, since both the upper and lower surfaces are directly pressed by rolls, uniform and reliable pressure can be achieved.

[実施例] つぎに図面に基づき本発明の製造方法およびそれに用い
られる焼成炉を説明する。
[Example] Next, the manufacturing method of the present invention and the firing furnace used therein will be explained based on the drawings.

第1図は本発明の焼成炉の一実施例を示す概略説明図で
ある。図において(1)は焼成炉であって該焼成炉(1
)内には発泡板(2)を搬走するベルトコンベア(3)
が設置されている。該ベルトコンベア(3)は発泡時の
揮散成分を上下面から均一拡散させ、かつ、上下面とも
に均一な熱伝達を行なうためメツシュ状のものを用いる
のが好ましく、たとえばステンレスメツシュベルトにセ
ラミックコーティングしたもの、セラミックベルトなど
が用いられる。
FIG. 1 is a schematic explanatory diagram showing an embodiment of the firing furnace of the present invention. In the figure, (1) is a firing furnace.
) is a belt conveyor (3) that transports the foam board (2).
is installed. The belt conveyor (3) is preferably mesh-shaped in order to uniformly diffuse the volatile components during foaming from the upper and lower surfaces and to perform uniform heat transfer on both the upper and lower surfaces. A ceramic belt or the like is used.

被焼成体である発泡性無機質原料としては、天然ガラス
、人ニガラス、多孔質火山岩、火成岩、凝灰岩などから
なる混合物をベレット化したものが用いられ、該ベレッ
トは供給ホッパー(4)よりベルトコンベア(3)上に
適宜の全供給される。供給されたペレットは、予備ロー
ラ(5)によりならされてほぼ均一な厚さとなって焼成
炉(1)内へ送り込まれる。その後ベレットは昇温ゾー
ンで昇lHされた後、焼成ゾーンで加熱され発泡する。
The foamable inorganic raw material to be fired is a pellet made from a mixture of natural glass, human glass, porous volcanic rock, igneous rock, tuff, etc., and the pellet is conveyed from the supply hopper (4) to the belt conveyor ( 3) Appropriate total supply on top. The supplied pellets are smoothed by a preliminary roller (5) to have a substantially uniform thickness, and then sent into the firing furnace (1). Thereafter, the pellet is heated to 1H in a temperature raising zone, and then heated and foamed in a firing zone.

昇温は原料の粒度、配合などにより異なるが、たとえば
1分間に80℃の割合で昇温すればよく本発明において
はとくに限定されるものではない。焼成温度も昇温同様
に原料の粒度、発泡速度、原料の気孔径の均一性などに
より異なるが概ね700〜1100°Cが目安である。
Although the temperature increase varies depending on the particle size and composition of the raw materials, it is sufficient to increase the temperature at a rate of 80° C. per minute, for example, and is not particularly limited in the present invention. The firing temperature also varies depending on the particle size of the raw material, the foaming rate, the uniformity of the pore size of the raw material, etc., as well as the temperature increase, but it is generally 700 to 1100°C.

また焼成時間も原料の溶融温度、原料の発泡速度、原料
の気孔径の均一性などに応じて適宜選定すればよい。
Furthermore, the firing time may be appropriately selected depending on the melting temperature of the raw material, the foaming rate of the raw material, the uniformity of the pore diameter of the raw material, and the like.

本発明の製造方法においては、以上の焼成工程に続く冷
却工程に特徴がある。すなわち焼成により発泡した発泡
板(2)は、加圧冷却手段である加圧冷却ロール(6)
により加圧されて融着成形されると同時に冷却されるが
、この際冷却はロール(6)と発泡板(2)との直接接
触により、発泡板(2)の中心部または中層部が軟化点
以下とならない範囲内で急速に行なわれる。そのばあい
発泡板(2)の表面に急冷により発生する熱ひずみ応力
は、該発泡板(2)を冷却後にひずみ温度雰囲気内を通
過せしめ再度表面温度を上昇させることで緩和されるの
で発泡板(2)が破損するということはない。
The manufacturing method of the present invention is characterized by the cooling step that follows the above firing step. That is, the foam board (2) foamed by firing is cooled by a pressure cooling roll (6) which is a pressure cooling means.
The foam board (2) is pressurized and fusion-molded and cooled at the same time.At this time, the cooling is done by direct contact between the roll (6) and the foam board (2), so that the center or middle layer of the foam board (2) softens. It is carried out rapidly within a range that does not drop below the point. In that case, the thermal strain stress generated on the surface of the foam board (2) by rapid cooling is relieved by passing the foam board (2) through a strain temperature atmosphere after cooling and raising the surface temperature again. (2) will not be damaged.

従来のエアー吹付けによる冷却方法においては、発泡板
(2)に吹付けられたエアーは該発泡板(2)を冷却す
るとともに、炉内に拡散するため冷却位置より出口側の
炉内の雰囲気温度を降下させる。したがって一旦冷却さ
れた発泡板は、冷却後再度温度上昇することなく炉内雰
囲気温度で徐冷され炉外へ搬出される。しかるに本発明
における冷却は加圧冷却ロール(6)による接触冷却で
あるので炉内への冷風の流れはない。そのため急冷後の
発泡板(2)表面は、雰囲気温度により再度上昇するこ
とができ、急冷による熱ひずみ応力を緩和することがで
きるのである。すなわち、加圧冷却ロール(6)による
急冷後において、発泡板(2)の中心部または中層部は
軟化点または徐冷点にある一方、表面は接触急冷により
固化し引張応力が発生するが、再度の加熱によって前記
応力が緩和されるとともに中心部または中層部の熱が表
面へ移行して発泡体の温度の均一化を早めるので熱ひず
み応力が緩和される。
In the conventional cooling method using air blowing, the air blown onto the foam board (2) cools the foam board (2) and diffuses into the furnace, so that the atmosphere inside the furnace on the exit side from the cooling position is lower the temperature. Therefore, once cooled, the foam board is gradually cooled at the furnace atmosphere temperature and transported out of the furnace without the temperature rising again. However, since the cooling in the present invention is contact cooling using the pressurized cooling roll (6), there is no flow of cold air into the furnace. Therefore, the surface of the foam board (2) after quenching can be raised again by the ambient temperature, and the thermal strain stress caused by the quenching can be alleviated. That is, after quenching with the pressurized cooling roll (6), the center or middle layer of the foam board (2) is at the softening point or annealing point, while the surface is solidified by contact quenching and tensile stress is generated. By heating again, the stress is alleviated, and the heat in the center or middle layer is transferred to the surface, which speeds up the uniformization of the temperature of the foam, thereby alleviating the thermal strain stress.

加圧冷却ロール(6)の冷却源としては水またはエアー
などの流体を用いることができる。ロール(6)の表面
温度は発泡板(2)のlK度、粘性、生産スピードなど
を考慮して決定すればよく、任意に設定することができ
る。温度制御はたとえば冷却水もしくは冷却空気の流量
をコントロールすることで行えばよく、それにより加圧
冷却ロール(6)の表面温度を一定に保つことができる
A fluid such as water or air can be used as a cooling source for the pressurized cooling roll (6). The surface temperature of the roll (6) may be determined in consideration of the lK degree, viscosity, production speed, etc. of the foam board (2), and can be set arbitrarily. Temperature control may be performed, for example, by controlling the flow rate of cooling water or cooling air, whereby the surface temperature of the pressurized cooling roll (6) can be kept constant.

本発明においては、もちろん前記以外の制御方法によっ
てもロール(6)の表面温度を調整することが可能であ
る。
In the present invention, it is of course possible to adjust the surface temperature of the roll (6) using control methods other than those described above.

また前述した加圧冷却工程において、発泡板(2)は加
圧冷却ロール(6)直前でベルトコンベア(3)から離
れ、上面、下面ともに該ロール(6)により直接に、す
なわちベルトコンベア(3)を介することなく加圧され
るため発泡板(2)の両面を平滑にすることができる。
Further, in the above-mentioned pressure cooling process, the foam board (2) is separated from the belt conveyor (3) immediately before the pressure cooling roll (6), and both the upper and lower surfaces are directly affected by the roll (6), that is, the foam board (2) is ), both sides of the foam board (2) can be made smooth.

第1図に示すように、発泡板(2)は加圧冷却ロール(
6)により加圧冷却された後は、搬送ロール(7)上を
炉の出口方向へと移動する。
As shown in Figure 1, the foam board (2) is placed on a pressure cooling roll (
After being pressurized and cooled by step 6), it is moved on conveyor rolls (7) toward the exit of the furnace.

この移動中に前述したごとく、発泡板(2)の表面温度
は炉内の雰囲気温度によって再度上昇され、急冷により
生じた熱ひずみ応力が緩和される。
During this movement, as described above, the surface temperature of the foam board (2) is raised again by the atmospheric temperature in the furnace, and the thermal strain stress caused by the rapid cooling is alleviated.

焼成炉内の雰囲気温度は、発泡板(2)の徐冷および再
昇温という観点から 350〜900℃の範囲内にある
のが好ましい。この範囲内での最適値は、発泡板(2)
の原料の種類、ベルトコンベア(3)の移動速度などの
諸条件に応じて決定されるが、本発明の目的を達成する
ためには発泡体(2)の転移温度以上に設定する必要が
ある。またロールの表面温度の最適値も、発泡板(2)
の原料の種類、ベルトコンベア(3)の移動速度などに
応じて決定される。
The ambient temperature in the firing furnace is preferably within the range of 350 to 900°C from the viewpoint of slow cooling and reheating of the foam board (2). The optimal value within this range is foam board (2)
Although it is determined depending on various conditions such as the type of raw material and the moving speed of the belt conveyor (3), it is necessary to set the temperature to be higher than the transition temperature of the foam (2) in order to achieve the purpose of the present invention. . The optimum value for the surface temperature of the roll is also determined by the foam board (2).
It is determined depending on the type of raw material, the moving speed of the belt conveyor (3), etc.

本発明においては、発泡板(2)の中心部または中層部
が軟化点以下とならない範囲内でロールにより冷却が行
なわれるが、この際、前述したごとく表面は内部より温
度降下が早いので引張応力が発生し、内部には圧縮応力
が発生する。
In the present invention, cooling is performed by rolls within a range in which the center or middle layer of the foam board (2) does not fall below the softening point, but at this time, as mentioned above, the surface temperature drops faster than the inside, so tensile stress occurs, and compressive stress is generated inside.

急冷後において、発泡板(2)が軟化点以上の高温にあ
るときは、熱応力は短時間で緩和され、表面と内部の温
度差の存在にもかかわらず応力のない状態となるが徐冷
に時間がかかるので好ましくない。本発明において転移
温度雰囲気内で再度発泡板(2)を加熱することにより
安全かつ短時間に冷却を行なうことができる。
After rapid cooling, if the foam board (2) is at a high temperature above its softening point, the thermal stress will be relaxed in a short time and it will be in a stress-free state despite the existence of a temperature difference between the surface and the inside, but slow cooling This is not preferable because it takes time. In the present invention, cooling can be performed safely and in a short time by heating the foam board (2) again in a transition temperature atmosphere.

つぎに実施例にもとづき本発明の製造方法およびそれに
用いる焼成炉を説明するが本発明はかかる実施例に限定
されるものではない。
Next, the manufacturing method of the present invention and the firing furnace used therein will be explained based on Examples, but the present invention is not limited to these Examples.

実施例1 長野白土82.5%(重量%、以下同じ)、ソーダ灰1
2%、ドロマイト5%、SIC0,5%からなる原料(
軟化点、680℃、転移点630℃)を配合造粒したも
のを供給ホッパよりベルトコンベア上へ供給し、以下の
ごとき条件で焼成を行なった。焼成後の冷却は加圧冷却
ロールによる接触急冷法を採用した。
Example 1 Nagano white clay 82.5% (weight%, same below), soda ash 1
Raw material consisting of 2% dolomite, 5% dolomite, and 0.5% SIC (
A blended granulated product (softening point: 680°C, transition point: 630°C) was fed from a supply hopper onto a belt conveyor, and fired under the following conditions. For cooling after firing, a contact quenching method using pressure cooling rolls was adopted.

焼成温度 : 1020℃ 急冷後の発泡体 内部の温度  ニア30〜680℃ 冷却加圧後の炉 内の雰囲気温度二650〜630℃ コンベアの移動 速度     : 213cm1分 えられた発泡板は表面にクラッタなどの発生がなく、表
裏両面とも均質でがっ平滑な仕上り状態であった。
Firing temperature: 1020°C Temperature inside the foam after quenching: Near 30-680°C Atmospheric temperature inside the furnace after cooling and pressurization: 2650-630°C Conveyor movement speed: 213cm The foam board divided into 1 sections has clutter on the surface. There was no occurrence of blemishes, and both the front and back surfaces had a homogeneous and smooth finish.

実施例1の製造時間と発泡体の表面温度との関係を第2
図に示す。
The relationship between the manufacturing time and the surface temperature of the foam in Example 1 is shown in the second example.
As shown in the figure.

第2図において〈田は焼成開始地点、山〉は冷却開始地
点、(C)は冷却終了地点、(小は炉の出口地点を表わ
している。第2図より明らがなように発泡板の表面温度
は、ロールによる接触冷却により急激に温度が低下する
がロールにより冷却された後、再び温度が上昇している
。その後再度温度は徐々に低下し、所定の温度(120
’C)に達するのに90分を要した。
In Figure 2, 〈field〉 is the starting point of firing, 〈mountain〉 is the cooling start point, (C) is the cooling end point, and (small is the exit point of the furnace.As is clear from Figure 2, the foam plate The surface temperature of is rapidly decreased by contact cooling by the rolls, but after being cooled by the rolls, the temperature rises again.After that, the temperature gradually decreases again until it reaches a predetermined temperature (120
It took 90 minutes to reach 'C).

実施例2 長野白土64.5%、ガラス粉30%、ドロマイト5%
、SiCQ、5%からなる原料(軟化点ニア20℃、転
移点二630℃)を配合造粒したものを供給ホッパーよ
りベルトコンベア上へ供給し、以下のごとき条件で焼成
を行なった。焼成後の冷却は加圧冷却ロールによる接触
急冷却を採用した。
Example 2 Nagano white clay 64.5%, glass powder 30%, dolomite 5%
, SiCQ, 5% (softening point: 20° C., transition point: 2,630° C.) was mixed and granulated and fed from a supply hopper onto a belt conveyor, and fired under the following conditions. For cooling after firing, rapid contact cooling using pressure cooling rolls was used.

焼成温度 : 1050℃ 急冷後の発泡体 内部の温度  ニア70〜720℃ 冷却加圧後の炉 内の雰囲気温度; 680〜630°Cコンベアの移動 速度     : 28cm/分 えられた発泡板は表面にクラ・ツクなどの発生がなく、
表裏両面とも均質でかつ平滑な仕上り状態であった。
Firing temperature: 1050°C Temperature inside the foam after quenching Near 70-720°C Atmospheric temperature inside the furnace after cooling and pressurization: 680-630°C Conveyor movement speed: 28cm/The divided foam board is placed on the surface There is no occurrence of cracks, tsuku, etc.
Both the front and back surfaces had a homogeneous and smooth finish.

実施例3 ガラス粉50%、珪石粉20%、硼砂14.5%、長野
白土10%、珪フッ化ソーダ5%、SiCO,5%から
なる原料(軟化点:580°C1転移点480°C)を
配合造粒したものを供給ホ・ソノクーよりベルトコンベ
ア上へ供給し、以下のごとき条件で焼成を行なった。焼
成後の冷却は加圧冷却ロールによる接触急冷法を採用し
た。
Example 3 Raw material consisting of 50% glass powder, 20% silica powder, 14.5% borax, 10% Nagano white clay, 5% sodium silicofluoride, and 5% SiCO (softening point: 580°C, transition point 480°C) ) was blended and granulated and fed onto a belt conveyor from a supply hosonoku, and fired under the following conditions. For cooling after firing, a contact quenching method using pressure cooling rolls was adopted.

焼成温度 ニア30℃ 急冷後の発泡体 内部の温度  二630〜580℃ 冷却加圧後の炉 内の雰囲気温度:550〜480℃ コンベアの移動 速度     : 28cm/分 えられた発泡板は表面にクラックなどの発生がなく、表
裏両面とも均質でかつ平滑な仕上り状態であった。
Firing temperature: Near 30℃ Temperature inside the foam after quenching: 2630~580℃ Atmosphere temperature inside the furnace after cooling and pressurization: 550~480℃ Conveyor moving speed: 28cm/Separated foam board has cracks on the surface There were no occurrences of such problems, and both the front and back surfaces had a homogeneous and smooth finish.

比較例1 焼成後の冷却にエアー吹付は法を採用した以外は実施例
1と同様にして発泡板を製造した。
Comparative Example 1 A foam board was produced in the same manner as in Example 1, except that the air blowing method was used for cooling after firing.

えられた発泡板表面には第3図に示すような多数のクラ
ックが認められた。
A large number of cracks as shown in FIG. 3 were observed on the surface of the foam board obtained.

比較例2 焼成後の冷却にエアー吹付は法を採用した以外は実施例
2と同様にして発泡板を製造した。
Comparative Example 2 A foam board was produced in the same manner as in Example 2, except that the air blowing method was used for cooling after firing.

えられた発泡板表面には第4図に示すようなりラックが
認められた。
A rack was observed on the surface of the obtained foam board as shown in FIG.

比較例3 焼成後の冷却にエアー吹付は法を採用した以外は実施例
3と同様にして発泡板を製造した。
Comparative Example 3 A foam board was produced in the same manner as in Example 3, except that the air blowing method was used for cooling after firing.

えられた発泡体表面には第5図に示すようなりラックが
認められた。
A rack was observed on the surface of the obtained foam as shown in FIG.

比較例4 焼成後の冷却にエアー吹付は法を採用し、かつコンベア
の移動速度を19cm/分とした以外は実施例1と同様
にして発泡板を製造した。
Comparative Example 4 A foam board was produced in the same manner as in Example 1, except that the air blowing method was used for cooling after firing, and the conveyor moving speed was 19 cm/min.

えられた発泡板は表面にクラックなどの発生かなく、表
裏両面とも均質な仕上り状態であった。
The obtained foam board had no cracks on the surface and had a uniform finish on both the front and back surfaces.

比較例4の製造時間と発泡体の表面温度との関係を第2
図に示す。第2図より明らかなように発泡板の表面温度
は、エアー吹付けの冷却により急激に温度が低下し、吹
付は後は自然冷却により徐々に温度が低下している。所
定の温度(120°C)に達するのに 130分を要し
た。
The relationship between the manufacturing time and the surface temperature of the foam in Comparative Example 4 was
As shown in the figure. As is clear from FIG. 2, the surface temperature of the foam board rapidly decreases due to cooling by air blowing, and after the blowing, the temperature gradually decreases due to natural cooling. It took 130 minutes to reach the specified temperature (120°C).

比較例5 焼成後の冷却にエアー吹付は法を採用し、かつコンベア
の移動速度を17co+/分とした以外は実施例2と同
様にして発泡板を製造した。
Comparative Example 5 A foam board was produced in the same manner as in Example 2, except that the air blowing method was used for cooling after firing, and the conveyor moving speed was set to 17 co+/min.

えられた発泡板は表面にクラックなどの発生がなく、表
裏両面とも均質な仕上り状態であった。
The obtained foam board had no cracks on the surface and had a uniform finish on both the front and back surfaces.

比較例6 焼成後の冷却にエアー吹付は法を採用し、発泡板下面を
ベルトコンベアを介して加圧し、かつコンベアの移動速
度を21cm/分とした以外は実施例3と同様にして発
泡板を製造した。
Comparative Example 6 A foam board was produced in the same manner as in Example 3, except that the air blowing method was used for cooling after firing, the lower surface of the foam board was pressurized via a belt conveyor, and the conveyor moving speed was 21 cm/min. was manufactured.

えられた発泡板は表面にクラックなどの発生はなかった
が、下面の平滑性は実施例3より劣っていた。
The obtained foam board had no cracks on the surface, but the smoothness of the lower surface was inferior to that of Example 3.

第2図より、本発明の製造法によるときは、エアー吹付
けによる冷却法を採用する従来の製造法に比較して、短
時間に発泡体の表面温度を所定に温度にまで下げうろこ
とがわかる。
From Figure 2, when using the manufacturing method of the present invention, it is possible to lower the surface temperature of the foam to a predetermined temperature in a shorter time than with the conventional manufacturing method that uses a cooling method using air blowing. Recognize.

[発明の効果コ 以上詳説せるごとく、本発明の製造方法および焼成炉に
よれば発泡板に熱ひずみ応力による破損を生ぜしめるこ
となく冷却速度を大きくすることかできる。すなわち昇
温から冷却に至る製造時間を短縮して生産効率をアップ
することが可能となり、それにより製品のコストダウン
を図ることができる。
[Effects of the Invention] As detailed above, according to the manufacturing method and firing furnace of the present invention, the cooling rate can be increased without causing damage to the foam board due to thermal strain stress. In other words, it is possible to shorten the manufacturing time from heating to cooling, thereby increasing production efficiency, thereby reducing the cost of the product.

また加圧冷却はロールにより直接に発泡板の両面から行
なわれるので、厚さ方向の寸法精度が優れるとともに両
面とも均質かつ平滑で優れた仕上りの発泡板をうろこと
ができる。
In addition, since pressure cooling is carried out directly from both sides of the foam board using rolls, the dimensional accuracy in the thickness direction is excellent, and both sides of the foam board are homogeneous, smooth, and have an excellent finish.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焼成炉の一実施例を示す概略説明図、
第2図は本発明の実施例1および比較例4における発泡
板の製造時間と表面温度との関係をあられす図、第3〜
5図はそれぞれ比較例1〜3において製造された発泡板
の表面状態をあられす図である。 (図面の主要符号) (1):焼 成 炉 (2):発 泡 板 (3):ベルトコンベア (6):加圧冷却ロール 特許出願人  ナショナル住宅産業株式会社はか1名 代理人弁理士  朝 日 奈 宗 太 ほか1名6  
       。
FIG. 1 is a schematic explanatory diagram showing an embodiment of the firing furnace of the present invention;
Figure 2 shows the relationship between the manufacturing time and surface temperature of the foam board in Example 1 of the present invention and Comparative Example 4;
FIG. 5 is a diagram showing the surface condition of the foam boards manufactured in Comparative Examples 1 to 3, respectively. (Main symbols on the drawings) (1): Firing furnace (2): Foam board (3): Belt conveyor (6): Pressure cooling roll Patent applicant National Housing Industry Co., Ltd. Haka 1 representative patent attorney Asahina Sota and 1 other person6
.

Claims (1)

【特許請求の範囲】 1 発泡性無機質原料を焼成炉内で加熱、押圧して発泡
板を製造するに際し、前記焼成炉内の冷却帯に設けられ
かつ前記発泡板の上面および下面と直接に接触する加圧
冷却手段により焼成後の発泡板を急冷し、その後該発泡
板の表面温度を前記温度帯の雰囲気で再度上昇させるこ
とを特徴とする発泡板の製造方法。 2 前記冷却帯の雰囲気温度が350〜900℃である
特許請求の範囲第1項記載の製造方法。 3 炉内を走行するベルトコンベア上で発泡性無機質原
料を加熱、押圧して発泡板を形成する連続焼成炉におい
て、該焼成炉内の冷却帯に前記発泡板の上面および下面
と接触回転する少なくとも一対のロールを設け、前記ベ
ルトコンベアが最初のロールの直前に発泡板と分かれロ
ールの外側を走行し、前記ロールがその内部に通ぜしめ
られた流体により前記発泡板を冷却することを特徴とす
る発泡板焼成炉。 4 前記冷却帯の雰囲気温度が 350〜900℃であ
る特許請求の範囲第3項記載の焼成炉。
[Scope of Claims] 1. When manufacturing a foamed board by heating and pressing a foamable inorganic raw material in a firing furnace, a foam plate provided in a cooling zone in the firing furnace and in direct contact with the upper and lower surfaces of the foamed board. A method for producing a foamed board, which comprises rapidly cooling the fired foamed board using a pressurized cooling means, and then raising the surface temperature of the foamed board again in an atmosphere within the temperature range. 2. The manufacturing method according to claim 1, wherein the ambient temperature of the cooling zone is 350 to 900°C. 3. In a continuous firing furnace in which a foam board is formed by heating and pressing a foamable inorganic raw material on a belt conveyor running in the furnace, a cooling zone in the firing furnace includes at least one rotatable member rotating in contact with the upper and lower surfaces of the foam board. A pair of rolls are provided, the belt conveyor separates from the foam board just before the first roll, and runs on the outside of the roll, and the roll cools the foam board with a fluid passed through the inside of the belt conveyor. Foam board firing furnace. 4. The firing furnace according to claim 3, wherein the ambient temperature of the cooling zone is 350 to 900°C.
JP61116880A 1986-05-21 1986-05-21 Method for manufacturing foam plate and firing furnace used therefor Expired - Fee Related JPH0676220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61116880A JPH0676220B2 (en) 1986-05-21 1986-05-21 Method for manufacturing foam plate and firing furnace used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61116880A JPH0676220B2 (en) 1986-05-21 1986-05-21 Method for manufacturing foam plate and firing furnace used therefor

Publications (2)

Publication Number Publication Date
JPS62275034A true JPS62275034A (en) 1987-11-30
JPH0676220B2 JPH0676220B2 (en) 1994-09-28

Family

ID=14697922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61116880A Expired - Fee Related JPH0676220B2 (en) 1986-05-21 1986-05-21 Method for manufacturing foam plate and firing furnace used therefor

Country Status (1)

Country Link
JP (1) JPH0676220B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061312A1 (en) * 2005-11-17 2007-05-31 Has Holding As Tunnel furnace
JP2016033096A (en) * 2014-07-31 2016-03-10 旭硝子株式会社 Apparatus and method for molding sheet glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350759U (en) * 1976-09-30 1978-04-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350759U (en) * 1976-09-30 1978-04-28

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061312A1 (en) * 2005-11-17 2007-05-31 Has Holding As Tunnel furnace
EP1954638A1 (en) * 2005-11-17 2008-08-13 HAS Holding AS Tunnel furnace
EP1954638A4 (en) * 2005-11-17 2012-09-12 Vetropor Ag Tunnel furnace
JP2016033096A (en) * 2014-07-31 2016-03-10 旭硝子株式会社 Apparatus and method for molding sheet glass

Also Published As

Publication number Publication date
JPH0676220B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
US3532480A (en) Method of making multicellular glass
US3056184A (en) Manufacture of uniform cellular ceramic articles
JPH05501847A (en) Adjustable cooling of glass plates
EP2297054B1 (en) Manufacturing method of cellular ceramic plates with asymmetrical cell structure
CN109354389B (en) Spherical glass processing technology
US2655458A (en) Method of forming wood wool panels
US3223498A (en) Heat treatment of conveyed glass and apparatus therefor
US3574583A (en) Process for preparing foam glass insulation
EP0291572B1 (en) Method of producing a porous ceramic panel
US3300289A (en) Continuous method of making a glass sheet
US3469963A (en) Method of and apparatus for toughening glass
CN107586013A (en) A kind of thin tempering glass production method
US2255236A (en) Multicellular glass
US3348933A (en) Method for making foam galss
JPS62275034A (en) Production of foamed plate and kiln used therefor
US3800018A (en) Fabrication of cellular resinous products
US3595725A (en) Toughening glass in sheet form
CN107500514A (en) The small billot shaped device of optical glass
US3163512A (en) Method of making cellular glass bodies
US3531274A (en) Method for the manufacture of float glass
JPH06502792A (en) Method for manufacturing ski skin strips made from ultra-high molecular weight polyethylene
US3215516A (en) Manufacture of flat glass
CN1032913C (en) Production technology and apparatus for decorative glass block
US1877138A (en) Process of bloating and annealing cellular blocks
GB1111260A (en) Process and apparatus for producing glass

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees