JPH0674942U - Load cell - Google Patents

Load cell

Info

Publication number
JPH0674942U
JPH0674942U JP1473993U JP1473993U JPH0674942U JP H0674942 U JPH0674942 U JP H0674942U JP 1473993 U JP1473993 U JP 1473993U JP 1473993 U JP1473993 U JP 1473993U JP H0674942 U JPH0674942 U JP H0674942U
Authority
JP
Japan
Prior art keywords
strain
section
load cell
outer peripheral
strain gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1473993U
Other languages
Japanese (ja)
Inventor
武好 長尾
敬彦 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Scale Co Ltd
Original Assignee
Yamato Scale Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Scale Co Ltd filed Critical Yamato Scale Co Ltd
Priority to JP1473993U priority Critical patent/JPH0674942U/en
Publication of JPH0674942U publication Critical patent/JPH0674942U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 両端固定梁構造を有するストレインゲージ式
ロードセルにおいて、外形を小型且つ薄型に保ったまま
高精度で安定したロードセルを容易に実現する。 【構成】 外周固定部1と中央印加部2とを複数の梁起
歪部3’で連結し、この各起歪部3’の中間部付近の上
下にそれぞれ2枚、計4枚のストレインゲージ4を貼付
し、上記梁起歪部3’の断面を上記外周固定部と中央印
加部に近い部分を厚く、中間部が薄くなるような曲面と
して形成することにより、外周固定部と中央印加部から
の応力の流れ込みの影響を少なくして高精度を得られる
ように構成した。
(57) [Abstract] [Purpose] In a strain gauge type load cell having a fixed beam structure at both ends, a highly accurate and stable load cell can be easily realized while keeping the outer shape small and thin. [Structure] An outer peripheral fixing portion 1 and a center applying portion 2 are connected by a plurality of beam strain-generating portions 3 ', and two strain gauges are provided above and below the middle portion of each strain-generating portion 3', a total of four strain gauges. 4 is attached, and the cross section of the beam straining portion 3 ′ is formed as a curved surface such that a portion near the outer periphery fixing portion and the center applying portion is thick and a middle portion is thin, so that the outer periphery fixing portion and the center applying portion are formed. It was constructed so that high precision could be obtained by reducing the influence of stress inflow from the.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、両端固定梁構造のストレインゲージ式薄型ロードセルに関する。 The present invention relates to a strain gauge type thin load cell having a beam structure fixed at both ends.

【0002】[0002]

【従来の技術】[Prior art]

従来のこの種のストレインゲージ式ロードセルとして図5A、B、図6、図7 に示す構成のもの及び特開平2−272336に開示されているようなものがあ る。図5において、1は圧肉円板の外周固定部、2は中央の荷重印加部、3は上 記外周固定部1と中央印加部2とを結合する均一な厚みを有する矩形梁構造を持 った複数の起歪部、4は上記起歪部の各梁3の各々上下に2ヶ所ずつ4ヶ貼付さ れたストレインゲージであり、中央印加部に負荷された荷重Wを検知して電気信 号に変換して取り出すようになっている。図6は上記ロードセルの応力分布図で 外周固定部側をa、中央印加部側をbとして、梁の真ん中が零で外周方向と中央 方向に直線的に大きくなっている。この従来の構造のロードセルでは、応力検出 に際して必要且つ十分な値を得るためにはゲージ間距離Lを長くする必要がある が、ゲージの貼付位置が上記外周固定部1及び中央印加部2に接近する事は必至 となる。しかもこの場合は、ゲージによる必要応力の検出に際し、外周固定部1 からは取付面の状態による応力への影響、中央印加部2からは印加荷重の当たり 面の応力への影響をそれぞれ受け易く、更に矩形梁3と両剛体部1、2との結合 部における応力集中の影響を受け易くなる。即ち、外周固定部1及び中央印加部 2から流れ込む応力5、6による特性への影響を受け易くなり、各々のストレイ ンゲージが検出する応力分布のバランスが崩れ、そのため荷重一出力特性におけ る直線性が阻害され、高精度なロードセルの実現ができなかった。 As a conventional strain gauge type load cell of this type, there are one having a structure shown in FIGS. 5A, 5B, 6 and 7 and one disclosed in JP-A-2-272336. In FIG. 5, reference numeral 1 denotes an outer peripheral fixing portion of a pressure plate, 2 is a central load applying portion, and 3 is a rectangular beam structure having a uniform thickness connecting the outer peripheral fixing portion 1 and the central applying portion 2. The strain gages 4 and 4 are strain gauges attached to the beams 3 of the strain gage 3 at two positions above and below, respectively. The strain gages are detected by detecting the load W applied to the central application part. It is designed to be converted into a signal and taken out. FIG. 6 is a stress distribution diagram of the load cell, in which the outer peripheral fixed portion side is a and the central application portion side is b, and the center of the beam is zero and linearly increases in the outer peripheral direction and the central direction. In this conventional load cell, the gauge distance L must be increased in order to obtain a necessary and sufficient value for stress detection, but the gauge sticking position is close to the outer peripheral fixing portion 1 and the center applying portion 2. It is inevitable to do it. Moreover, in this case, when the necessary stress is detected by the gauge, the outer peripheral fixing portion 1 is easily affected by the mounting surface state, and the central application portion 2 is easily affected by the applied load on the contact surface stress. Further, it becomes easy to be affected by stress concentration at the joint between the rectangular beam 3 and the rigid bodies 1 and 2. That is, the stresses 5 and 6 flowing in from the outer peripheral fixed portion 1 and the central application portion 2 are more likely to affect the characteristics, and the balance of the stress distribution detected by each strain gauge is upset, so that the straight line in the load-output characteristic is affected. As a result, it was not possible to realize a highly accurate load cell.

【0003】 また図7に示すように、起歪部構造が図の7のように厚みを均一として幅方向 に曲面を有するものも従来の技術としてあるが、この構造では最大応力が梁7の 中央印加部よりに発生し、外周固定部及び荷重当たり面からの精度低下につなが る応力の影響は減少するものの、小容量ロードセルでは起歪部の幅が極めて狭く なり、ストレインゲージを貼付するスペースがなくなり、従って小形化への限界 があった。Further, as shown in FIG. 7, there is a conventional technique in which the strain-flexing part structure has a uniform thickness and a curved surface in the width direction as shown in FIG. 7, but in this structure, the maximum stress is the beam 7 Although the influence of stress that occurs from the central application part and leads to a decrease in accuracy from the outer peripheral fixed part and the load contact surface is reduced, the width of the strain generating part becomes extremely narrow in the small capacity load cell, and the space for attaching the strain gauge is reduced. There was a limit to miniaturization.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

両端固定梁構造を有するストレインゲージ式ロードセルにおいて、前述の従来 構造では、図6のように応力分布が直線的で、必要且つ十分な応力を得るために は、ゲージ間距離Lを長くする必要があり、従ってゲージ位置が外周固定部及び 中央印加部に対してかなり接近して配置されるため、上記固定部及び印加部側か ら流れ込む応力の影響で検出応力分布のバランスが崩れ、出力特性における直線 性が阻害され高精度なものを製作できなかった。そこでこれらの悪影響をなくす ため、外周固定部を必要以上に強大なものにしたり、或いは全高及び外形を大き くする事によって誤差要因を発生する部位からストレインゲージを遠ざけて配置 するという配慮をしなければならず、小型軽量で且つ薄型のロードセルを実現す る事は難しかった。そこで本考案は、梁起歪部の構造変更により誤差要因を除去 して、小型且つ薄型の高精度ロードセルを提供しようとするものである。 In the strain gauge type load cell having the fixed beam structure at both ends, in the above-mentioned conventional structure, the stress distribution is linear as shown in FIG. 6, and it is necessary to lengthen the inter-gauge distance L in order to obtain necessary and sufficient stress. Therefore, the gauge position is located very close to the outer circumference fixed part and the center applied part, so the balance of the detected stress distribution is lost due to the stress flowing from the fixed part and the applied part side, and the output characteristics It was impossible to manufacture high-precision products because the linearity was obstructed. Therefore, in order to eliminate these adverse effects, consideration should be given to making the outer circumference fixed part stronger than necessary or to place the strain gauge away from the part that causes the error factor by increasing the overall height and outer shape. Therefore, it was difficult to realize a compact, lightweight and thin load cell. Therefore, the present invention intends to provide a small and thin high-precision load cell by removing the error factor by changing the structure of the beam straining portion.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

この考案は、両端固定梁構造を有するストレインゲージ式ロードセルにおいて 、外側固定部と中央印加部とを連結する複数の梁起歪部の断面を、上記外側固定 部と中央印加部に近い部分を厚くし、中間部が薄くなるような曲面として、外側 固定部と中央印加部から梁起歪部への応力の流れ込みを少なくして、外形を小型 且つ薄型に保ったままで高精度が実現できるように形成した事を特徴とする。 In this invention, in a strain gauge type load cell having a beam structure fixed at both ends, the cross section of a plurality of beam strain portions connecting the outer fixed portion and the central application portion is made thicker in the portion near the outer fixed portion and the central application portion. However, the curved surface that makes the middle part thinner reduces the flow of stress from the outer fixed part and the center applying part to the beam strain part, so that high accuracy can be realized while keeping the outer size small and thin. It is characterized by being formed.

【0006】[0006]

【作用】[Action]

外側固定部と中央印加部とを連結する梁起歪部の断面形状を、上記外側固定部 と中央印加部に近い部分を厚くし、中間部を薄くなるような曲面としたので、外 側及び中央からの応力の流れ込みを少なくでき、高精度で安定した小型且つ薄型 のロードセルを実現できる。 The cross-sectional shape of the beam strain section that connects the outer fixed section and the center application section has a curved surface that thickens the section near the outer fixation section and the center application section and thins the middle section. The flow of stress from the center can be reduced, and a highly accurate, stable, compact and thin load cell can be realized.

【0007】[0007]

【実施例】【Example】

第一実施例を図1A、B及び図2に示す。この考案のロードセルは、前述の図 5で説明したロードセルと同じ部分は、1の圧肉円板状の外周固定部と、2の中 央荷重印加部及び各梁起歪部に貼付された4のストレインゲージである。異なる 部分は梁起歪部の構造で、図に示すように従来の矩形断面梁3に変えて、上記外 周固定部1と中央印加部2に近い部分を厚くし、中間部を薄肉となるような曲面 の梁起歪部3’を形成している。従って図2に示すように外周固定部側をa、中 央印加部側をbとしたとき、上記梁起歪部3’の中間部寄りに応力の最大値を呈 する非直線的な応力分布を得る事ができる。即ち、上記4のストレインゲージの 貼付位置についても、梁起歪部3’の中間部寄りに配置する事ができるのでゲー ジ間隙lは従来例で示した図5のLより短い。従って、外周固定部1及び中央印 加部2のそれぞれからストレインゲージ4の距離を長く確保する事ができ、外周 固定部1及び中央印加部2から流れ込む応力5、6による特性における直線性へ の影響を極力減少する事ができる。なお図では梁起歪部の数を4本としているが 、その数については複数であればよく限定しない。 A first embodiment is shown in FIGS. 1A, 1B and 2. In the load cell of the present invention, the same portion as the load cell described in FIG. 5 described above is attached to the pressure plate-shaped outer peripheral fixing portion of 1, the center load applying portion of 2 and each beam strain portion. Is a strain gauge of. The different part is the structure of the beam straining part. As shown in the figure, the beam is changed to the conventional rectangular cross-section beam 3, the part near the outer peripheral fixing part 1 and the center applying part 2 is thickened, and the middle part is thinned. The beam strained portion 3 ′ having such a curved surface is formed. Therefore, as shown in FIG. 2, assuming that the outer peripheral fixed portion side is a and the center applied portion side is b, a non-linear stress distribution exhibiting the maximum stress near the middle portion of the beam straining portion 3 ′. Can be obtained. That is, the strain gauge sticking position 4 described above can also be arranged closer to the middle portion of the beam straining portion 3 ', so that the gauge gap 1 is shorter than L in FIG. 5 shown in the conventional example. Therefore, it is possible to secure a long distance of the strain gauge 4 from each of the outer periphery fixing portion 1 and the center applying portion 2, and the linearity in the characteristics due to the stresses 5 and 6 flowing from the outer periphery fixing portion 1 and the center applying portion 2 can be ensured. The influence can be reduced as much as possible. Although the number of beam strained portions is four in the figure, the number is not limited as long as it is plural.

【0008】 第2実施例を図3A、Bに示す。この実施例は前述の第1実施例の外周固定部 が厚肉円板状であるのに替えて、厚肉角形状1’に形成したものであり、従って 中央印加部2’も角形状となっている。A second embodiment is shown in FIGS. 3A and 3B. In this embodiment, the outer peripheral fixing portion of the first embodiment described above is formed into a thick-walled rectangular shape 1'instead of being formed into a thick-walled disc shape. Therefore, the central application portion 2'is also formed into a rectangular shape. Has become.

【0009】 更に第3の実施例を図4A、Bに示す。この実施例は前述の第1、第2実施例 で示したように外周を円形または角形に替えて単純な両端固定形状8、8’とし 、中央印加部2’に荷重を負荷する構造としたが、ロードセルの特性は前記実施 例と同様である。Further, a third embodiment is shown in FIGS. 4A and 4B. In this embodiment, as shown in the above-mentioned first and second embodiments, the outer circumference is changed to a circular shape or a rectangular shape to have a simple fixed shape at both ends 8 and 8 ', and a load is applied to the central applying portion 2'. However, the characteristics of the load cell are similar to those of the above-mentioned embodiment.

【0010】[0010]

【考案の効果】[Effect of device]

この考案によれば、精度に悪影響を及ぼす外側固定部及び中央印加部からスト レインゲージを遠ざけて配置できるので、上記外側固定部と中央印加部から流れ 込む応力の影響を減少する事ができ、更にゲージ間の距離を短くできる事により 、梁起歪部の長さを短くできるので、小型且つ薄型形状で高精度なロードセルが 実現できる効果がある。 According to this invention, since the strain gauge can be arranged away from the outer fixing part and the center applying part that adversely affect the accuracy, it is possible to reduce the influence of the stress flowing from the outer fixing part and the center applying part. Furthermore, since the distance between the gauges can be shortened, the length of the beam straining portion can be shortened, which has the effect of realizing a highly accurate load cell with a small and thin shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案の第1実施例による平面図A及びX−
X断面図Bである。
FIG. 1 is a plan view A and X- according to a first embodiment of the present invention.
It is an X sectional view B.

【図2】この考案の梁起歪部の応力分布図である。FIG. 2 is a stress distribution diagram of a beam straining portion of the present invention.

【図3】この考案の第2実施例による平面図A及びY−
Y断面図Bである。
FIG. 3 is a plan view A and Y- according to a second embodiment of the present invention.
It is a Y sectional view B.

【図4】この考案の第3実施例による平面図A及びZ−
Z断面図Bである。
FIG. 4 is a plan view A and Z- according to a third embodiment of the present invention.
It is Z sectional drawing B.

【図5】従来のロードセルの平面図A及びX’−X’断
面図Bである。
FIG. 5 is a plan view A and a cross-sectional view X'-X 'of a conventional load cell.

【図6】従来のロードセルにおける梁起歪部の応力分布
図である。
FIG. 6 is a stress distribution diagram of a beam strain portion in a conventional load cell.

【図7】従来の別例によるロードセルの平面図である。FIG. 7 is a plan view of a load cell according to another conventional example.

【符号の説明】[Explanation of symbols]

1、1’ 外周固定部 2、2’ 中央印加部 3、3’ 梁起歪部 4 ストレインゲージ 5 外周固定部からの応力の流れ込み 6 中央印加部からの応力の流れ込み 7 従来の別例の梁起歪部 8、8’ 単純な両端固定部 1, 1'outer peripheral fixing part 2, 2'center applying part 3, 3'beam strain part 4 strain gauge 5 stress inflow from outer peripheral fixing part 6 stress inflow from central applying part 7 beam of another conventional example Deflection part 8, 8'Simple end fixing part

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 外周が円形又は角形を呈し、外周と同形
の荷重印加部を中央に形成し、上記外周と中央の印加部
とを複数の梁起歪部で連結したストレインゲージ式ロー
ドセルにおいて、上記起歪部の断面を外周固定部と中央
荷重印加部に近い部分を厚く、中間部が薄くなるような
曲面として、外周固定部及び荷重印加部から梁起歪部へ
の応力の流れ込みの影響を少なくして高精度を得る事を
特徴とするストレインゲージ式ロードセル。
1. A strain gauge type load cell having a circular or rectangular outer periphery, a load applying portion having the same shape as the outer periphery being formed in the center, and the outer periphery and the central applying portion being connected by a plurality of beam straining portions, The cross section of the strain generating section is a curved surface with a thicker portion near the outer peripheral fixing section and the central load applying section, and a thinner intermediate section, and the influence of the stress flow from the outer peripheral fixing section and the load applying section to the beam strain section. Strain gauge type load cell characterized by high accuracy with less load.
【請求項2】 請求項1における外周固定部を円形又は
角形に替えて単純な両端固定形状とした事を特徴とする
ストレインゲージ式ロードセル。
2. A strain gauge type load cell, wherein the outer peripheral fixing portion in claim 1 has a simple fixed shape at both ends instead of a circular shape or a rectangular shape.
JP1473993U 1993-03-29 1993-03-29 Load cell Pending JPH0674942U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1473993U JPH0674942U (en) 1993-03-29 1993-03-29 Load cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1473993U JPH0674942U (en) 1993-03-29 1993-03-29 Load cell

Publications (1)

Publication Number Publication Date
JPH0674942U true JPH0674942U (en) 1994-10-21

Family

ID=11869495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1473993U Pending JPH0674942U (en) 1993-03-29 1993-03-29 Load cell

Country Status (1)

Country Link
JP (1) JPH0674942U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4741872B2 (en) * 2005-04-22 2011-08-10 株式会社新菱 Load cell and weighing device
US9784627B2 (en) 2013-11-27 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Load sensor, load detector including load sensor, and method for detecting load
JP2019095201A (en) * 2017-11-17 2019-06-20 ユニパルス株式会社 Load cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4741872B2 (en) * 2005-04-22 2011-08-10 株式会社新菱 Load cell and weighing device
US9784627B2 (en) 2013-11-27 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Load sensor, load detector including load sensor, and method for detecting load
JP2019095201A (en) * 2017-11-17 2019-06-20 ユニパルス株式会社 Load cell

Similar Documents

Publication Publication Date Title
US5510581A (en) Mass-produced flat multiple-beam load cell and scales incorporating it
US4548086A (en) Deflecting spring
JP4161410B2 (en) Pressure detection device
US4376929A (en) Optimized stress and strain distribution diaphragms
WO2014080759A1 (en) Pressure sensor
JPH0264430A (en) Semiconductor pressure converter
US4811610A (en) Weighing cell
CN112747854A (en) Six-dimensional force sensor
US5058436A (en) Strain-concentrating, membrane-type transducer
JPH0674942U (en) Load cell
CN215573482U (en) Robot torque sensor
JPH0772026A (en) Strain generating construction and multiaxis force detection sensor using the same
JPH0359431A (en) Pressure sensor and calibrating method of the same
US7852191B2 (en) Sensor and manufacturing method thereof
JP3184839B2 (en) Disc shape transducer for weighing system
JPH09269258A (en) Load cell
KR102286967B1 (en) Strain gages, diaphragm structures and sensors including the same
JPS5912326A (en) Load converter
JPH0758795B2 (en) Pressure sensor
JPH0461289B2 (en)
JP2001153735A (en) Load cell
JP2534509B2 (en) Thin weighing platform
JP3586696B2 (en) Thin load cell
JP3071932B2 (en) Semiconductor pressure sensor
JPS62211526A (en) Mechanism for receiving force or pressure having split leaf spring so that bending moment is not generated