JP3071932B2 - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JP3071932B2
JP3071932B2 JP4051138A JP5113892A JP3071932B2 JP 3071932 B2 JP3071932 B2 JP 3071932B2 JP 4051138 A JP4051138 A JP 4051138A JP 5113892 A JP5113892 A JP 5113892A JP 3071932 B2 JP3071932 B2 JP 3071932B2
Authority
JP
Japan
Prior art keywords
pressure sensor
semiconductor substrate
differential pressure
semiconductor
static pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4051138A
Other languages
Japanese (ja)
Other versions
JPH05248974A (en
Inventor
覚 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4051138A priority Critical patent/JP3071932B2/en
Publication of JPH05248974A publication Critical patent/JPH05248974A/en
Application granted granted Critical
Publication of JP3071932B2 publication Critical patent/JP3071932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は圧力を検出する半導体圧
力センサに係わり、特に静圧下ならびに差圧下で生じる
信号を検出し、静圧および差圧を極めて精度よく検出し
得るようにした半導体圧力センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor pressure sensor for detecting pressure, and more particularly to a semiconductor pressure sensor capable of detecting signals generated under a static pressure and a differential pressure to detect the static pressure and the differential pressure with extremely high accuracy. Related to sensors.

【0002】[0002]

【従来の技術】圧力の検出を行なうためのセンサの1つ
として、半導体圧力センサが知られている。
2. Description of the Related Art A semiconductor pressure sensor is known as one of sensors for detecting pressure.

【0003】この半導体圧力センサは単結晶半導体(例
えば、シリコン等)の優れた弾性を利用し、薄膜シリコ
ンダイアフラムの両端にかかる圧力差に応答する応力を
検出する。
This semiconductor pressure sensor utilizes the excellent elasticity of a single crystal semiconductor (for example, silicon or the like) to detect a stress responsive to a pressure difference between both ends of a thin film silicon diaphragm.

【0004】図6はこのような半導体圧力センサの一例
を示す断面図である。
FIG. 6 is a sectional view showing an example of such a semiconductor pressure sensor.

【0005】この図に示す半導体圧力センサ100はn
形面からなるシリコン単結晶基板101の一面に凹部1
02を形成して薄肉部のダイアフラム部103とし、前
記凹部102側の面と反対側の表面にp形不純物を拡散
して図7に示す如く差圧センサ(ストレインゲージ抵
抗)104〜106を形成した後、これら差圧センサ1
04〜106を形成した単結晶基板101の表面に酸化
膜107を形成して前記各差圧センサ104〜106を
被膜し、さらにこの酸化膜107に貫通して設けられた
孔108を介して前記各差圧センサ104〜106の両
端に各々電極層109を接続して形成したものであり、
円筒状に形成された台座管112に固定されるととも
に、金線等によって構成されるワイヤ110によって前
記電極層109と外部端子(図示は省略する)とが接続
されて使用される。
The semiconductor pressure sensor 100 shown in FIG.
A concave portion 1 on one surface of a silicon single crystal substrate
02 is formed into a thin-walled diaphragm 103, and p-type impurities are diffused on the surface opposite to the surface on the side of the recess 102 to form differential pressure sensors (strain gauge resistors) 104 to 106 as shown in FIG. After that, these differential pressure sensors 1
An oxide film 107 is formed on the surface of the single crystal substrate 101 on which the layers 04 to 106 have been formed to cover the respective differential pressure sensors 104 to 106, and further, through a hole 108 provided through the oxide film 107, An electrode layer 109 is connected to both ends of each of the differential pressure sensors 104 to 106, and is formed.
The electrode layer 109 is fixed to a pedestal tube 112 formed in a cylindrical shape, and the electrode layer 109 is connected to an external terminal (not shown) by a wire 110 made of a gold wire or the like.

【0006】なお、図7においては、右側の差圧センサ
104〜106部分にのみに電極層109を設けている
が、実際には各差圧センサ104〜106毎に各々電極
層109が設けられている。
In FIG. 7, the electrode layer 109 is provided only on the right differential pressure sensors 104 to 106. However, in practice, the electrode layer 109 is provided for each of the differential pressure sensors 104 to 106. ing.

【0007】そして、このように構成された半導体圧力
センサ100においては、ダイアフラム部103が圧力
によって応力を受けると、ダイアフラム部103の表面
に形成された差圧センサ104〜106のうち、予め決
められた結晶軸方向に配置されたものの抵抗値が増加す
るとともに、他の決められた結晶軸方向に配置されたも
のの抵抗値が減少して、これら各差圧センサ104〜1
06によって構成されているホィートストンブリッジ回
路(図示は省略する)の出力電圧が変化し、この変化分
に対応した検出信号が出力される。
In the semiconductor pressure sensor 100 configured as described above, when the diaphragm 103 is subjected to stress by pressure, a predetermined one of the differential pressure sensors 104 to 106 formed on the surface of the diaphragm 103 is determined. The resistance value of one of the differential pressure sensors 104 to 1 is increased while the resistance value of another of the differential pressure sensors 104 to 1 is decreased while the resistance value of the other one is decreased.
The output voltage of a Wheatstone bridge circuit (not shown) constituted by the reference numeral 06 changes, and a detection signal corresponding to the change is output.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな半導体圧力センサ100においては、静圧(ダイア
フラムの両面にかかる共通な圧力)下でも、ゼロシフト
と呼ばれる誤信号を生じる。
However, in such a semiconductor pressure sensor 100, an erroneous signal called zero shift is generated even under a static pressure (a common pressure applied to both surfaces of the diaphragm).

【0009】そこで、このような問題を解決する方法と
して、半導体圧力センサ100と別個の圧力センサを用
いて静圧を検出し、この検出結果に基づいて半導体圧セ
ンサ100の出力を補正する方法が試みられている。
Therefore, as a method of solving such a problem, there is a method of detecting a static pressure using a pressure sensor separate from the semiconductor pressure sensor 100 and correcting the output of the semiconductor pressure sensor 100 based on the detection result. Attempted.

【0010】しかしながら、このような方法では、2つ
の素子を使用しなければならないため、なるべくなら
ば、シングルタイプの素子を用いて、2つの信号から単
純な補正で2つの信号を生成するようにすることが望ま
しい。
However, in such a method, since two elements must be used, it is preferable to use a single type element to generate two signals from two signals by simple correction. It is desirable to do.

【0011】そこで、このような要求を満たす方法とし
て、図8に示す如く角板状に形成されたシリコン単結晶
基板115の表面(円筒形の台座管116と接合する面
と反対側の面)に設けられた差圧センサ117〜120
と同様な配置で静圧によって生じる歪みを検出するセン
サ(静圧センサ)121〜124を設け、この静圧セン
サ121〜124の出力に基づいて前記差圧センサ11
7〜120の出力を補正することも行われている。
Therefore, as a method for satisfying such requirements, a surface of a silicon single crystal substrate 115 formed in a square plate shape as shown in FIG. 8 (a surface opposite to a surface to be joined to a cylindrical pedestal tube 116). Pressure sensors 117 to 120 provided in
Sensors (static pressure sensors) 121 to 124 for detecting distortion caused by static pressure in the same arrangement as those described above, and based on the outputs of the static pressure sensors 121 to 124, the differential pressure sensor 11
Correction of outputs of 7 to 120 is also performed.

【0012】そして、この場合、台座管116の形状を
円筒状にするとともに、シリコン単結晶基板115の形
状を角板状にして圧縮歪みに対して非対称にし、これに
よって静圧センサ121〜124の出力を大きくしてい
る。
In this case, the pedestal tube 116 has a cylindrical shape, and the silicon single crystal substrate 115 has a square plate shape to be asymmetric with respect to compressive strain. The output is increased.

【0013】しかしながら、このような半導体圧力セン
サで用いられる静圧センサ121〜124は、温度に対
する影響を共通化するために、差圧センサ117〜12
4と同一基板上で、同じ配置位置関係となるように各静
圧センサ121〜124を配置しているので、静圧セン
サ121〜124にも差圧歪みによる影響が出てしま
い、その応答特性が一義的な信号にならないことが多い
ばかりか、このような静圧センサ121〜124に対し
ても、差圧センサ117〜120の出力に基づいて補正
を行なう必要があるため、極めて厄介な補正関係が必要
であった。
However, the static pressure sensors 121 to 124 used in such a semiconductor pressure sensor need to have a differential pressure sensor 117 to
Since the static pressure sensors 121 to 124 are arranged on the same substrate as that of the static pressure sensors 4 so as to have the same arrangement positional relationship, the static pressure sensors 121 to 124 are also affected by the differential pressure distortion, and their response characteristics Is often not a unique signal, and it is necessary to perform correction on such static pressure sensors 121 to 124 based on the outputs of the differential pressure sensors 117 to 120. A relationship was needed.

【0014】そして、静圧センサ121〜124によっ
て差圧センサ117〜120の信号を補正する方法で
は、極めて大きな誤差を与える危険がある。
In the method of correcting the signals of the differential pressure sensors 117 to 120 by the static pressure sensors 121 to 124, there is a danger of giving an extremely large error.

【0015】本発明は上記の事情に鑑み、静圧下ならび
に差圧下で生じる信号を補償することができるととも
に、静圧および差圧を同一半導体基板上で、しかも極め
て精度良く、かつ高い信頼性で検出することができる半
導体圧力センサを提供することを目的としている。
In view of the above circumstances, the present invention can compensate for signals generated under static pressure and differential pressure, and can perform static pressure and differential pressure on the same semiconductor substrate with extremely high accuracy and high reliability. It is an object of the present invention to provide a semiconductor pressure sensor capable of detecting the pressure.

【0016】[0016]

【課題を解決するための手段】上記の目的を達成するた
めに本発明による半導体圧力センサは、第1面および第
2面を有し、前記第1面に角形の空洞が形成される単結
晶半導体材料からなる角板状の半導体基板と、その一端
が前記半導体基板の前記第1面に形成された前記空洞を
取り囲むように前記半導体基板の第1面に接合され、か
つ検出すべき圧力を前記空洞に導入する導圧路を有する
角筒状の台座管と、前記半導体基板の前記第2面で前記
空洞の反対側に形成された少なくとも1個の垂直方向の
差圧センサおよび少なくとも1個の平行方向の差圧セン
サと、前記半導体基板の前記第2面で前記台座管に接合
された一端の反対側で、前記半導体基板の対角線から所
定角度だけずれた位置に、各々形成される少なくとも2
つ以上の静圧センサとを備えたことを特徴としている。
In order to achieve the above object, a semiconductor pressure sensor according to the present invention has a first surface and a second surface, and a single crystal in which a rectangular cavity is formed in the first surface. A square plate-shaped semiconductor substrate made of a semiconductor material, and one end thereof is joined to the first surface of the semiconductor substrate so as to surround the cavity formed in the first surface of the semiconductor substrate, and the pressure to be detected is A prismatic pedestal tube having a pressure guiding passage for introducing into the cavity, at least one vertical differential pressure sensor formed on the second surface of the semiconductor substrate opposite to the cavity, and at least one A differential pressure sensor in the parallel direction, and at least one formed at a position shifted from the diagonal line of the semiconductor substrate by a predetermined angle on the opposite side of one end of the semiconductor substrate joined to the pedestal tube on the second surface. 2
And at least two static pressure sensors.

【0017】[0017]

【作用】上記の構成において、半導体基板の下面に凹部
を形成してこの部分に表面側に差圧センサを配置すると
ともに、前記半導体基板の下面側に角筒状の台座管を接
続し、前記半導体基板の前記台座管の上方にある部分中
の前記半導体基板の各対角線から所定角度だけ傾けた位
置に各静圧センサを配置することにより、静圧および差
圧を精度よく検出する。
In the above structure, a concave portion is formed on the lower surface of the semiconductor substrate, a differential pressure sensor is disposed on the front surface side in this portion, and a square cylindrical pedestal tube is connected to the lower surface side of the semiconductor substrate. By disposing each static pressure sensor at a position inclined by a predetermined angle from each diagonal line of the semiconductor substrate in a portion of the semiconductor substrate above the pedestal tube, the static pressure and the differential pressure are accurately detected.

【0018】[0018]

【実施例】図1は本発明による半導体圧力センサの一実
施例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a semiconductor pressure sensor according to the present invention.

【0019】この図に示す半導体圧力センサ1は薄い方
形の半導体基板2と、この半導体基板2の一面に接合さ
れる台座管3とによって構成されている。
The semiconductor pressure sensor 1 shown in FIG. 1 comprises a thin rectangular semiconductor substrate 2 and a pedestal tube 3 joined to one surface of the semiconductor substrate 2.

【0020】半導体基板2はシリコンのような単結晶材
料によって構成される矩形状の基板によって構成されて
おり、この半導体基板2の中央部分下側(図1において
下側)に矩形状の凹部4を形成して作った薄肉のダイア
フラム部5が形成されるとともに、図2に示す如く前記
ダイアフラム部5の上側(図1において上側)にボロン
等の不純物を拡散により注入して前記半導体基板2と一
体に形成したピエゾ特性を有する所望形状の差圧センサ
6〜9と、所望形状の静圧センサ10〜17が形成され
ている。
The semiconductor substrate 2 is formed of a rectangular substrate made of a single crystal material such as silicon, and a rectangular recess 4 is formed below the central portion of the semiconductor substrate 2 (the lower side in FIG. 1). Is formed, and an impurity such as boron is implanted by diffusion into the upper side (the upper side in FIG. 1) of the diaphragm portion 5 as shown in FIG. The differential pressure sensors 6 to 9 having a desired shape and integrally formed with piezo characteristics and the static pressure sensors 10 to 17 having a desired shape are formed.

【0021】この場合、前記各差圧センサ6〜9は差圧
センサ6、8が一方の結晶軸方向に配置され、他方の各
差圧センサ7、9が前記結晶軸方向と直交する方向に配
置され、図3に示す如くブリッジ接続されている。
In this case, the differential pressure sensors 6 to 9 are arranged such that the differential pressure sensors 6 and 8 are arranged in one crystal axis direction and the other differential pressure sensors 7 and 9 are arranged in a direction orthogonal to the crystal axis direction. They are arranged and bridge-connected as shown in FIG.

【0022】そして、前記ダイアフラム部5の上面側
と、下面側との差圧によって前記ダイアフラム部5が歪
んだとき、この歪みに応じて前記各差圧センサ6〜9の
抵抗値が変化してこれが差圧検出信号として外部に出力
される。
When the diaphragm 5 is distorted due to the pressure difference between the upper surface and the lower surface of the diaphragm 5, the resistance of each of the differential pressure sensors 6 to 9 changes according to the distortion. This is output to the outside as a differential pressure detection signal.

【0023】また、半導体基板2の上側(図1において
上側)の各静圧センサ10〜17は半導体基板2の中心
と各差圧センサ6〜9とを結んだ各線と、前記半導体基
板2の対角線との間、例えば半導体基板2の対角線から
22.5度傾いた位置に配置され、図3に示す如く各静
圧センサ10〜17が2つずつ組み合わされてブリッジ
接続されている。
Each of the static pressure sensors 10 to 17 above the semiconductor substrate 2 (the upper side in FIG. 1) connects each line connecting the center of the semiconductor substrate 2 to each of the differential pressure sensors 6 to 9, It is arranged at a position inclined by, for example, 22.5 degrees from the diagonal line of the semiconductor substrate 2 with respect to the diagonal line. As shown in FIG. 3, each of the two static pressure sensors 10 to 17 is combined and bridge-connected.

【0024】そして、前記半導体基板2が収められてい
る部分の静圧によって前記半導体基板2が歪んだとき、
この歪みに応じて前記各静圧センサ10〜17の抵抗値
が変化してこれが静圧検出信号として出力される。
When the semiconductor substrate 2 is distorted by the static pressure of the portion where the semiconductor substrate 2 is stored,
The resistance value of each of the static pressure sensors 10 to 17 changes according to this distortion, and this is output as a static pressure detection signal.

【0025】また、台座管3はその外径が前記半導体基
板2の外縁と接する同じ長さに形成されるとともに、そ
の内径が前記凹部4の径よりもかなり短く形成される断
面角筒形のパイレックガラス等によって構成されてお
り、その上端(図1において上端)が前記半導体基板2
の下面に接合され、その内部に形成された断面円形の導
圧路18によって前記半導体基板2の凹部4に検出対象
となる圧力媒体を導く。
The pedestal tube 3 is formed to have the same outer diameter as the length in contact with the outer edge of the semiconductor substrate 2, and has an inner diameter considerably shorter than the diameter of the concave portion 4. The upper end (the upper end in FIG. 1) of the semiconductor substrate 2 is made of Pyrek glass or the like.
The pressure medium to be detected is guided to the concave portion 4 of the semiconductor substrate 2 by a pressure guiding passage 18 having a circular cross section formed therein.

【0026】次に、図1および図2を参照しながらこの
実施例の構造と効果との関係を説明する。
Next, the relationship between the structure and the effect of this embodiment will be described with reference to FIGS.

【0027】まず、ダイアフラム部4が形成されている
半導体基板2に対して異種材料となるパイレックガラス
等の台座管3を接合しているため、ダイアフラム部5に
かかる差圧がゼロで、静圧のみが加えられたときには、
圧縮率の大きい台座管3側から圧縮率の小さい半導体基
板2により大きな歪みが伝わる。差圧が印加されたと
き、ダイアフラムに発生する歪がピエゾ抵抗に作用する
位置より、各静圧センサ10〜17の位置を対角線から
22.5度だけ傾けているので、これらの各静圧センサ
10〜17は差圧による影響を受けにくい。
First, since the pedestal tube 3 made of a different material, such as Pyrex glass, is joined to the semiconductor substrate 2 on which the diaphragm portion 4 is formed, the differential pressure applied to the diaphragm portion 5 becomes zero, When only pressure is applied,
Large distortion is transmitted from the pedestal tube 3 having a high compression ratio to the semiconductor substrate 2 having a low compression ratio. When a differential pressure is applied, the position of each of the static pressure sensors 10 to 17 is tilted by 22.5 degrees from the diagonal line from the position where the strain generated in the diaphragm acts on the piezoresistance. 10 to 17 are hardly affected by the differential pressure.

【0028】静圧印加では、半導体基板2と台座管3と
の接合面直上の半導体基板2の上面(図1において上
面)側に誘起される歪みはダイアフラム部5に誘起され
る歪みより伝達距離が短いので、各静圧センサ10〜1
7から大きな静圧信号が出力される。
In the application of static pressure, the strain induced on the upper surface (the upper surface in FIG. 1) of the semiconductor substrate 2 immediately above the joint surface between the semiconductor substrate 2 and the pedestal tube 3 is longer than the strain induced on the diaphragm 5 by the transmission distance , Each of the static pressure sensors 10-1
7 outputs a large static pressure signal.

【0029】これによって、静圧を主として検出する静
圧センサ10〜17は差圧による誤差が小さくなり、か
つ差圧の測定範囲内では一義的な誤差特性を表わす。
Thus, the static pressure sensors 10 to 17, which mainly detect static pressure, have a small error due to the differential pressure, and exhibit a unique error characteristic within the differential pressure measurement range.

【0030】一方、差圧センサ6〜9が形成されている
半導体基板2の下面には角形の凹部4を形成しているの
で、半導体基板2に静圧が加えられても、歪みが発生し
にくく、この結果静圧に対して出力がほぼ零になる。
On the other hand, since the rectangular concave portion 4 is formed on the lower surface of the semiconductor substrate 2 on which the differential pressure sensors 6 to 9 are formed, even if a static pressure is applied to the semiconductor substrate 2, distortion occurs. The output is almost zero with respect to the static pressure.

【0031】そして、ダイアフラム部5の両面に差圧が
加えられたときにのみ、この差圧によってダイアフラム
面に歪みが誘起されて各差圧センサ6〜9から大きな差
圧信号が出力される。
Then, only when a differential pressure is applied to both surfaces of the diaphragm section 5, a strain is induced on the diaphragm surface by this differential pressure, and a large differential pressure signal is output from each of the differential pressure sensors 6-9.

【0032】この結果、1つの組になった4個の差圧セ
ンサ6〜9は主としてダイアフラム部5にかかる差圧を
検出し、別の組にった8個の静圧センサ10〜17は半
導体基板2と台座管3とにかかる静圧変化によってのみ
生じる信号を出力する。
As a result, one set of four differential pressure sensors 6 to 9 mainly detects the differential pressure applied to the diaphragm portion 5, and another set of eight static pressure sensors 10 to 17 A signal generated only by a static pressure change applied to the semiconductor substrate 2 and the pedestal tube 3 is output.

【0033】このようにこの実施例においては、半導体
基板2の下面に凹部4を形成してこの部分に表面側に差
圧センサ6〜9を配置するとともに、前記半導体基板2
の下面側に角筒状の台座管3を接続し、前記半導体基板
2の前記台座管3の上方にある部分中の前記半導体基板
2の各対角線から22.5度だけ傾けた位置に各静圧セ
ンサ10〜17を配置しているので、静圧および差圧を
同一半導体基板2上で、しかも極めて精度良く、かつ高
い信頼性で検出することができる。
As described above, in this embodiment, the concave portion 4 is formed on the lower surface of the semiconductor substrate 2 and the differential pressure sensors 6 to 9 are arranged on the front surface side in this portion.
A pedestal tube 3 having a rectangular cylindrical shape is connected to the lower surface side of the semiconductor substrate 2, and each of the pedestal tubes 3 is located at a position inclined by 22.5 degrees from each diagonal line of the semiconductor substrate 2 in a portion of the semiconductor substrate 2 above the pedestal tube 3. Since the pressure sensors 10 to 17 are arranged, the static pressure and the differential pressure can be detected on the same semiconductor substrate 2 with extremely high accuracy and high reliability.

【0034】また、上述した実施例においては、半導体
基板2の対角線から22.5度だけ傾けた位置に各静圧
センサ10〜17を配置するようにしているが、図4に
示す如く半導体基板2の1本の対角線から22.5度だ
け傾けた位置に静圧センサ20〜23を設け、図5に示
す如くこれらの各静圧センサ20〜23をブリッジ接続
するようにしても上述した実施例と同様な効果を得るこ
とができる。
In the above-described embodiment, each of the static pressure sensors 10 to 17 is arranged at a position inclined by 22.5 degrees from the diagonal line of the semiconductor substrate 2. However, as shown in FIG. The static pressure sensors 20 to 23 are provided at positions inclined by 22.5 degrees from one of the two diagonal lines, and the static pressure sensors 20 to 23 are bridge-connected as shown in FIG. The same effect as the example can be obtained.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、静
圧下ならびに差圧下で生じる信号を補償することができ
るとともに、静圧および差圧を同一半導体基板上で、し
かも極めて精度良く、かつ高い信頼性で検出することが
できる。
As described above, according to the present invention, signals generated under static pressure and differential pressure can be compensated, and the static pressure and differential pressure can be controlled on the same semiconductor substrate with very high accuracy. It can be detected with high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による半導体圧力センサの一実施例を示
す断面図である。
FIG. 1 is a sectional view showing one embodiment of a semiconductor pressure sensor according to the present invention.

【図2】図1に示す半導体圧力センサの平面図である。FIG. 2 is a plan view of the semiconductor pressure sensor shown in FIG.

【図3】図1に示す半導体圧力センサを構成する各差圧
センサおよび各静圧センサの結線例を示す回路図であ
る。
FIG. 3 is a circuit diagram showing a connection example of each differential pressure sensor and each static pressure sensor constituting the semiconductor pressure sensor shown in FIG. 1;

【図4】本発明による半導体圧力センサの他の実施例を
示す平面図である。
FIG. 4 is a plan view showing another embodiment of the semiconductor pressure sensor according to the present invention.

【図5】図4に示す半導体圧力センサを構成する各差圧
センサおよび各静圧センサの結線例を示す回路図であ
る。
5 is a circuit diagram showing a connection example of each differential pressure sensor and each static pressure sensor constituting the semiconductor pressure sensor shown in FIG. 4;

【図6】従来から知られている半導体圧力センサの一例
を示す断面図である。
FIG. 6 is a sectional view showing an example of a conventionally known semiconductor pressure sensor.

【図7】図6に示す半導体圧力センサの平面図である。FIG. 7 is a plan view of the semiconductor pressure sensor shown in FIG. 6;

【図8】図6に示す半導体圧力センサの問題点を解決す
るために作られた半導体圧力センサの一例を示す平面図
である。
FIG. 8 is a plan view showing an example of a semiconductor pressure sensor made to solve the problem of the semiconductor pressure sensor shown in FIG.

【符号の説明】[Explanation of symbols]

1 半導体圧力センサ 2 半導体基板 3 台座管 4 空洞 6〜9 差圧センサ 10〜17 静圧センサ DESCRIPTION OF SYMBOLS 1 Semiconductor pressure sensor 2 Semiconductor substrate 3 Pedestal pipe 4 Cavity 6-9 Differential pressure sensor 10-17 Static pressure sensor

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1面及び第2面を有し、前記第1面に底
面が正方形の凹部を有する板状の単結晶の半導体基板
と、 前記凹部を取り囲むように前記第1面に接合される一端
と、検出すべき圧力を前記凹部に導入する導圧路とを有
する角筒状の台座管と、 前記第2面の前記凹部の反対側に設けられ、前記正方形
の第1の辺の中央部の近傍に設けられる第1の差圧セン
サと、 前記第2面で前記凹部の反対側に設けられ、前記第1の
辺に隣り合う第2の辺の中央部の近傍に設けられる第2
の差圧センサと、 前記第2面で前記一端の反対側に設けられ、前記正方形
の2本の対角線の交点と配置される位置を結ぶ直線が前
記対角線となす角度が22.5度程度である2つの静圧
センサとを備えた事を特徴とする半導体圧力センサ。
1. A plate-shaped single-crystal semiconductor substrate having a first surface and a second surface and having a square concave portion on the first surface, and joined to the first surface so as to surround the concave portion. A square tube-shaped pedestal tube having one end to be detected, and a pressure guide path for introducing a pressure to be detected into the concave portion; and a first side of the square provided on the second surface opposite to the concave portion. A first differential pressure sensor provided in the vicinity of the central portion of the first side, and provided on the second surface on the opposite side of the concave portion, and provided in the vicinity of the central portion of a second side adjacent to the first side. Second
An angle between a straight line that is provided on the second surface on the opposite side of the one end and that connects the intersection of the two diagonal lines of the square with the diagonal line is about 22.5 degrees. A semiconductor pressure sensor comprising a certain two static pressure sensors.
JP4051138A 1992-03-10 1992-03-10 Semiconductor pressure sensor Expired - Lifetime JP3071932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4051138A JP3071932B2 (en) 1992-03-10 1992-03-10 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4051138A JP3071932B2 (en) 1992-03-10 1992-03-10 Semiconductor pressure sensor

Publications (2)

Publication Number Publication Date
JPH05248974A JPH05248974A (en) 1993-09-28
JP3071932B2 true JP3071932B2 (en) 2000-07-31

Family

ID=12878463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4051138A Expired - Lifetime JP3071932B2 (en) 1992-03-10 1992-03-10 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JP3071932B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10317297B2 (en) 2013-12-11 2019-06-11 Melexis Technologies Nv Semiconductor pressure sensor
GB2521163A (en) * 2013-12-11 2015-06-17 Melexis Technologies Nv Semiconductor pressure sensor

Also Published As

Publication number Publication date
JPH05248974A (en) 1993-09-28

Similar Documents

Publication Publication Date Title
JP4161410B2 (en) Pressure detection device
US5291788A (en) Semiconductor pressure sensor
US7343808B2 (en) Line pressure compensated differential pressure transducer assembly
JPH029704B2 (en)
US4439752A (en) Semiconductor pressure transducer
US5432372A (en) Semiconductor pressure sensor
CN100334453C (en) Acceleration transducer
JP3071932B2 (en) Semiconductor pressure sensor
JP2895262B2 (en) Composite sensor
JPH0572069A (en) Semiconductor pressure sensor
JP2859982B2 (en) Semiconductor pressure sensor
CN100422697C (en) Acceleration transducer
JP2980440B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH0579938A (en) Semiconductor pressure sensor
JPH0579937A (en) Semiconductor pressure sensor
JP2694593B2 (en) Semiconductor pressure sensor
JPS61240134A (en) Semiconductive substrate
JPH03239938A (en) Capacity type pressure sensor
JP3120388B2 (en) Semiconductor pressure transducer
JPS59163533A (en) Pressure trnsducer and its driving method
JPH0755619A (en) Semiconductor pressure sensor
JPH04285833A (en) Semiconductor pressure sensor
JPH05312666A (en) Semiconductor pressure sensor
JPH021252B2 (en)
EP0109992B1 (en) Semiconductor pressure transducer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

EXPY Cancellation because of completion of term