JP4741872B2 - Load cell and weighing device - Google Patents

Load cell and weighing device Download PDF

Info

Publication number
JP4741872B2
JP4741872B2 JP2005125555A JP2005125555A JP4741872B2 JP 4741872 B2 JP4741872 B2 JP 4741872B2 JP 2005125555 A JP2005125555 A JP 2005125555A JP 2005125555 A JP2005125555 A JP 2005125555A JP 4741872 B2 JP4741872 B2 JP 4741872B2
Authority
JP
Japan
Prior art keywords
strain
load
outer peripheral
peripheral frame
load cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005125555A
Other languages
Japanese (ja)
Other versions
JP2006300833A (en
Inventor
龍生 吉澤
健三 並川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2005125555A priority Critical patent/JP4741872B2/en
Publication of JP2006300833A publication Critical patent/JP2006300833A/en
Application granted granted Critical
Publication of JP4741872B2 publication Critical patent/JP4741872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)

Description

本発明は、ロードセルおよび計量装置に関し、詳しくは、起歪部が荷重により変形するのを歪ゲージで検出することにより荷重値を算出可能とするロードセルおよびそれを用いた計量装置に関する。   The present invention relates to a load cell and a weighing device, and more particularly, to a load cell capable of calculating a load value by detecting, with a strain gauge, that a strain generating portion is deformed by a load, and a weighing device using the load cell.

従来より、物体の重さを計量したり、構造物に作用する力を測定するために、歪ゲージを用いたロードセルが多種利用されている。一般的なロードセルは、機械加工で起歪体を成形すると共に該起歪体の薄肉部に歪ゲージを貼着し、荷重による負荷で該薄肉部に生じる歪を検出して荷重値を換算する構造としている。
例えば、特開2000−346723号公報等に開示されたロードセル1は、図10に示すように、被計量物を搭載する荷重台からの荷重を受ける円柱状の受荷重部2と、この受荷重部2の外周に一体的に形成されて受荷重部2に作用する荷重により変形する薄枠状の起歪体3と、起歪体3を介して受荷重部2の外周側に接合された周囲枠4と、起歪体3に貼着された複数の歪ゲージ5A、5Bとを備えている。
Conventionally, various types of load cells using strain gauges have been used to measure the weight of an object or measure the force acting on a structure. A general load cell forms a strained body by machining and attaches a strain gauge to the thin part of the strained body, detects the strain generated in the thin part by a load due to load, and converts the load value. It has a structure.
For example, as shown in FIG. 10, a load cell 1 disclosed in Japanese Patent Application Laid-Open No. 2000-346723 or the like includes a cylindrical load receiving portion 2 that receives a load from a load table on which an object to be weighed is mounted, and the load receiving load. A thin frame-shaped strain generating body 3 that is integrally formed on the outer periphery of the portion 2 and deforms by a load acting on the load receiving portion 2, and is joined to the outer periphery of the load receiving portion 2 via the strain generating body 3. A peripheral frame 4 and a plurality of strain gauges 5A and 5B attached to the strain body 3 are provided.

しかしながら、前記公報のロードセル1によると、受荷重部2と周囲枠4との間を1つの起歪体3で連結しているだけであるため、受荷重部2に対する荷重位置の変動による偏置誤差の影響を受けやすいという問題がある。また、起歪体3は円環状に連続しているため、歪ゲージ5A、5Bを局所的に貼着するだけでは起歪体3で生じる歪を精細に検出するのが難しいという問題もある。
特開2000−346723号公報
However, according to the load cell 1 of the above publication, the load receiving portion 2 and the peripheral frame 4 are merely connected by a single strain body 3, so that the displacement is caused by a change in the load position with respect to the load receiving portion 2. There is a problem that it is easily affected by errors. In addition, since the strain body 3 is continuous in an annular shape, there is a problem that it is difficult to precisely detect the strain generated in the strain body 3 only by locally attaching the strain gauges 5A and 5B.
JP 2000-346723 A

本発明は、前記問題に鑑みてなされたもので、荷重を高精度に検出可能なロードセルおよび計量装置を提供することを課題としている。   This invention is made | formed in view of the said problem, and makes it the subject to provide the load cell and measuring device which can detect a load with high precision.

前記課題を解決するため、本発明は、荷重負荷により歪が生じる起歪部に複数の歪ゲージを貼着しているロードセルにおいて、
中心側に配置される芯部と、該芯部の外周側に間隔をあけて配置される外周枠部と、前記芯部と前記外周枠部との間を架橋する上下一対の起歪部とを備え、前記芯部あるいは前記外周枠部の一方を支持固定部とすると共に他方を荷重負荷部とし、
前記芯部および前記外周枠部は同心円上に配置された円環状であると共に、前記起歪部は厚さ方向が上下方向であり、
前記上下一対の起歪部は周方向に等間隔をあけて3組設けていると共に、前記外周枠部には各組の起歪部の上下間に対応する位置で外側面から内側面へと貫通する貫通孔を穿設し、前記起歪部の周方向の幅は前記芯部の外周長の1%〜5%とし、
前記各組の上下一対の起歪部は、前記貫通孔に接しない上起歪部の上面と下起歪部の下面を径方向両側に向けて徐々に肉厚を大にする断面テーパ形状として内外テーパ部を設け、
負荷される定格荷重が200N〜5KNの範囲で、前記上下の径方向の内外テーパ部のテーパ角度θは5°〜15°、中央の最薄肉部の板厚(t)は0.8mm〜1.7mm、幅bは8mm〜12mmの範囲で、前記定格荷重の増加に応じて増大させて設定し、
前記歪ゲージを上下一対の起歪部の厚肉とした前記内外テーパ部に貼り付け、前記起歪部には1組毎に各4枚の歪ゲージを貼り付けると共に、前記歪ゲージを用いてホイートストンブリッジ回路を形成し、前記各ホイートストンブリッジ回路からの出力を並列和算する回路を設けていることを特徴とするロードセルを提供している。
In order to solve the above-mentioned problem, the present invention provides a load cell in which a plurality of strain gauges are attached to a strain generating portion in which strain occurs due to load loading.
A core portion disposed on the center side, an outer peripheral frame portion disposed at an outer peripheral side of the core portion, and a pair of upper and lower strain generating portions that bridge between the core portion and the outer peripheral frame portion; Including one of the core part or the outer peripheral frame part as a support fixing part and the other as a load-loading part,
The core portion and the outer peripheral frame portion are annularly arranged on concentric circles, and the strain-generating portion has a thickness direction in the vertical direction,
The upper and lower pair of strain generating portions are provided in three sets at equal intervals in the circumferential direction, and the outer peripheral frame portion has a position corresponding to the upper and lower sides of each set of strain generating portions from the outer surface to the inner surface. A through hole is formed, and the circumferential width of the strain-generating portion is 1% to 5% of the outer peripheral length of the core portion.
The pair of upper and lower strain generating portions of each set has a cross-sectional taper shape that gradually increases the thickness toward the both sides in the radial direction with the upper surface of the upper strain portion not contacting the through hole and the lower surface of the lower strain portion. Provide inner and outer taper parts,
When the rated load to be applied is in the range of 200 N to 5 KN, the taper angle θ of the upper and lower radial taper portions is 5 ° to 15 °, and the thickness (t) of the thinnest central portion is 0.8 mm to 1 .7 mm, width b is in the range of 8 mm to 12 mm, and is set to increase according to the increase of the rated load,
The paste strain gauge on the inner and outer tapered portion that is thicker in the vertical pair of the strain generating part, together with the said strain generating portion paste the four strain gauges for each set, by using the strain gauge There is provided a load cell characterized in that a Wheatstone bridge circuit is formed and a circuit for parallelly adding outputs from the respective Wheatstone bridge circuits is provided.

前記構成とすると、芯部と外周枠部とを架橋する起歪部は上下一対ずつ設けているので、荷重負荷の位置変動があってもバランスされるロバーバル機構が形成され、偏置誤差の影響を低減することができる。
また、起歪部は周方向に間隔をあけて3組に分割して設けているので、各起歪部に発生する歪を局所的に貼着された歪ゲージで的確に検出することができ、荷重の検出精度を向上することが可能となる。ここで、例えば起歪部を対向する2組とすれば、荷重負荷の位置変動が2組の起歪部の幅を直線的に結んだ平面上でずれても偏置誤差を最小限に吸収することができるものの、該平面上から外れると起歪部に対して捻り応力が発生し偏置誤差が出やすくなり精度が低下する。一方、起歪部を4組とすれば、荷重負荷の位置変動による起歪部に対する捻り応力はなくなるが、4組の各起歪部に対してバランスよく荷重できず、最悪の場合には4組のうち3組だけに荷重負荷が加わる結果となり精度が低下する。したがって、起歪部は周方向に3組設けて3点支持とすれば、荷重が均等に負荷されて最も良い精度が得られる。
With the above configuration, since the strain generating portions that bridge the core portion and the outer peripheral frame portion are provided in pairs, a robust mechanism that balances even if there is a variation in the position of the load is formed, and the influence of the offset error Can be reduced.
In addition, since the strain generating portions are provided in three groups with a circumferential interval, the strain generated in each strain generating portion can be accurately detected with a locally attached strain gauge. The load detection accuracy can be improved. Here, for example, if the two strain-generating portions are opposed to each other, even if the position variation of the load is shifted on a plane that linearly connects the widths of the two strain-generating portions, the displacement error is minimized. However, if it deviates from the plane, a torsional stress is generated with respect to the strain generating portion, and an offset error tends to occur, resulting in a decrease in accuracy. On the other hand, if there are four sets of strain generating portions, there will be no torsional stress on the strain generating portions due to the variation in the position of the load load, but the four sets of strain generating portions cannot be loaded in a balanced manner. As a result, a load is applied to only three of the sets, and the accuracy decreases. Therefore, if three sets of strain generating portions are provided in the circumferential direction to support three points, the load is evenly applied and the best accuracy is obtained.

さらに、外周枠部には、上下一対の起歪部の上下間に対応する位置で外側面から内側面へと貫通する貫通孔を穿設しているので、芯部と起歪部と外周枠部とを一体物で形成する加工作業が非常に行いやすい利点がある。即ち、荷重量を正確にひずみ量に反映させるためには荷重負荷部と起歪部とが別体物でなく一体物であることが望まれるが、前記貫通孔から中心側に向けて切削加工を行うだけで、上下に分かれた起歪部を簡単に形成することができ、製造効率が非常に良好な構造となる。
また、各組の起歪部の歪ゲージで形成された各ホイートストンブリッジ回路からの出力をそれぞれ並列和算してロードセルの出力としているので、荷重負荷位置による出力誤差を低減することができる。
Further, since the outer peripheral frame portion has a through-hole penetrating from the outer surface to the inner surface at a position corresponding to the upper and lower portions of the pair of upper and lower strain generating portions, the core portion, the strain generating portion, and the outer peripheral frame are formed. There is an advantage that it is very easy to perform a processing operation to form the part as a single body. That is, in order to accurately reflect the load amount in the strain amount, it is desirable that the load load portion and the strain-generating portion are not separate objects but an integrated object, but cutting is performed from the through hole toward the center side. It is possible to easily form a strain generating portion that is divided into upper and lower portions by simply performing the above, and the manufacturing efficiency is very good.
Further, since the outputs from the respective Wheatstone bridge circuits formed by the strain gauges of the respective strain generating portions are summed in parallel to obtain the output of the load cell, the output error due to the load position can be reduced.

前記のように、起歪部の周方向の幅は前記芯部の外周長の1%〜5%としている。 As described above, the width in the circumferential direction of the strain generating part it is 1% to 5% of the circumferential length of the core.

前記構成とすると、3組の起歪部の間で周方向に十分な間隔があけられているため、荷重負荷部で発生した荷重が各起歪部に歪として局所的に現れ、局所的に貼着された歪ゲージで的確に検出することができ、荷重の検出精度を向上することが可能となる。1%〜5%としたのは、1%未満とするとロードセルを小型化した場合に起歪部に歪ゲージを貼れなくなる一方、5%を超えると歪ゲージに対して起歪部が大きくなるために起歪部上の歪が均一でない場合に検出精度が低下するからである。   With the above-described configuration, since sufficient spacing is provided in the circumferential direction between the three sets of strain generating portions, the load generated in the load application portion appears locally as a strain in each strain generating portion, and locally It is possible to accurately detect with the attached strain gauge, and it is possible to improve the load detection accuracy. When the load cell is reduced to 1% to 5%, the strain gauge cannot be attached to the strain-generating portion when the load cell is downsized. On the other hand, when the load cell exceeds 5%, the strain-generating portion becomes larger than the strain gauge. This is because the detection accuracy decreases when the strain on the strain generating portion is not uniform.

前記のように各組の上下一対の起歪部は、径方向両側に向けて徐々に肉厚を大にする断面テーパ形状として内テーパ部と外テーパ部を設け、前記歪ゲージを径方向両側の内テーパ部と外テーパ部に貼り付けている。 Strain-generating-portions of each pair of upper and lower, as above, the inner tapered portion and the outer tapered portion is provided as a cross-sectional tapered shape gradually the thickness to a large toward the both sides in the radial direction, the radial direction of the strain gauge that are affixed to the inner tapered portion and the outer tapered portion of both sides.

即ち、起歪部で生じる応力は径方向両側に向けて増大する傾向にあることが知られているが、前記構成とすると、径方向両側に向けて起歪部の肉厚を増大化しているので、応力値の径方向分布を均一化することができ、歪ゲージの取付位置のバラツキによる歪検出誤差を低減することが可能となる。   That is, it is known that the stress generated in the strain-generating portion tends to increase toward both sides in the radial direction, but with the above configuration, the thickness of the strain-generating portion increases toward both sides in the radial direction. Therefore, the radial distribution of stress values can be made uniform, and strain detection errors due to variations in the strain gauge mounting position can be reduced.

前記のように、芯部および前記外周枠部は同心円上に配置された円環状であると共に、前記起歪部は厚さ方向上下方向としている As described above, the core portion and the outer peripheral frame portion with an annular shape which is arranged concentrically, wherein the strain generating part has a thickness direction and the vertical direction.

前記構成とすると、芯部および外周枠部を円環状として同心円配置しているので、荷重負荷による応力発生が等方的となりやすく測定精度の向上に貢献する。また、起歪部は厚さ方向が上下方向となる板状とすることで、上下方向の荷重による歪を起歪部に好適に発生させることができる。   With the above configuration, since the core portion and the outer peripheral frame portion are arranged concentrically as an annular shape, stress generation due to load is likely to be isotropic, which contributes to improvement in measurement accuracy. In addition, by forming the strain generating portion in a plate shape whose thickness direction is the vertical direction, strain due to a load in the vertical direction can be suitably generated in the strain generating portion.

また、本発明は、前記ロードセルを用い、前記ロードセルの前記芯部あるいは前記外周枠部の一方は支持固定材に固定していると共に、他方は被計量物を収容する容器側に固定していることを特徴とする計量装置を提供している。   Moreover, this invention uses the said load cell, and while fixing one of the said core part or the said outer periphery frame part of the said load cell to a support fixing material, the other is being fixed to the container side which accommodates a to-be-measured object. A weighing device is provided.

前記構成とすると、前記容器内に被計量物が収容されると、芯部あるいは外周枠部の容器が固定された側に荷重が負荷され、該被計量物の重量を計測することができる。   With the above configuration, when an object to be weighed is accommodated in the container, a load is applied to the side where the container of the core part or the outer peripheral frame is fixed, and the weight of the object to be weighed can be measured.

以上の説明より明らかなように、本発明によれば、芯部と外周枠部とを架橋する起歪部は上下一対ずつ設けているので、荷重位置の変動があってもバランスされるロバーバル機構が形成され、偏置誤差を低減することができる。また、起歪部は周方向に間隔をあけて3組に分割しているので、各起歪部に発生する歪を局所的に貼着された歪ゲージで的確に検出でき、荷重の検出精度が向上する。さらに、外周枠部には、上下一対の起歪部の上下間に対応する位置で外側面から内側面へと貫通する貫通孔を穿設しているので、上下一対の起歪部を芯部および外周枠部と一体物で形成する作業が行いやすく加工性が良好となる。   As is clear from the above description, according to the present invention, the pair of strain generating portions for bridging the core portion and the outer peripheral frame portion is provided in a pair of upper and lower portions, so that the Roverval mechanism is balanced even if there is a change in load position. Is formed, and the deviation error can be reduced. In addition, since the strain generating part is divided into three groups with a gap in the circumferential direction, the strain generated in each strain generating part can be accurately detected with a locally attached strain gauge, and the load detection accuracy Will improve. Furthermore, since the outer peripheral frame portion has a through-hole penetrating from the outer surface to the inner surface at a position corresponding to the upper and lower portions of the pair of upper and lower strain generating portions, the pair of upper and lower strain generating portions are connected to the core portion. In addition, it is easy to perform an operation of forming an integral part with the outer peripheral frame portion, and the workability is improved.

本発明の実施形態を図面を参照して説明する。
本実施形態のロードセル10はホッパー計量用の荷重計であり、図1乃至図3に示すように、中心穴11aを有する円筒状の芯部11の外周側に空隙15をあけて略円筒状の外周枠部12を同心円上に配置し、芯部11と外周枠部12との間を周方向に等間隔をあけて架橋する上下一対の起歪部13,14を3組形成している。また、芯部11、外周枠部12および起歪部13,14は金属製で、具体的にはアルミニウムやステンレスや鉄やこれらの合金等で一体的に形成しており、特に、高張力アルミ合金を用いると好ましい。
Embodiments of the present invention will be described with reference to the drawings.
The load cell 10 of the present embodiment is a load meter for measuring a hopper. As shown in FIGS. 1 to 3, the load cell 10 has a substantially cylindrical shape with a gap 15 formed on the outer peripheral side of a cylindrical core portion 11 having a center hole 11a. The outer peripheral frame portion 12 is arranged on a concentric circle, and three pairs of upper and lower strain generating portions 13 and 14 that bridge the core portion 11 and the outer peripheral frame portion 12 at equal intervals in the circumferential direction are formed. Moreover, the core part 11, the outer peripheral frame part 12, and the strain generating parts 13 and 14 are made of metal, specifically, integrally formed of aluminum, stainless steel, iron, alloys thereof, or the like. It is preferable to use an alloy.

芯部11は、ホッパー受用の中心穴11aを有する円筒状で、所要箇所に取付用のボルト穴11bを穿設している。
外周枠部12は、円筒部12aの内側面から内方に突出する薄厚の突出部12bを設けており、各組の起歪部13,14の上下間に対応する位置には外側面から内側面へと断面長円状の貫通孔12cを穿設している。また、所要箇所には取付用のボルト穴12dを穿設していると共に、突出部12bの起歪部13、14が存在する位置には切欠部12eを設けて起歪部13、14の径方向長さを確保している。
The core portion 11 has a cylindrical shape having a center hole 11a for receiving a hopper, and has a bolt hole 11b for attachment at a required location.
The outer peripheral frame portion 12 is provided with a thin protruding portion 12b that protrudes inward from the inner surface of the cylindrical portion 12a. A through hole 12c having an oval cross section is formed on the side surface. In addition, a bolt hole 12d for mounting is drilled at a required location, and a notch 12e is provided at a position where the strain-generating portions 13 and 14 of the projecting portion 12b are present so that the diameter of the strain-generating portions 13 and 14 is increased. The direction length is secured.

起歪部13、14は、図2乃至図4に示すように、貫通孔12cの高さと同一の上下間隔をあけて配置された板状で、周方向の幅bは芯部11の外周長の1%〜5%としている。起歪部13、14の径方向長さpは10mm〜25mmとしており、好ましくは15mm〜20mmとしている。起歪部13、14は、図4に示すように、径方向両側に向けて徐々に肉厚が大となるよう内テーパ部13a、14aと外テーパ部13b、14bを形成している。また、起歪部13,14の中心の最薄部の厚さtは0.5mm〜2.0mmであり、好ましくは0.8mm〜1.7mmとしている。内テーパ部13a、14aおよび外テーパ部13b、14bのテーパ角度θは5°〜30°としており、好ましくは15°〜25°としている。   As shown in FIGS. 2 to 4, the strain generating portions 13 and 14 are plate-like plates arranged at the same vertical interval as the height of the through hole 12 c, and the circumferential width b is the outer peripheral length of the core portion 11. 1% to 5%. The radial length p of the strain generating portions 13 and 14 is 10 mm to 25 mm, preferably 15 mm to 20 mm. As shown in FIG. 4, the strain generating portions 13 and 14 are formed with inner tapered portions 13a and 14a and outer tapered portions 13b and 14b so that the thickness gradually increases toward both radial sides. The thickness t of the thinnest part at the center of the strain-generating parts 13 and 14 is 0.5 mm to 2.0 mm, preferably 0.8 mm to 1.7 mm. The taper angle θ of the inner taper portions 13a and 14a and the outer taper portions 13b and 14b is set to 5 ° to 30 °, preferably 15 ° to 25 °.

上下の起歪部13、14の内テーパ部13a、14aおよび外テーパ部13b、14bのそれぞれには計4枚の歪ゲージSG1〜SG4を接着している。歪ゲージSG1〜SG4は、図5に示すように、上下一対で1組の起歪部13、14毎に1つずつのホイートストンブリッジ回路WH1、WH2、WH3を形成し、各ホイートストンブリッジ回路WH1、WH2、WH3からの出力を並列和算するように回路構成している。なお、隣接する歪ゲージSG1とSG2、SG3とSG4の間の距離をlとすると、l=6mm〜20mmとしており、好ましくは8mm〜12mmとしている。   A total of four strain gauges SG1 to SG4 are bonded to the inner tapered portions 13a and 14a and the outer tapered portions 13b and 14b of the upper and lower strain generating portions 13 and 14, respectively. As shown in FIG. 5, the strain gauges SG <b> 1 to SG <b> 4 form one Wheatstone bridge circuit WH <b> 1, WH <b> 2, WH <b> 3 for each pair of strain generating portions 13, 14 in a pair of upper and lower, and each Wheatstone bridge circuit WH <b> 1. The circuit configuration is such that outputs from WH2 and WH3 are summed in parallel. When the distance between adjacent strain gauges SG1 and SG2 and SG3 and SG4 is l, l = 6 mm to 20 mm, and preferably 8 mm to 12 mm.

以上の構成のロードセル10によれば、外周枠部12を固定部材に支持固定すると共に、計量対象となるホッパー(図示せず)を芯部11に固定し、ホッパーの供給路を中心穴11aに貫通して取り付ければ、ホッパーの荷重が芯部11に負荷されることで起歪部13,14に生じる応力が各歪ゲージSG1〜SG4で検出され、並列和算された出力値から荷重値を換算することができる。なお、逆に、供給路に芯部11の中心穴11aを支持固定して、外周枠部12にホッパーを固定しても同様の結果が得られる。また、中心穴11aを金属板等で塞いで重量物を載せて荷重負荷を加えても同様の結果が得られる。   According to the load cell 10 having the above configuration, the outer peripheral frame portion 12 is supported and fixed to the fixing member, a hopper (not shown) to be measured is fixed to the core portion 11, and the supply path of the hopper is set to the center hole 11a. If installed through, the stress generated in the strain generating portions 13 and 14 when the load of the hopper is applied to the core portion 11 is detected by each of the strain gauges SG1 to SG4, and the load value is calculated from the parallel summed output value. It can be converted. On the contrary, the same result can be obtained by supporting and fixing the central hole 11a of the core portion 11 in the supply path and fixing the hopper to the outer peripheral frame portion 12. Further, the same result can be obtained even when a load is applied by closing the center hole 11a with a metal plate or the like and placing a heavy object thereon.

また、前記ロードセル10は、芯部11と外周枠部12とを架橋する起歪部13,14は上下一対ずつ設けているので、芯部11に対する荷重負荷の位置変動があってもバランスされるロバーバル機構が形成されて偏置誤差が低減される。また、起歪部13,14は周方向に間隔をあけて3組を分割配置しているので、各起歪部13,14に発生する応力を局所的に貼着された歪ゲージSG1〜SG4で的確に検出でき、荷重の検出精度も向上する。   Further, since the load cell 10 is provided with a pair of upper and lower strain generating portions 13 and 14 that bridge the core portion 11 and the outer peripheral frame portion 12, even if there is a variation in the position of the load applied to the core portion 11, the load cell 10 is balanced. A Roverval mechanism is formed to reduce the deviation error. In addition, since the strain generating portions 13 and 14 are divided into three groups at intervals in the circumferential direction, the strain gauges SG1 to SG4 to which the stress generated in each of the strain generating portions 13 and 14 is locally attached. Can be detected accurately and the load detection accuracy is improved.

さらに、外周枠部12には外側面から内側面へと貫通する貫通孔12cを穿設しているので、芯部11と外周枠部12との間にある上下一対の起歪部13,14は貫通孔12cを通して切削することで容易に形成でき、加工性が良好となっている。
また、図4(B)に示すように、起歪部13,14で生じる応力は通常は径方向両側に向けて増大する傾向となるが、起歪部13,14は径方向両側に向けて徐々に肉厚が大となるよう内テーパ部13a、14aと外テーパ部13b、14bを設けているので、
応力値の径方向分布の両側域Rが平坦化されて応力分布が均一化される。よって、両側域Rにおいては歪ゲージSG1〜SG4の取付位置が若干位置ズレしたとしても、検出誤差が極力出ないように工夫されている。
Further, since the outer peripheral frame portion 12 is provided with a through hole 12c penetrating from the outer surface to the inner surface, a pair of upper and lower strain generating portions 13 and 14 between the core portion 11 and the outer peripheral frame portion 12 are formed. Can be easily formed by cutting through the through-hole 12c, and the workability is good.
Further, as shown in FIG. 4B, the stress generated in the strain generating portions 13 and 14 usually tends to increase toward both sides in the radial direction, but the strain generating portions 13 and 14 are directed toward both sides in the radial direction. Since the inner tapered portions 13a, 14a and the outer tapered portions 13b, 14b are provided so that the thickness gradually increases,
Both side regions R of the radial distribution of stress values are flattened to make the stress distribution uniform. Therefore, even if the attachment positions of the strain gauges SG <b> 1 to SG <b> 4 are slightly misaligned in the both side areas R, the detection error is devised so as not to occur as much as possible.

次に、起歪部13,14の好ましい形状例を示す。

Figure 0004741872
Next, a preferable shape example of the strain generating portions 13 and 14 will be shown.
Figure 0004741872

定格荷重に大小によって表1に示すような形状とすることが好ましい。即ち、定格荷重が起歪部13,14に負荷された場合に生じる歪量が歪ゲージSG1〜SG4の歪検出レンジに入るように起歪部13、14の板厚tやテーパ角度θや幅bなどの値を決定している。具体的には、
σ=[3wl/{2b(t+l/2・tanθ)}]/3
で起歪部13、14に生じる応力σを算出し、
ε=(σ/E)・4
で起歪部13,14に生じる歪εを算出して確かめる。
ここで、wは荷重値[kg・f]、lは隣接する歪ゲージSG1、SG2の距離l、bは起歪部13,14の幅、tは起歪部13,14の最も薄肉部分の板厚である。
It is preferable to have a shape as shown in Table 1 depending on the magnitude of the rated load. That is, the plate thickness t, the taper angle θ, and the width of the strain generating portions 13 and 14 so that the amount of strain generated when the rated load is applied to the strain generating portions 13 and 14 falls within the strain detection range of the strain gauges SG1 to SG4. A value such as b is determined. In particular,
σ = [3wl / {2b (t + 1/2 · tan θ) 2 }] / 3
To calculate the stress σ generated in the strain-generating portions 13, 14,
ε = (σ / E) · 4
Then, the strain ε generated in the strain generating portions 13 and 14 is calculated and confirmed.
Here, w is the load value [kg · f], l is the distance l between adjacent strain gauges SG1 and SG2, b is the width of the strain-generating portions 13 and 14, and t is the thinnest portion of the strain-generating portions 13 and 14. Thickness.

次に、実施例と比較例について図6を用いて説明する。
実施例は実施形態と同様で、上下一対の起歪部13,14を周方向の3ヶ所に等間隔をあけて3組配置している。比較例1は、左右一対の起歪部を周方向の1ヶ所に並列配置している。比較例2は、上下一対の起歪部を周方向の2ヶ所に等間隔をあけて2組配置している。実施例および比較例1,2は他の条件は全て同一としている。
Next, examples and comparative examples will be described with reference to FIG.
An example is the same as that of the embodiment, and three pairs of upper and lower strain generating portions 13 and 14 are arranged at three equal intervals in the circumferential direction. In Comparative Example 1, a pair of left and right strain generating portions are arranged in parallel in one place in the circumferential direction. In Comparative Example 2, two pairs of upper and lower strain generating portions are arranged at two equal intervals in the circumferential direction. Examples and Comparative Examples 1 and 2 have the same other conditions.

図6には非直線性とヒステリシスについての実験結果を示しており、両者の目標仕様はともに0.03%ROとしている。実施例では比較例1、2に比べて非直線性、ヒステリシスともに目標仕様である0.03%ROに非常に近い値を示していることが分かる。
なお、非直線性とは、図7に示すように、無負荷時の出力と定格負荷時の出力を結ぶ基準直線に対する荷重増加時の出力と最大偏差を定格出力に対する%で表したものをいう。ヒステリシスとは、定格荷重までの荷重増加時と荷重減少時の間を往復させた時の同一試験に対する出力の差の最大値で、定格出力に対する%で表したものをいう。また、ROは定格出力を意味している。
FIG. 6 shows experimental results for nonlinearity and hysteresis, and both target specifications are 0.03% RO. In the example, it can be seen that both the non-linearity and the hysteresis are very close to the target specification of 0.03% RO as compared with Comparative Examples 1 and 2.
As shown in FIG. 7, the non-linearity refers to the output when the load increases with respect to the reference straight line connecting the output at no load and the output at the rated load and the maximum deviation expressed as a percentage of the rated output. . Hysteresis is the maximum value of the difference in output with respect to the same test when the load is reciprocated between when the load is increased up to the rated load and when the load is decreased, and is expressed as a percentage of the rated output. RO means rated output.

次に、図8はロードセル10を使用した計量装置100を示す。
ロードセル10の外周枠部12は支持固定材21にボルトB2で締結固定している。一方、芯部11の中心穴11aには円筒部材20の円筒部20aを貫通すると共に、該円筒部20aの上側外周から側方に突出した鍔部20bを芯部11のボルト穴11bにボルトB1で締結固定している。円筒部材20の円筒部20aの下側外周には環状部材23を外嵌固定し、環状部材23から垂下された垂直片24の下端内面に設けられた弾性材25で容器26の外周面を圧接保持している。また、円筒部材20の上面開口には被計量物Wを供給するための投入配管22を遊嵌挿入している。
以上の構成によれば、投入配管22から落下された被計量物Wは容器26内に蓄積され、容器26に負荷された被計量物Wの重量が円筒部材20を介してロードセル10の芯部11に負荷されるので、被計量物Wの重量を計測することができる。
Next, FIG. 8 shows a weighing device 100 using the load cell 10.
The outer peripheral frame portion 12 of the load cell 10 is fastened and fixed to the support fixing material 21 with bolts B2. On the other hand, the center hole 11a of the core part 11 penetrates the cylindrical part 20a of the cylindrical member 20, and the flange part 20b protruding laterally from the upper outer periphery of the cylindrical part 20a is connected to the bolt hole 11b of the core part 11 by the bolt B1. It is fastened and fixed with. An annular member 23 is fitted and fixed to the lower outer periphery of the cylindrical portion 20 a of the cylindrical member 20, and the outer peripheral surface of the container 26 is press-contacted by an elastic material 25 provided on the lower end inner surface of the vertical piece 24 suspended from the annular member 23. keeping. Further, a charging pipe 22 for supplying the object to be weighed W is loosely inserted into the upper surface opening of the cylindrical member 20.
According to the above configuration, the object to be weighed W dropped from the input pipe 22 is accumulated in the container 26, and the weight of the object W to be weighed loaded on the container 26 is the core of the load cell 10 via the cylindrical member 20. 11, the weight of the object to be weighed W can be measured.

次に、図9はロードセル10を使用した別の計量装置200の例を示す。
ロードセル10の芯部11の中心穴11aに被計量物Wを供給するために支持固定された投入配管30(支持固定材)の円筒部30aを貫通していると共に、円筒部30aの外周から側方に突出した鍔部30bを芯部11のボルト穴11bにボルトB1で締結固定している。一方、外周枠部12には、大径の円筒部材31の円筒部31aの上端縁より側方に突出した鍔部31bをボルトB2でボルト穴12dに締結固定している。円筒部材31の円筒部31aの外周には環状部材32を外嵌固定し、環状部材32から垂下された垂直片33の下端内面に設けられた弾性材34で容器35の外周面を圧接保持している。
以上の構成によれば、投入配管30から落下された被計量物Wは容器35内に蓄積され、容器35に負荷された被計量物Wの重量が円筒部材31を介してロードセル10の外周枠部12に負荷されるので、被計量物Wの重量を計測することができる。
Next, FIG. 9 shows an example of another weighing device 200 using the load cell 10.
It passes through the cylindrical portion 30a of the input pipe 30 (supporting and fixing material) supported and fixed to supply the object W to the center hole 11a of the core portion 11 of the load cell 10, and from the outer periphery of the cylindrical portion 30a. The flange portion 30b protruding in the direction is fastened and fixed to the bolt hole 11b of the core portion 11 by the bolt B1. On the other hand, on the outer peripheral frame 12, a flange 31b protruding laterally from the upper end edge of the cylindrical portion 31a of the large-diameter cylindrical member 31 is fastened and fixed to the bolt hole 12d with a bolt B2. An annular member 32 is fitted and fixed to the outer periphery of the cylindrical portion 31 a of the cylindrical member 31, and the outer peripheral surface of the container 35 is pressed and held by an elastic material 34 provided on the lower end inner surface of the vertical piece 33 suspended from the annular member 32. ing.
According to the above configuration, the object to be weighed W dropped from the input pipe 30 is accumulated in the container 35, and the weight of the object W to be weighed loaded on the container 35 is connected to the outer peripheral frame of the load cell 10 via the cylindrical member 31. Since the load is applied to the part 12, the weight of the object to be weighed W can be measured.

本発明の実施形態のロードセルを示す斜視図である。It is a perspective view which shows the load cell of embodiment of this invention. ロードセルの上面図である。It is a top view of a load cell. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. (A)は要部断面図、(B)は応力曲線を示すグラフである。(A) is principal part sectional drawing, (B) is a graph which shows a stress curve. 起歪体に接着された歪ゲージの回路構成図である。It is a circuit block diagram of the strain gauge adhere | attached on the strain body. 実施例および比較例を示す図面である。It is drawing which shows an Example and a comparative example. 非直線性およびヒステリシスを説明するグラフである。It is a graph explaining a nonlinearity and a hysteresis. ロードセルを使用した計量装置を示す図面である。It is drawing which shows the measuring device which uses a load cell. ロードセルを使用した別の計量装置を示す図面である。It is drawing which shows another weighing | measuring apparatus using a load cell. (A)は従来例を示す上面図、(B)は断面図である。(A) is a top view which shows a prior art example, (B) is sectional drawing.

符号の説明Explanation of symbols

10 ロードセル
11 芯部
12 外周枠部
12c 貫通孔
13,14 起歪部
13a、14a 内テーパ部
13b、14b 外テーパ部
15 空隙
26、35 容器
100、200 計量装置
SG1〜SG4 歪ゲージ
W 被計量物
WH1〜WH3 ホイートストンブリッジ回路
DESCRIPTION OF SYMBOLS 10 Load cell 11 Core part 12 Outer periphery frame part 12c Through-hole 13, 14 Strain-generating part 13a, 14a Inner taper part 13b, 14b Outer taper part 15 Cavity 26, 35 Container 100, 200 Weighing device SG1-SG4 Strain gauge W WH1-WH3 Wheatstone bridge circuit

Claims (2)

荷重負荷により歪が生じる起歪部に複数の歪ゲージを貼着しているロードセルにおいて、
中心側に配置される芯部と、該芯部の外周側に間隔をあけて配置される外周枠部と、前記芯部と前記外周枠部との間を架橋する上下一対の起歪部とを備え、前記芯部あるいは前記外周枠部の一方を支持固定部とすると共に他方を荷重負荷部とし、
前記芯部および前記外周枠部は同心円上に配置された円環状であると共に、前記起歪部は厚さ方向が上下方向であり、
前記上下一対の起歪部は周方向に等間隔をあけて3組設けていると共に、前記外周枠部には各組の起歪部の上下間に対応する位置で外側面から内側面へと貫通する貫通孔を穿設し、前記起歪部の周方向の幅は前記芯部の外周長の1%〜5%とし、
前記各組の上下一対の起歪部は、前記貫通孔に接しない上起歪部の上面と下起歪部の下面を径方向両側に向けて徐々に肉厚を大にする断面テーパ形状として内外テーパ部を設け、
負荷される定格荷重が200N〜5KNの範囲で、前記上下の径方向の内外テーパ部のテーパ角度θは5°〜15°、中央の最薄肉部の板厚(t)は0.8mm〜1.7mm、幅bは8mm〜12mmの範囲で、前記定格荷重の増加に応じて増大させて設定し、
前記歪ゲージを上下一対の起歪部の厚肉とした前記内外テーパ部に貼り付け、前記起歪部には1組毎に各4枚の歪ゲージを貼り付けると共に、前記歪ゲージを用いてホイートストンブリッジ回路を形成し、前記各ホイートストンブリッジ回路からの出力を並列和算する回路を設けていることを特徴とするロードセル。
In a load cell in which a plurality of strain gauges are attached to a strain generating portion where distortion occurs due to a load,
A core portion disposed on the center side, an outer peripheral frame portion disposed at an outer peripheral side of the core portion, and a pair of upper and lower strain generating portions that bridge between the core portion and the outer peripheral frame portion; Including one of the core part or the outer peripheral frame part as a support fixing part and the other as a load-loading part,
The core portion and the outer peripheral frame portion are annularly arranged on concentric circles, and the strain-generating portion has a thickness direction in the vertical direction,
The upper and lower pair of strain generating portions are provided in three sets at equal intervals in the circumferential direction, and the outer peripheral frame portion has a position corresponding to the upper and lower sides of each set of strain generating portions from the outer surface to the inner surface. A through hole is formed, and the circumferential width of the strain-generating portion is 1% to 5% of the outer peripheral length of the core portion.
The pair of upper and lower strain generating portions of each set has a cross-sectional taper shape that gradually increases the thickness toward the both sides in the radial direction with the upper surface of the upper strain portion not contacting the through hole and the lower surface of the lower strain portion. Provide inner and outer taper parts,
When the rated load to be applied is in the range of 200 N to 5 KN, the taper angle θ of the upper and lower radial taper portions is 5 ° to 15 °, and the thickness (t) of the thinnest central portion is 0.8 mm to 1 .7 mm, width b is in the range of 8 mm to 12 mm, and is set to increase according to the increase of the rated load,
The paste strain gauge on the inner and outer tapered portion that is thicker in the vertical pair of the strain generating part, together with the said strain generating portion paste the four strain gauges for each set, by using the strain gauge A load cell comprising a Wheatstone bridge circuit, and a circuit for parallelly adding outputs from the Wheatstone bridge circuits.
請求項1に記載のロードセルを用い、前記ロードセルの前記芯部あるいは前記外周枠部の一方は支持固定材に固定していると共に、他方は被計量物を収容する容器側に固定していることを特徴とする計量装置 The load cell according to claim 1, wherein one of the core portion or the outer peripheral frame portion of the load cell is fixed to a support fixing material, and the other is fixed to a container side that accommodates an object to be measured. A weighing device characterized by
JP2005125555A 2005-04-22 2005-04-22 Load cell and weighing device Expired - Fee Related JP4741872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125555A JP4741872B2 (en) 2005-04-22 2005-04-22 Load cell and weighing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005125555A JP4741872B2 (en) 2005-04-22 2005-04-22 Load cell and weighing device

Publications (2)

Publication Number Publication Date
JP2006300833A JP2006300833A (en) 2006-11-02
JP4741872B2 true JP4741872B2 (en) 2011-08-10

Family

ID=37469286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125555A Expired - Fee Related JP4741872B2 (en) 2005-04-22 2005-04-22 Load cell and weighing device

Country Status (1)

Country Link
JP (1) JP4741872B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075708A (en) * 2016-01-22 2016-05-12 Ntn株式会社 Linear motion actuator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699904B2 (en) * 2011-10-28 2015-04-15 トヨタ自動車株式会社 Straining body and torque sensor
CN113405702A (en) * 2021-07-09 2021-09-17 东北农业大学 Sensing device for measuring operation resistance of suspended agricultural implement
CN114370916A (en) * 2021-12-30 2022-04-19 航天南洋(浙江)科技有限公司 Spoke type weighing sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579930A (en) * 1991-09-18 1993-03-30 Teac Corp Load cell
JPH0674942U (en) * 1993-03-29 1994-10-21 大和製衡株式会社 Load cell
JPH10221155A (en) * 1996-12-06 1998-08-21 Omron Corp Weight-detecting apparatus and oil amount sensor using the same
JPH11211589A (en) * 1998-01-28 1999-08-06 Kawatetsu Advantech Kk Explosion-proof load cell
JP2002357491A (en) * 2001-05-31 2002-12-13 Teac Corp Load cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3159092B2 (en) * 1996-12-20 2001-04-23 ティアック株式会社 Load cell
JP2962703B1 (en) * 1998-04-27 1999-10-12 株式会社昭和測器 Load cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579930A (en) * 1991-09-18 1993-03-30 Teac Corp Load cell
JPH0674942U (en) * 1993-03-29 1994-10-21 大和製衡株式会社 Load cell
JPH10221155A (en) * 1996-12-06 1998-08-21 Omron Corp Weight-detecting apparatus and oil amount sensor using the same
JPH11211589A (en) * 1998-01-28 1999-08-06 Kawatetsu Advantech Kk Explosion-proof load cell
JP2002357491A (en) * 2001-05-31 2002-12-13 Teac Corp Load cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075708A (en) * 2016-01-22 2016-05-12 Ntn株式会社 Linear motion actuator

Also Published As

Publication number Publication date
JP2006300833A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
US7847202B2 (en) Top-pan scales with corner load sensor
US9709436B2 (en) Load cell that is symmetrical about a central vertical axis
US9395256B2 (en) Low profile multi-axis load cell
JP4741872B2 (en) Load cell and weighing device
CN111386447B (en) Planar load sensor assembly
US20170211965A1 (en) Low-profile load cell assembly
EP2972144B1 (en) Improved sensor mounting bracket
CN110220621A (en) A kind of rail head of rail formula strain gauge for the detection of rail truck Super leaning load
JP5084326B2 (en) Load cell unit and weighing device
US20110100133A1 (en) Mechanical Test Fixture With Submicron Tolerance
JPH0579930A (en) Load cell
CN101387539A (en) Weighing ore groove level meter demarcating apparatus
JP2011191126A (en) Strain element, load cell, and multi-point type balance
JP2005121405A (en) Dead weight meter for vehicle
CN103419165A (en) High-precision torque wrench and checkout, installation and detection method thereof
EP2857807B1 (en) Hanging scale
Gaikwad et al. Design, development, and calibration of octagonal ring type dynamometer with FEA for measurement of drilling thrust and Torque
JP7437702B2 (en) wall soil pressure gauge
US10908039B2 (en) Load cell assembly including cavities to buffer horizontal shear forces
CN107314732A (en) Car engine balance shaft flexibility detecting tool
CN219511657U (en) Automobile scale fixing device
CN114514415A (en) Planar load sensor assembly
JP4667765B2 (en) Weighing mechanism
RU2219505C1 (en) Meter estimating force of press
JP2011122874A (en) Strain element, load cell, and multipoint balance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees