JPH0673381A - 石炭の液化方法 - Google Patents
石炭の液化方法Info
- Publication number
- JPH0673381A JPH0673381A JP22992292A JP22992292A JPH0673381A JP H0673381 A JPH0673381 A JP H0673381A JP 22992292 A JP22992292 A JP 22992292A JP 22992292 A JP22992292 A JP 22992292A JP H0673381 A JPH0673381 A JP H0673381A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- slurry
- solvent
- hydrogen
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
(57)【要約】
【目的】 石炭の液化において、その反応を促進する場
合に水素供与性溶剤であり、かつ多環芳香族化合物を添
加することで石炭の膨潤と同時に石炭にラジカル水素と
して作用させることで液化反応時の油収率を向上させる
こと。 【構成】 石炭と触媒を溶剤でスラリー状として高圧水
素雰囲気中で加熱して液化する方法において、該石炭と
溶媒及び触媒より成るスラリーに水素供与性溶剤であ
り、かつ低分子多環芳香族化合物並びにこれらにメタノ
ールあるいはエタノールの何れかを添加し、該スラリー
に超音波を印加して処理した後液化反応を行う石炭の液
化方法。 【効果】 僅かな有機溶剤分子の添加で液化反応時の油
収率が向上し、経済的効果が著しく大きい。
合に水素供与性溶剤であり、かつ多環芳香族化合物を添
加することで石炭の膨潤と同時に石炭にラジカル水素と
して作用させることで液化反応時の油収率を向上させる
こと。 【構成】 石炭と触媒を溶剤でスラリー状として高圧水
素雰囲気中で加熱して液化する方法において、該石炭と
溶媒及び触媒より成るスラリーに水素供与性溶剤であ
り、かつ低分子多環芳香族化合物並びにこれらにメタノ
ールあるいはエタノールの何れかを添加し、該スラリー
に超音波を印加して処理した後液化反応を行う石炭の液
化方法。 【効果】 僅かな有機溶剤分子の添加で液化反応時の油
収率が向上し、経済的効果が著しく大きい。
Description
【0001】
【産業上の利用分野】本発明は、石炭と溶剤からなるス
ラリーを触媒を使用して高圧の水素雰囲気下で行う石炭
の液化方法に関するものである。
ラリーを触媒を使用して高圧の水素雰囲気下で行う石炭
の液化方法に関するものである。
【0002】
【従来の技術】近年、石油資源の枯渇及び石油価格の高
騰に伴って代替エネルギーの必要性が認識されるように
なり、その代替エネルギーの1つとして石炭の液化反応
についても数多くの研究がなされている。この石炭の液
化は通常石炭と溶剤のスラリーを高温高圧下、触媒の存
在下で水素化し液状生成物を製造することは良く知られ
ている。この石炭の液化においては良好な転化率及び液
化油収率を得ることが経済性の面で必要であり、また、
液化油に含まれるプレアスファルテンやアスファルテン
といった重質成分の量を少なくすることが、良質の石炭
液化油を得る上で重要である。
騰に伴って代替エネルギーの必要性が認識されるように
なり、その代替エネルギーの1つとして石炭の液化反応
についても数多くの研究がなされている。この石炭の液
化は通常石炭と溶剤のスラリーを高温高圧下、触媒の存
在下で水素化し液状生成物を製造することは良く知られ
ている。この石炭の液化においては良好な転化率及び液
化油収率を得ることが経済性の面で必要であり、また、
液化油に含まれるプレアスファルテンやアスファルテン
といった重質成分の量を少なくすることが、良質の石炭
液化油を得る上で重要である。
【0003】そこで、従来においては石炭、触媒および
溶剤からなるスラリーに超音波を印加することによっ
て、石炭液化反応を初期段階で生成する重質のプレアス
ファルテン、アスファルテンなどの反応生成物の反応性
を高め、軽質留分の割合を高らしめる方法として、特開
昭56−127684号公報が知られている。すなわち
特開昭56−127684号公報は石炭粉末に直接超音
波発振器で超音波を印加し、これによって石炭の液化反
応を促進させるというものである。また、溶剤などで石
炭を予め処理し、例えば膨潤を起こさせてから液化反応
を行うことで液化反応時の油収率を向上させるというも
のも知られている。
溶剤からなるスラリーに超音波を印加することによっ
て、石炭液化反応を初期段階で生成する重質のプレアス
ファルテン、アスファルテンなどの反応生成物の反応性
を高め、軽質留分の割合を高らしめる方法として、特開
昭56−127684号公報が知られている。すなわち
特開昭56−127684号公報は石炭粉末に直接超音
波発振器で超音波を印加し、これによって石炭の液化反
応を促進させるというものである。また、溶剤などで石
炭を予め処理し、例えば膨潤を起こさせてから液化反応
を行うことで液化反応時の油収率を向上させるというも
のも知られている。
【0004】
【発明が解決しようとする課題】上述した特開昭56−
127684号公報にあっては、超音波を石炭粒子に直
接印加すると、石炭粒子内の気孔にいわゆるキャビテー
ション気泡が発生し、この気泡のまわりに存在する電荷
が石炭粉末に起る分解反応、重合反応、縮合反応、水素
化反応等の活性化エネルギーを低下させ、これによって
反応圧力が低くても、石炭の液化が促進されるというも
のであって、石炭粒子に直接印加して、石炭の液化が促
進するもので、液化反応の促進に伴う前処理としての促
進のための処理に関しては何ら開示されていない。ま
た、液化反応に先立って、石炭を溶剤で膨潤処理する場
合には、例えば温度200℃、圧力20気圧というよう
に、加圧、加熱条件としなければならないという問題が
ある。
127684号公報にあっては、超音波を石炭粒子に直
接印加すると、石炭粒子内の気孔にいわゆるキャビテー
ション気泡が発生し、この気泡のまわりに存在する電荷
が石炭粉末に起る分解反応、重合反応、縮合反応、水素
化反応等の活性化エネルギーを低下させ、これによって
反応圧力が低くても、石炭の液化が促進されるというも
のであって、石炭粒子に直接印加して、石炭の液化が促
進するもので、液化反応の促進に伴う前処理としての促
進のための処理に関しては何ら開示されていない。ま
た、液化反応に先立って、石炭を溶剤で膨潤処理する場
合には、例えば温度200℃、圧力20気圧というよう
に、加圧、加熱条件としなければならないという問題が
ある。
【0005】
【課題を解決するための手段】このように液化反応にお
いて、その反応を促進しようとする前処理として、水素
供与性溶剤で、かつ多環芳香族化合物溶剤を添加するこ
とで、石炭の膨潤と同時に石炭にラジカル水素として作
用させることで液化反応時の油収率を向上することを目
的とするものである。その発明の要旨とするところは、 (1)石炭と触媒を溶剤でスラリー状として高圧水素雰
囲気中で加熱して液化する方法において、該石炭と溶剤
及び触媒より成るスラリーに水素供与性で、かつ低分子
の多環芳香族化合物を添加剤として加え、該スラリーに
超音波を印加して処理した後液化反応を行うことを特徴
とする石炭の液化方法。 (2)石炭と触媒を溶剤でスラリー状として高圧水素雰
囲気中で加熱して液化する方法において、該石炭と溶剤
及び触媒より成るスラリーに水素供与性で、かつ低分子
の多環芳香族化合物とメタノールあるいはエタノールの
何れかの溶剤を添加し、該スラリーに超音波を印加して
処理した後液化反応を行うことを特徴とする石炭の液化
方法にある。
いて、その反応を促進しようとする前処理として、水素
供与性溶剤で、かつ多環芳香族化合物溶剤を添加するこ
とで、石炭の膨潤と同時に石炭にラジカル水素として作
用させることで液化反応時の油収率を向上することを目
的とするものである。その発明の要旨とするところは、 (1)石炭と触媒を溶剤でスラリー状として高圧水素雰
囲気中で加熱して液化する方法において、該石炭と溶剤
及び触媒より成るスラリーに水素供与性で、かつ低分子
の多環芳香族化合物を添加剤として加え、該スラリーに
超音波を印加して処理した後液化反応を行うことを特徴
とする石炭の液化方法。 (2)石炭と触媒を溶剤でスラリー状として高圧水素雰
囲気中で加熱して液化する方法において、該石炭と溶剤
及び触媒より成るスラリーに水素供与性で、かつ低分子
の多環芳香族化合物とメタノールあるいはエタノールの
何れかの溶剤を添加し、該スラリーに超音波を印加して
処理した後液化反応を行うことを特徴とする石炭の液化
方法にある。
【0006】以下本発明について、図面に従って詳細に
説明する。図1は本発明に係る石炭スラリーの超音波に
よる処理を行うプロセスフローシートを示す図である。
図1に示すように、粉砕した石炭1、溶剤2及び触媒3
に、水素供与性溶剤であり、かつ低分子多環芳香族化合
物とメタノールあるいはエタノールの何れかの溶剤の混
合液(以下添加剤という)4を、液面レベル計8によっ
て液面制御しながら一定量ずつ攪拌槽5へ供給し、攪拌
機6によって攪拌混合して石炭スラリー7とする。石炭
スラリー7は攪拌槽5の下部に設置された配管15内を
気流接触装置10へと流れ、該気液接触装置10内にお
いて、流量計11´を経由して供給される水素等の還元
性ガスと混合接触する。該ガスを溶存した石炭スラリー
7は循環ポンプ12によって超音波照射装置13に供給
されて超音波が印加される。超音波が印加された石炭ス
ラリー7は、配管16、17によって再び攪拌槽5に還
流される。この循環過程は石炭スラリー7に対して有効
な超音波処理が施されるまで継続される。
説明する。図1は本発明に係る石炭スラリーの超音波に
よる処理を行うプロセスフローシートを示す図である。
図1に示すように、粉砕した石炭1、溶剤2及び触媒3
に、水素供与性溶剤であり、かつ低分子多環芳香族化合
物とメタノールあるいはエタノールの何れかの溶剤の混
合液(以下添加剤という)4を、液面レベル計8によっ
て液面制御しながら一定量ずつ攪拌槽5へ供給し、攪拌
機6によって攪拌混合して石炭スラリー7とする。石炭
スラリー7は攪拌槽5の下部に設置された配管15内を
気流接触装置10へと流れ、該気液接触装置10内にお
いて、流量計11´を経由して供給される水素等の還元
性ガスと混合接触する。該ガスを溶存した石炭スラリー
7は循環ポンプ12によって超音波照射装置13に供給
されて超音波が印加される。超音波が印加された石炭ス
ラリー7は、配管16、17によって再び攪拌槽5に還
流される。この循環過程は石炭スラリー7に対して有効
な超音波処理が施されるまで継続される。
【0007】
【作用】本発明でいうところの石炭スラリーに限らず、
一般にガスを溶存する流体中に超音波を印加すると、い
わゆるキャビテーション現象(空洞化現象)が発現す
る。この空洞は超音波の縦波の振動に伴って膨張収縮を
繰り返しながら、次第にその大きさを増していくが、あ
る大きさ以上になると破壊が起こる。その際に流体中に
局所的な高温、高圧の場が形成される。そのレベルは例
えば文献(サイエンス、1989年4月号、88頁〜9
5頁)によれば、温度で数千度、圧力で数百から千気圧
というものである。このような現象による化学反応の促
進効果は良く知られているが、本発明はこのような高
温、高圧の場を、水素等の還元性ガスを溶存し、かつ、
添加剤を含有する石炭スラリー中に形成させ、その高い
エネルギーによって石炭が有する細孔内への添加剤の侵
入を促進し、その結果、石炭の膨潤および添加剤に含ま
れる低分子の多環芳香族化合物からの石炭への水素ラジ
カルの移行反応を促進するものである。さらには、添加
剤中に低分子の多環芳香族化合物とともにメタノールあ
るいはエタノールといった炭化水素が存在すると、これ
らの炭化水素は石炭の細孔に対して、いわゆるくさび効
果を示し、すなわち、低分子の多環芳香族化合物の石炭
の細孔内への侵入がより一層促進される。石炭の膨潤処
理は石炭の構造を緩和する効果があるために、このよう
な処理を施した石炭を液化反応に供すると液化反応性が
著しく向上するものである。
一般にガスを溶存する流体中に超音波を印加すると、い
わゆるキャビテーション現象(空洞化現象)が発現す
る。この空洞は超音波の縦波の振動に伴って膨張収縮を
繰り返しながら、次第にその大きさを増していくが、あ
る大きさ以上になると破壊が起こる。その際に流体中に
局所的な高温、高圧の場が形成される。そのレベルは例
えば文献(サイエンス、1989年4月号、88頁〜9
5頁)によれば、温度で数千度、圧力で数百から千気圧
というものである。このような現象による化学反応の促
進効果は良く知られているが、本発明はこのような高
温、高圧の場を、水素等の還元性ガスを溶存し、かつ、
添加剤を含有する石炭スラリー中に形成させ、その高い
エネルギーによって石炭が有する細孔内への添加剤の侵
入を促進し、その結果、石炭の膨潤および添加剤に含ま
れる低分子の多環芳香族化合物からの石炭への水素ラジ
カルの移行反応を促進するものである。さらには、添加
剤中に低分子の多環芳香族化合物とともにメタノールあ
るいはエタノールといった炭化水素が存在すると、これ
らの炭化水素は石炭の細孔に対して、いわゆるくさび効
果を示し、すなわち、低分子の多環芳香族化合物の石炭
の細孔内への侵入がより一層促進される。石炭の膨潤処
理は石炭の構造を緩和する効果があるために、このよう
な処理を施した石炭を液化反応に供すると液化反応性が
著しく向上するものである。
【0008】本発明で言う水素供与性で、かつ低分子の
多環芳香族化合物とは水素分子を活性的なラジカル水素
として容易に放出するものであって、かつ、分子量の比
較的小さい多環芳香族化合物をいう。具体的なものとし
ては、テトラリン、テトラヒドロキノン、ジヒドロアン
トラセン及びテトラヒドロフェナントレン等である。
多環芳香族化合物とは水素分子を活性的なラジカル水素
として容易に放出するものであって、かつ、分子量の比
較的小さい多環芳香族化合物をいう。具体的なものとし
ては、テトラリン、テトラヒドロキノン、ジヒドロアン
トラセン及びテトラヒドロフェナントレン等である。
【0009】図2は本発明に係る低分子多環芳香族化合
物を添加剤として加えた場合の超音波処理時間と油収率
との関係を示す図である。図2において、該添加剤を加
えた溶剤と加えない溶剤との超音波処理時間と油収率と
の関係は該添加剤を加えないものの油収率が添加したも
のに比較して低いことがわかる。
物を添加剤として加えた場合の超音波処理時間と油収率
との関係を示す図である。図2において、該添加剤を加
えた溶剤と加えない溶剤との超音波処理時間と油収率と
の関係は該添加剤を加えないものの油収率が添加したも
のに比較して低いことがわかる。
【0010】図3は本発明に係るテトラリン添加剤の混
合割合と油収率との関係を示す図である。図3に示すよ
うにテトラリン溶剤の添加量は石炭の乾重量に対して3
〜20重量%において油収率が高く、20重量%を超え
るとそれ以上添加するも油収率の向上は見られない。し
かも特に望ましい範囲は5〜10重量%とすることが油
収率を最大に向上する範囲である。この結果はテトラリ
ン溶剤に限定するものではなく、本発明に係る水素供与
性溶剤の全てに適用出来る混合割合である。図4は本発
明に係るメタノール/テトラリン添加剤の混合割合と油
収率との関係を示す図である。この図4に示すようにメ
タノールとテトラリンとの混合重量比はメタノールを
0.1〜0.8の範囲で混合すれば効果が得られること
を表している。
合割合と油収率との関係を示す図である。図3に示すよ
うにテトラリン溶剤の添加量は石炭の乾重量に対して3
〜20重量%において油収率が高く、20重量%を超え
るとそれ以上添加するも油収率の向上は見られない。し
かも特に望ましい範囲は5〜10重量%とすることが油
収率を最大に向上する範囲である。この結果はテトラリ
ン溶剤に限定するものではなく、本発明に係る水素供与
性溶剤の全てに適用出来る混合割合である。図4は本発
明に係るメタノール/テトラリン添加剤の混合割合と油
収率との関係を示す図である。この図4に示すようにメ
タノールとテトラリンとの混合重量比はメタノールを
0.1〜0.8の範囲で混合すれば効果が得られること
を表している。
【0011】
【実施例】以下に本発明によって処理した石炭スラリー
を用いて液化反応を行った場合の結果について説明す
る。なお、以下に述べる実施例において、石炭は表1に
示した性状を有するものを150μm以下に粉砕し、3
mmHgの真空中で80℃において120分乾燥処理し
て使用した。また、触媒は二硫化鉄(市販の第1級品)
を用いた。液化溶剤は予め上述の方法で液化反応を行っ
て得られた液状生成物のうち、蒸留処理で得られた沸点
が250℃から500℃の成分を水素化処理したもの
(以下溶剤という)または350℃から500℃の成
分を水素化処理したもの(以下溶剤という)を用い
た。
を用いて液化反応を行った場合の結果について説明す
る。なお、以下に述べる実施例において、石炭は表1に
示した性状を有するものを150μm以下に粉砕し、3
mmHgの真空中で80℃において120分乾燥処理し
て使用した。また、触媒は二硫化鉄(市販の第1級品)
を用いた。液化溶剤は予め上述の方法で液化反応を行っ
て得られた液状生成物のうち、蒸留処理で得られた沸点
が250℃から500℃の成分を水素化処理したもの
(以下溶剤という)または350℃から500℃の成
分を水素化処理したもの(以下溶剤という)を用い
た。
【0012】石炭の液化反応は図5に示す装置によって
行った。すなわち、図5に示す圧力容器22中に石炭、
溶剤、触媒および添加剤からなる石炭スラリー21の3
00mlを入れて容器蓋24で密封した後、ガス導管2
3より分子状水素を容器内に導き、容器内を分子状水素
で置換する。しかるのち、圧力容器22内に室温におけ
る圧力が100kgf/cm2 となるように分子状水素
を導入し、攪拌機18を作動させながら加熱ヒーター2
0により昇温を開始し、温度450℃において60分反
応を行った。反応が終了したら、圧力容器22から反応
生成物を取り出し、ガス状生成物は容量と組成から生成
量を求め、また、液体状の生成物は蒸留処理を行い、次
式より油収率を求めた。
行った。すなわち、図5に示す圧力容器22中に石炭、
溶剤、触媒および添加剤からなる石炭スラリー21の3
00mlを入れて容器蓋24で密封した後、ガス導管2
3より分子状水素を容器内に導き、容器内を分子状水素
で置換する。しかるのち、圧力容器22内に室温におけ
る圧力が100kgf/cm2 となるように分子状水素
を導入し、攪拌機18を作動させながら加熱ヒーター2
0により昇温を開始し、温度450℃において60分反
応を行った。反応が終了したら、圧力容器22から反応
生成物を取り出し、ガス状生成物は容量と組成から生成
量を求め、また、液体状の生成物は蒸留処理を行い、次
式より油収率を求めた。
【0013】油収率={A−(C+D+E)}/B×1
00 (wt%−d.a.f.) 但し、 A:反応を行う前の圧力容器内の石炭、触媒、分子状水
素の重さの合計(g) B:反応に用いた石炭の無水無灰基準の重さ(g) C:反応後の圧力容器内のガス状生成物の重さ(g) D:反応後の液状生成物のうち、蒸留による沸点が50
0℃以上であるものの重さ(g) E:反応後の液状生成物のうち、蒸留による沸点が50
0℃未満の留出分中に含まれる水分の量(g)である。
00 (wt%−d.a.f.) 但し、 A:反応を行う前の圧力容器内の石炭、触媒、分子状水
素の重さの合計(g) B:反応に用いた石炭の無水無灰基準の重さ(g) C:反応後の圧力容器内のガス状生成物の重さ(g) D:反応後の液状生成物のうち、蒸留による沸点が50
0℃以上であるものの重さ(g) E:反応後の液状生成物のうち、蒸留による沸点が50
0℃未満の留出分中に含まれる水分の量(g)である。
【0014】
【表1】
【0015】実施例1 図1に示した連続プロセスを用いて石炭スラリーの超音
波処理を行った。すなわち、上述のごとく粉砕乾燥した
石炭1と溶剤2を重量比2:3の割合で、触媒3を石炭
の乾き重量に対して3重量%の割合で、添加剤としてテ
トラリンを石炭の乾き重量に対して10重量%の割合で
これらの全量が10リットルとなるまで液面レベル計8
で液面を制御しながら攪拌槽5に供給する。このように
調製した石炭スラリー7は上述のごとく気液接触装置1
0、超音波照射装置13(出力300W×3基、ホーン
部直径26mm、周波数20KHz)12を経由して再
び攪拌槽5へと還流する。この循環過程は石炭スラリー
7に対して有効な超音波処理が施されるまで継続され
る。なお、気液接触装置10において石炭スラリー7
は、流量計11´を介して吹き込まれる分子状水素ガス
と接触混合し、該分子状水素ガスを溶存した状態で超音
波照射装置へ至るものである。
波処理を行った。すなわち、上述のごとく粉砕乾燥した
石炭1と溶剤2を重量比2:3の割合で、触媒3を石炭
の乾き重量に対して3重量%の割合で、添加剤としてテ
トラリンを石炭の乾き重量に対して10重量%の割合で
これらの全量が10リットルとなるまで液面レベル計8
で液面を制御しながら攪拌槽5に供給する。このように
調製した石炭スラリー7は上述のごとく気液接触装置1
0、超音波照射装置13(出力300W×3基、ホーン
部直径26mm、周波数20KHz)12を経由して再
び攪拌槽5へと還流する。この循環過程は石炭スラリー
7に対して有効な超音波処理が施されるまで継続され
る。なお、気液接触装置10において石炭スラリー7
は、流量計11´を介して吹き込まれる分子状水素ガス
と接触混合し、該分子状水素ガスを溶存した状態で超音
波照射装置へ至るものである。
【0016】このような処理で得られた石炭スラリーを
上述の方法で液化反応を行った場合の油収率を図2に示
す。図2において横軸は図1のプロセスにおける石炭ス
ラリーの処理時間であり、縦軸は前述の式で求めた油収
率である。この油収率の値が高いほど本発明の効果が大
きいことを示している。図2において曲線1は前述の溶
剤を用いた場合、曲線2は前述の溶剤を用いた場合
である。比較のために曲線3として溶剤に添加剤とし
てのテトラリンを加えなかった場合、曲線4は溶剤に
添加剤としてのテトラリンを加えなかった場合を併記し
た。いずれの場合も油収率は処理時間とともに高くな
り、6分近傍で最大値を示している。また、溶剤、溶
剤のどちらも添加剤を加えない場合に比べて、添加剤
を加えると油収率が高くなっている。
上述の方法で液化反応を行った場合の油収率を図2に示
す。図2において横軸は図1のプロセスにおける石炭ス
ラリーの処理時間であり、縦軸は前述の式で求めた油収
率である。この油収率の値が高いほど本発明の効果が大
きいことを示している。図2において曲線1は前述の溶
剤を用いた場合、曲線2は前述の溶剤を用いた場合
である。比較のために曲線3として溶剤に添加剤とし
てのテトラリンを加えなかった場合、曲線4は溶剤に
添加剤としてのテトラリンを加えなかった場合を併記し
た。いずれの場合も油収率は処理時間とともに高くな
り、6分近傍で最大値を示している。また、溶剤、溶
剤のどちらも添加剤を加えない場合に比べて、添加剤
を加えると油収率が高くなっている。
【0017】実施例2 実施例1と同様な方法で石炭スラリーを処理した後液化
反応を行った。ただし、溶剤を使用し、図1に示した
プロセスにおける処理時間は6分とした。この条件で添
加剤のテトラリンの添加割合を石炭の乾き重量に対して
40%まで変化させ、液化反応を行った場合の油収率を
図3に示す。この結果、テトラリンの添加量が増加する
とともに油収率が高くなることがわかる。しかし、テト
ラリンの添加量を20%以上にしても油収率は頭打ちに
なっている。
反応を行った。ただし、溶剤を使用し、図1に示した
プロセスにおける処理時間は6分とした。この条件で添
加剤のテトラリンの添加割合を石炭の乾き重量に対して
40%まで変化させ、液化反応を行った場合の油収率を
図3に示す。この結果、テトラリンの添加量が増加する
とともに油収率が高くなることがわかる。しかし、テト
ラリンの添加量を20%以上にしても油収率は頭打ちに
なっている。
【0018】実施例3 実施例2と同様の条件で、添加剤として石炭の乾き重量
に対して10重量%のテトラリンとテトラリンに対して
重量比で0から0.8の割合でメタノールを混合させて
処理した石炭スラリーを液化した場合の油収率の結果を
図4に示す。テトラリンに対するメタノールの量が増加
すると油収率が向上しており、添加剤としてのテトラリ
ンにさらにメタノールを加えた石炭スラリーに超音波処
理を行うことが液化反応時の油収率の向上に有効である
ことがわかる。なお、上述の実施例において、添加剤と
してテトラリンやメタノールとテトラリンの重量比が
0.4程度で最大となり、それ以上メタノールの割合を
増加させても、その添加効果は小さい。
に対して10重量%のテトラリンとテトラリンに対して
重量比で0から0.8の割合でメタノールを混合させて
処理した石炭スラリーを液化した場合の油収率の結果を
図4に示す。テトラリンに対するメタノールの量が増加
すると油収率が向上しており、添加剤としてのテトラリ
ンにさらにメタノールを加えた石炭スラリーに超音波処
理を行うことが液化反応時の油収率の向上に有効である
ことがわかる。なお、上述の実施例において、添加剤と
してテトラリンやメタノールとテトラリンの重量比が
0.4程度で最大となり、それ以上メタノールの割合を
増加させても、その添加効果は小さい。
【0019】
【発明の効果】以上述べたように、本発明による石炭ス
ラリーの処理を行った後、石炭の液化反応を行うと液化
反応時の油収率が大幅に向上する。この石炭スラリーの
処理において、高温や高圧仕様の装置を使用することな
くテトラリンやメタノールなどの溶剤を石炭の気孔内に
効率良く侵入させ、その結果石炭の液化反応を促進させ
ることから、経済的、工業上に極めて優れた効果を奏す
るものである。
ラリーの処理を行った後、石炭の液化反応を行うと液化
反応時の油収率が大幅に向上する。この石炭スラリーの
処理において、高温や高圧仕様の装置を使用することな
くテトラリンやメタノールなどの溶剤を石炭の気孔内に
効率良く侵入させ、その結果石炭の液化反応を促進させ
ることから、経済的、工業上に極めて優れた効果を奏す
るものである。
【図1】本発明に係る石炭スラリーの超音波処理を連続
して行う場合のプロセスフローシートの一例を示す図、
して行う場合のプロセスフローシートの一例を示す図、
【図2】本発明に係る水素供与性溶剤の添加による超音
波処理時間と油収率との関係を示す図、
波処理時間と油収率との関係を示す図、
【図3】本発明に係る添加剤の石炭スラリーへの混合割
合を変化させた場合の添加量と油収率との関係を示す
図、
合を変化させた場合の添加量と油収率との関係を示す
図、
【図4】本発明に係る添加剤のメタノールとテトラリン
の混合割合を変化させた場合のメタノールとテトラリン
の重量比と油収率との関係を示す図、
の混合割合を変化させた場合のメタノールとテトラリン
の重量比と油収率との関係を示す図、
【図5】石炭の液化反応を行う装置を示す図である。
1 石炭 2 溶剤 3 触媒 4 水素供与性溶剤で、かつ低分子多環芳香族化合物溶
剤 5 攪拌槽 6、18 攪拌機 7、21 石炭スラリー 8 液面レベル計 9 水冷用ジャケット 10 気流接触装置 11、11´ 流量計 12 循環ポンプ 13 超音波照射装置 14、19 熱電対 15 、16、17 配管 20 加熱ヒーター 22 圧力容器 23 ガス導管 24 容器蓋 25 分子状水素
剤 5 攪拌槽 6、18 攪拌機 7、21 石炭スラリー 8 液面レベル計 9 水冷用ジャケット 10 気流接触装置 11、11´ 流量計 12 循環ポンプ 13 超音波照射装置 14、19 熱電対 15 、16、17 配管 20 加熱ヒーター 22 圧力容器 23 ガス導管 24 容器蓋 25 分子状水素
Claims (2)
- 【請求項1】 石炭と触媒を溶剤でスラリー状として高
圧水素雰囲気中で加熱して液化する方法において、該石
炭と溶剤及び触媒より成るスラリーに水素供与性で、か
つ低分子の多環芳香族化合物を添加剤として加え、該ス
ラリーに超音波を印加して処理した後液化反応を行うこ
とを特徴とする石炭の液化方法。 - 【請求項2】 石炭と触媒を溶剤でスラリー状として高
圧水素雰囲気中で加熱して液化する方法において、該石
炭と溶剤及び触媒より成るスラリーに水素供与性で、か
つ低分子の多環芳香族化合物とメタノールあるいはエタ
ノールの何れかの溶剤を添加し、該スラリーに超音波を
印加して処理した後液化反応を行うことを特徴とする石
炭の液化方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22992292A JPH0673381A (ja) | 1992-08-28 | 1992-08-28 | 石炭の液化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22992292A JPH0673381A (ja) | 1992-08-28 | 1992-08-28 | 石炭の液化方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0673381A true JPH0673381A (ja) | 1994-03-15 |
Family
ID=16899846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22992292A Withdrawn JPH0673381A (ja) | 1992-08-28 | 1992-08-28 | 石炭の液化方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0673381A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2929287A1 (fr) * | 2008-03-28 | 2009-10-02 | Europ Ltd | Procede d'obtention d'hydrocarbures liquides. |
-
1992
- 1992-08-28 JP JP22992292A patent/JPH0673381A/ja not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2929287A1 (fr) * | 2008-03-28 | 2009-10-02 | Europ Ltd | Procede d'obtention d'hydrocarbures liquides. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8216520B2 (en) | Process to upgrade heavy oil by hot pressurized water and ultrasonic wave generating pre-mixer | |
JP5739906B2 (ja) | 水、酸化剤及び重質油を超臨界の温度及び圧力条件下で混合し、最終的にその混合物をマイクロ波処理にかけるプロセス | |
US6544411B2 (en) | Viscosity reduction of oils by sonic treatment | |
US5547563A (en) | Method of conversion of heavy hydrocarbon feedstocks | |
WO2002102937A1 (en) | Method to treat emulsified hydrocarbon mixtures | |
CN101155900A (zh) | 通过超声波和微波联合处理提高石油的品位 | |
WO2002103322A2 (en) | Method to liberate hydrocarbon fractions from hydrocarbon mixtures | |
WO2002102746A1 (en) | Method to upgrade hydrocarbon mixtures | |
WO2011086522A1 (en) | Process for the treatment of crude oil and petroleum products using ultrasound vibrations and an electromagnetic field | |
US6590000B2 (en) | Defoaming of foams utilizing sonication | |
JPH0673381A (ja) | 石炭の液化方法 | |
JPH05230469A (ja) | 石炭の液化方法 | |
JPH06108061A (ja) | 石炭の液化方法 | |
JP2885673B2 (ja) | 化石燃料又は高分子物質の改質及び/又は低分子化方法 | |
JPH06108060A (ja) | 石炭スラリーの処理方法およびその装置 | |
JPH06234978A (ja) | 石炭の液化方法 | |
JPH0673380A (ja) | 石炭の液化方法 | |
RU2725624C1 (ru) | Композиция реагентов для химической конверсии тяжелой нефти при закачке пара | |
WO2010117292A1 (ru) | Способ снижения вязкости тяжелых нефтесодержащих фракций | |
VG Sister, ¹ ES Gridneva, ¹ and OV Abramov²* | Ultrasound-induced change in chemical properties of petroleum products | |
JPH07305075A (ja) | 石炭の液化方法 | |
US1970771A (en) | Process for refining emulsified compounds | |
CN116492954A (zh) | 一种基于超声空化效应的等离子体强化装置及方法 | |
JPH06234979A (ja) | 石炭の液化方法 | |
Koss et al. | Study of the processes of petroleum feedstock treatment by hydrodynamic shock in a supersonic jet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991102 |