JPH0672162U - Laminated structure of zinc-bromine battery - Google Patents

Laminated structure of zinc-bromine battery

Info

Publication number
JPH0672162U
JPH0672162U JP012917U JP1291793U JPH0672162U JP H0672162 U JPH0672162 U JP H0672162U JP 012917 U JP012917 U JP 012917U JP 1291793 U JP1291793 U JP 1291793U JP H0672162 U JPH0672162 U JP H0672162U
Authority
JP
Japan
Prior art keywords
battery
tightening
zinc
bolts
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP012917U
Other languages
Japanese (ja)
Inventor
裕通 伊藤
裕司 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP012917U priority Critical patent/JPH0672162U/en
Publication of JPH0672162U publication Critical patent/JPH0672162U/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

(57)【要約】 【目的】 電池本体構成材の締付端板間にボルトを通し
て締め付けて一体的に積層する際に、装置全体の小型化
をはかり、ばねの締付力過大に起因する構成材のクラッ
クを防止するとともに重量及びコストを低減することを
目的とする。 【構成】 電池本体20の両締付端板間21,21(ガ
ラスエポキシ板)をコイルばね22の介在下で複数本の
ボルト15を用いて均等に締付けることによって一体的
に積層固定した亜鉛−臭素電池の積層構造にしてある。
(57) [Abstract] [Purpose] When the bolts are tightened between the tightening end plates of the battery body components to integrally stack them, the entire device is downsized, and the structure is caused by the excessive tightening force of the spring. The purpose is to prevent the material from cracking and to reduce the weight and cost. Constitution: Zinc integrally laminated and fixed by uniformly tightening between the two tightening end plates 21 and 21 (glass epoxy plate) of the battery body 20 with a plurality of bolts 15 with a coil spring 22 interposed therebetween. It has a laminated structure of a bromine battery.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は電解液循環型積層二次電池、特に電力貯蔵用亜鉛−臭素電池の積層構 造に関するものである。 The present invention relates to a laminated structure of an electrolyte circulating type secondary battery, particularly a zinc-bromine battery for power storage.

【0002】[0002]

【従来の技術】[Prior art]

亜鉛−臭素電池は正極活物質に臭素、負極活物質に亜鉛を用いた2次電池であ り、この電池は例えば電力の昼と夜のアンバランスを解決させるために、電力需 要が少ない夜間に電力を貯蔵して昼間に放出させるとか、電気自動車用としての 開発が進められている。 Zinc-bromine batteries are secondary batteries that use bromine as the positive electrode active material and zinc as the negative electrode active material. For example, this battery is used at night when power demand is low to solve the imbalance between day and night. Electricity is being stored and released in the daytime, and development for electric vehicles is in progress.

【0003】 充電時に正極電極側で発生した臭素は、電解液に添加した臭素錯化剤と反応し 、オイル状の沈殿物となって正極側貯蔵槽へ戻され、放電時はポンプで単電池内 へ送り込まれ還元される。電解液の成分はZnBr2水溶液と、抵抗を下げるた めのNH4Cl等の塩と、負極亜鉛側のデンドライトを防止し、均一な電着を促 進させるためのPb,Sn,4級アンモニウム塩類と、臭素錯化剤とである。正 極電極と負極電極の間にはセパレータを介挿してあり、正極電極で発生した臭素 が負極電極へ拡散して亜鉛と反応することによる自己放電を防止している。Bromine generated on the positive electrode side at the time of charging reacts with the bromine complexing agent added to the electrolytic solution to be returned to the positive electrode side storage tank as an oily precipitate, and at the time of discharging, a single cell is pumped. It is sent in and returned. The components of the electrolytic solution are a ZnBr 2 aqueous solution, a salt such as NH 4 Cl for reducing the resistance, and Pb, Sn, and quaternary ammonium for preventing dendrites on the zinc side of the negative electrode and promoting uniform electrodeposition. A salt and a bromine complexing agent. A separator is inserted between the positive electrode and the negative electrode to prevent self-discharge due to the bromine generated in the positive electrode diffusing into the negative electrode and reacting with zinc.

【0004】 この亜鉛−臭素電池は、主に電極をバイポーラ型とし、複数個の単電池(単セ ル)を電気的に直列に積層した電池本体と、電解液貯蔵槽と、これらの間に電解 液を循環させるポンプおよび配管系とで構成されている。This zinc-bromine battery mainly has a bipolar type electrode, a battery body in which a plurality of cells (cells) are electrically stacked in series, an electrolytic solution storage tank, and an electrolytic solution storage tank between them. It consists of a pump and a piping system that circulates the electrolyte.

【0005】 図3は上記亜鉛−臭素電池を構成する電池本体の一例を示す分解斜視図であり 、矩形平板状のバイポーラ型中間電極1の電極部1aの外周に絶縁性の枠体1b が配置され、同様に矩形平板状のセパレータ板2は、セパレータ3の外周に枠体 2aが形成されている。そして上記中間電極1にセパレータ板2及び必要に応じ てパッキン4,スペーサメッシュ5を重ねて単セルを構成し、この単セルを複数 個積層して電池本体が構成されている。FIG. 3 is an exploded perspective view showing an example of a battery main body that constitutes the zinc-bromine battery, and an insulating frame 1b is arranged on the outer periphery of the electrode portion 1a of the bipolar plate-shaped intermediate electrode 1 having a rectangular flat plate shape. Similarly, in the separator plate 2 having a rectangular flat plate shape, the frame body 2 a is formed on the outer periphery of the separator 3. The separator plate 2 and, if necessary, the packing 4 and the spacer mesh 5 are stacked on the intermediate electrode 1 to form a single cell, and a plurality of the single cells are laminated to form a battery body.

【0006】 積層された電池本体の両端部には、集電メッシュ6を有する集電電極7と、一 対の締付端板8と、その内側に位置する押さえ用の積層端板9とが配置されてい る。そして両締付端板8,8間に後述する締付用のボルトを通して、このボルト を締め付けることにより、一体的に積層固定された電池本体が構成される。A collector electrode 7 having a collector mesh 6, a pair of tightening end plates 8 and a stacking end plate 9 for pressing, which is located inside the collector electrodes 7, are provided at both ends of the stacked battery bodies. It is arranged. Then, a bolt for fastening, which will be described later, is passed between the fastening end plates 8 and 8 and the bolt is fastened to form a battery body integrally laminated and fixed.

【0007】 上記のように構成された電池本体の各単セル内には、各中間電極1及びセパレ ータ板2の枠体2aの上下2箇所の隅角部に形成した正極マニホールド10と、 負極マニホールド11より、セパレータ板2の枠体2aに設けられたチャンネル 12及びマイクロチャンネル13を介して電解液が夫々流入排出する。In each unit cell of the battery main body configured as described above, the positive electrode manifold 10 formed at the upper and lower two corners of the frame 2 a of each intermediate electrode 1 and the separator plate 2, The electrolyte solution flows in and out from the negative electrode manifold 11 through the channels 12 and the microchannels 13 provided in the frame body 2a of the separator plate 2, respectively.

【0008】 そして外部に配置した正極側貯蔵槽から正極電解液を正極側ポンプの駆動によ って電池本体の正極マニホールド10から単セル内を流通して正極側貯蔵槽に還 流させる一方、負極電解液を負極側ポンプの駆動によって電池本体の負極マニホ ールド11からセパレータ3に隔てられた単セル内を流通して負極側貯蔵槽に還 流する。Then, the positive electrode electrolyte is circulated in the single cell from the positive electrode manifold 10 of the battery main body to be returned to the positive electrode side storage tank by driving the positive electrode side pump from the positive electrode side storage tank arranged outside. The negative electrode electrolyte is circulated from the negative electrode manifold 11 of the battery main body in the unit cell separated by the separator 3 by the drive of the negative electrode side pump and returned to the negative electrode side storage tank.

【0009】 上記の亜鉛−臭素電池は、50KW級電池における電池効率として約80%、 総合エネルギー効率として約70%が確認されている。The above zinc-bromine battery has been confirmed to have a battery efficiency of about 80% and a total energy efficiency of about 70% in a 50 KW class battery.

【0010】 図4は前記各構成部品を組み付けた電池本体のモジュール構造を示すものであ って、一つのサブモジュールは直列に積層された複数個個のセルC1もしくはC2 ,C3を1単位としており、図示例では該サブモジュールを合計3単位用いて、 両締付端板8,8間に挿通された締付用のボルト15,15を皿ばね16,16 を介在して締付固定している。この皿ばね16,16は、ボルト15,15を用 いて両締付端板8,8間を締め付けた際の界面に集中する応力によって構成部材 にクラック等が生じることを防止する機能と、外気温の変化とか充放電時の発熱 によって構成材の膨張,収縮に起因する破壊を防止する機能とを有していて、且 つ構成材に及ぼされる荷重変化を最小限にする作用がある。FIG. 4 shows a module structure of a battery body in which the above-mentioned respective components are assembled. One sub-module includes a plurality of cells C 1 or C 2 , C 3 stacked in series. One unit is used, and in the illustrated example, a total of three units of the sub-module are used to tighten the tightening bolts 15 and 15 inserted between the tightening end plates 8 and 8 with the disc springs 16 and 16 interposed. It is fixed. The disc springs 16 and 16 have a function of preventing cracks and the like from being generated in the components due to stress concentrated on the interface when the tightening end plates 8 and 8 are tightened using the bolts 15 and 15. It has the function of preventing destruction due to expansion and contraction of components due to changes in temperature and heat generated during charging and discharging, and has the effect of minimizing the load changes exerted on the components.

【0011】 通常上記の締付端板8は、繊維強化プラスチック樹脂(FRP)が採用され、 中間電極1の枠体1bは塩化ビニル樹脂(PVC)が、セパレータ板2には比較 的硬いポリエチレン樹脂が採用されている。Usually, the tightening end plate 8 is made of a fiber reinforced plastic resin (FRP), the frame body 1b of the intermediate electrode 1 is made of vinyl chloride resin (PVC), and the separator plate 2 is made of a relatively hard polyethylene resin. Has been adopted.

【0012】[0012]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら上記亜鉛−臭素電池における電池本体の積層構造では、装置全体 の大型化を招来し易い上、皿ばねの締付力過大に起因して構成材にクラックが発 生することがあるという課題がある。 However, the laminated structure of the battery main body in the above zinc-bromine battery is liable to increase the size of the entire device and may cause cracks in the constituent materials due to excessive tightening force of the disc spring. is there.

【0013】 即ち、図4における両締付端板8,8間に挿通された締付用のボルト15,1 5は、皿ばね16,16を介在して電池本体を締付固定しているが、構成材の膨 張とか収縮に起因する破壊を防止し、且つ荷重変化を最小限にするためには、該 皿ばね16,16の枚数を多くすることが要求されるので、必然的に装置の大型 化を招来してしまうことになり易い。例えば皿ばね16の長さが、電池本体全長 の1/5もの長さを占めることがあり、その分だけ電池の設置スペースが大きく なってしまうことになる。That is, the tightening bolts 15 and 15 inserted between both the tightening end plates 8 and 8 in FIG. 4 fix the battery main body through the disc springs 16 and 16. However, in order to prevent breakage due to expansion and contraction of the constituent materials and to minimize the load change, it is necessary to increase the number of the disc springs 16 and 16, and therefore it is inevitable. This tends to lead to an increase in the size of the device. For example, the length of the disc spring 16 may occupy as much as ⅕ of the total length of the battery main body, which increases the battery installation space.

【0014】 又、皿ばね16自体の縮み代によって該皿ばね16の電池本体に対する締付力 が弱くなる方向に変化することがあるため、予め縮み代を予測して頭初の締付力 を決定すると、電池本体の構成材に過度の圧力が加わることになり、締付端板8 等の構成材にクラックが生じることがあるという問題点を含んでいる。更に上記 クラックに対処するために中間電極とかセパレータ板等の構成材の厚みを大きく する手段もあるが、重量とかコストの面で好ましくないという問題がある。Further, since the tightening force of the disc spring 16 itself may change in the direction of weakening the tightening force of the disc spring 16 against the battery body, the shrinking allowance is predicted in advance and the tightening force at the beginning of the head is determined. If determined, excessive pressure will be applied to the constituent materials of the battery main body, and there is a problem that cracks may occur in the constituent materials such as the tightening end plate 8. Further, in order to deal with the cracks, there is a means of increasing the thickness of the intermediate electrode or the constituent materials such as the separator plate, but there is a problem that it is not preferable in terms of weight and cost.

【0015】 本考案は上記の点に鑑みてなされたものであり、装置全体の小型化がはかれる とともにばねの締付力過大に起因する構成材のクラックを防止することができて 、重量及びコストの面からも有効な亜鉛−臭素電池の積層構造を提供することを 目的とするものである。The present invention has been made in view of the above points, and it is possible to reduce the size of the entire apparatus and prevent cracks in components due to excessive tightening force of a spring, thereby reducing weight and cost. It is an object of the present invention to provide a laminated structure of a zinc-bromine battery which is also effective in view of the above.

【0016】[0016]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は上記目的を達成するために、セパレータ板と中間電極とを重ねて単セ ルとし、この単セルを複数個積層して電池本体を構成するとともに、該電池本体 の両端部に集電メッシュを有する集電電極と、押え用の積層端板及び一対の締付 端板とを配置して、両締付端板間をばねの介在下で複数本のボルトを用いて締付 けることによって一体的に積層固定するようにした亜鉛−臭素電池において、上 記両締付端板間にコイルばねを介在させて、複数本のボルトを均等に締め付ける ようにした亜鉛−臭素電池の積層構造にしてある。 In order to achieve the above-mentioned object, the present invention has a separator plate and an intermediate electrode stacked to form a single cell, and a plurality of the single cells are stacked to form a battery main body, and a current collector is provided at both ends of the battery main body. Place a collecting electrode having a mesh, a laminated end plate for pressing and a pair of tightening end plates, and tighten both tightening end plates with a plurality of bolts with a spring interposed. In a zinc-bromine battery that is integrally laminated and fixed by means of the above, a laminated structure of a zinc-bromine battery in which a coil spring is interposed between both tightening end plates to evenly tighten a plurality of bolts. I am doing it.

【0017】[0017]

【作用】[Action]

かかる亜鉛−臭素電池の積層構造によれば、コイルばねを挿通した複数本のボ ルトを用いて、所定の締付条件下で両締付端板を締付けることにより、電池本体 を加温した時の膨張によってコイルばねが縮んでボルトの締付力が増加するが、 従来の皿ばねを用いて同様な締付を行った場合と比較して、ボルトのトータル締 付力の増加率は従来の皿ばねの方がはるかに大きく、従って本実施例のようにコ イルばねを採用することにより、ばね自体の長さが短縮可能であり、且つ電池本 体が膨張した状態での該電池本体に与える荷重はコイルばねの方が大幅に低減さ れるため、ボルトの過剰な締付力に起因する構成材のクラックとか歪みの発生が 防止される。 According to such a laminated structure of the zinc-bromine battery, when the battery body is heated by tightening both tightening end plates under a predetermined tightening condition using a plurality of bolts through which coil springs are inserted. Expansion causes the coil spring to contract and the tightening force of the bolt to increase.However, the increase rate of the total tightening force of the bolt is The disc spring is much larger. Therefore, by adopting a coil spring as in the present embodiment, the length of the spring itself can be shortened, and the battery main body in the expanded state of the battery main body can be shortened. Since the applied load is greatly reduced in the coil spring, the occurrence of cracks or strains in the components due to excessive tightening force of the bolts is prevented.

【0018】 更に頭初のボルトの締付に伴う負担が軽減されたことにより、中間電極とかセ パレータ板等の構成材の厚みを減少することが可能となり、電池特性の向上とコ ストの低廉化がはかれるという作用をもたらす。Furthermore, since the burden of tightening the bolts at the beginning of the head is reduced, it is possible to reduce the thickness of the components such as the intermediate electrode and the separator plate, which improves the battery characteristics and lowers the cost. It brings about the action of being converted.

【0019】[0019]

【実施例】【Example】

以下図面を参照しながら本考案にかかる亜鉛−臭素電池の積層構造の一実施例 を説明する。 An embodiment of a laminated structure of a zinc-bromine battery according to the present invention will be described below with reference to the drawings.

【0020】 本実施例では、図1,図2に示したようにN個のサブモジュールを直列に積層 して外周4面の積層部を外周シールしたセルCNで成る電池本体20を先ず製作 し、この電池本体20の両端部にガラスエポキシ板21,21を密着して配置す る。このガラスエポキシ板21,21は前記図4における締付端板8に相当する 。In this embodiment, as shown in FIGS. 1 and 2, first, a battery main body 20 made of cells C N in which N sub-modules are laminated in series and the laminated portion of the outer peripheral four sides is peripherally sealed is manufactured. Then, the glass epoxy plates 21 and 21 are arranged in close contact with both ends of the battery body 20. The glass epoxy plates 21 and 21 correspond to the tightening end plate 8 in FIG.

【0021】 次に一方のガラスエポキシ板21の外方にコイルばね22を配置して、このコ イルばね22に挿通した締付用のボルト15,15とナット23,23を用いて 両ガラスエポキシ板21,21を均等に締付固定する。24,24はガラスエポ キシ板21,21に開口されたマニホールド用の孔部である。Next, a coil spring 22 is arranged outside one of the glass epoxy plates 21, and the bolts 15 and 15 and the nuts 23 and 23 for tightening which are inserted in the coil spring 22 are used to remove both glass epoxy plates. The plates 21 and 21 are evenly clamped and fixed. Reference numerals 24, 24 are holes for manifolds opened in the glass epoxy plates 21, 21.

【0022】 従って両ガラスエポキシ板21,21は、コイルばね22の介在下で挿通され た複数本のボルト15,15によって均等に締め付けられる。図示例ではボルト 15を合計10本用いている。Therefore, the glass epoxy plates 21 and 21 are evenly tightened by the plurality of bolts 15 and 15 inserted through the interposition of the coil spring 22. In the illustrated example, a total of 10 bolts 15 are used.

【0023】 具体的なジメンションとしては、電池本体20は電極面積が830cm2のセ ルを64セル熱板溶着法により積層し、502W×251H×215Lとした。コ イルばね22はスターダイスプリング重荷重用の外径20mm,長さ30mmの ものを使用した。As a specific dimension, the battery main body 20 was formed by stacking cells having an electrode area of 830 cm 2 by a 64-cell hot plate welding method to obtain 502 W × 251 H × 215 L. As the coil spring 22, a star die spring having an outer diameter of 20 mm and a length of 30 mm for heavy load was used.

【0024】 かかる積層構造による作用上の特徴を以下に述べる。即ち、上記電池本体20 の線膨張率は3×10-4であり、電池の使用温度範囲を0〜50℃(△T=40 deg)とすると、使用時に3×10-4×215L=2.6mmの伸縮が生じる ことになる。The operational features of the laminated structure will be described below. That is, the linear expansion coefficient of the battery main body 20 is 3 × 10 −4 , and when the operating temperature range of the battery is 0 to 50 ° C. (ΔT = 40 deg), 3 × 10 −4 × 215 L = Expansion and contraction of 2.6 mm will occur.

【0025】 一方、上記のコイルばね22を挿通したボルト15を、気温10℃で70kg f/本の力で両ガラスエポキシ板21,21を締め付けた。このコイルばね22 の長さは、25.8(70/16.66=4.2mm縮む,16.66はばね定 数)である。電池本体20を恒温槽に入れて50℃に暖めると、全長が2.6m m伸びてコイルばね22は2.6mm縮んだ。その時のボルト15の締付力は1 13kgf(16.66×2.6=43kgf強くなる)となった。On the other hand, the glass epoxy plates 21 and 21 were fastened with the bolt 15 inserted through the coil spring 22 at a temperature of 10 ° C. with a force of 70 kgf / piece. The length of this coil spring 22 is 25.8 (70 / 16.66 = 4.2 mm contraction, 16.66 is a spring constant). When the battery main body 20 was placed in a constant temperature bath and heated to 50 ° C., the total length extended by 2.6 mm and the coil spring 22 contracted by 2.6 mm. At that time, the tightening force of the bolt 15 was 113 kgf (16.66 × 2.6 = 43 kgf was stronger).

【0026】 つまりボルト10本のトータル締付力としては、700kgfから1130k gfに増えたことになる。That is, the total tightening force of the 10 bolts is increased from 700 kgf to 1130 kgf.

【0027】 一方、比較のために皿ばねとして内径dが8.2mm,外径Dが16mm,厚 さ0.9mm,高さ1.25mm(重荷重用皿ばねJIS2706 呼び8)の ものを用いて、上記と同様に製作した電池本体20に対してボルト15とともに 気温10℃で70kgf/本の力で締め付けた。On the other hand, for comparison, a disc spring having an inner diameter d of 8.2 mm, an outer diameter D of 16 mm, a thickness of 0.9 mm and a height of 1.25 mm (heavy load disc spring JIS2706 No. 8) is used. The battery body 20 manufactured in the same manner as above was fastened together with the bolt 15 at a temperature of 10 ° C. and a force of 70 kgf / piece.

【0028】 この皿ばねは、締付前の長さが(1.25+0.9)×15=32.3mmで あり、締付を実施した後は、撓みσ≒0.25hとなり(σ=0.5hの時71 kgfで2列で使用した場合)、長さは(1.25−0.9)×0.25×15 =1.3mm縮んで31mmとなった。The length of this disc spring before tightening is (1.25 + 0.9) × 15 = 32.3 mm, and after tightening, the flexure becomes σ≈0.25 h (σ = 0. When it was used in two rows with 71 kgf at 0.5 h), the length was reduced by (1.25-0.9) × 0.25 × 15 = 1.3 mm to 31 mm.

【0029】 この電池本体20を前記と同様に恒温槽に入れて50℃に暖めたところ、電池 本体20が2.6mm伸び、皿ばねは2.6mm縮んで28.4mmとなり、撓 みσ≒0.75hであるため、締付力は105×2=210kgfの荷重となっ た。When the battery main body 20 was placed in a constant temperature bath and warmed to 50 ° C. in the same manner as described above, the battery main body 20 expanded by 2.6 mm and the disc spring contracted by 2.6 mm to 28.4 mm, and the deflection σ≈ Since it was 0.75 h, the tightening force was 105 × 2 = 210 kgf.

【0030】 つまりボルト10本のトータル締付力としては、700kgfから2100k gfに増えたことになる。That is, the total tightening force of the 10 bolts is increased from 700 kgf to 2100 kgf.

【0031】 上記本実施例のように、両ガラスエポキシ板21,21を締め付ける際にコイ ルばね22を介在してボルト15を用いて均等に締付けると、ばね自体の長さが 小さくなると同時に電池本体20が伸びた状態での該電池本体20に与える荷重 が大幅に低減されることが確認された。When the glass epoxy plates 21 and 21 are tightened as in the above-described embodiment, if the coil springs 22 are interposed and the bolts 15 are used to uniformly tighten the springs, the length of the springs itself becomes small and at the same time the battery It was confirmed that the load applied to the battery body 20 when the body 20 was stretched was significantly reduced.

【0032】 即ち、本実施例の場合でも電池本体20を加温した時の膨張によってコイルば ね22が縮みボルト15の締付力が増加するが、従来の皿ばねを用いて同様な締 付を行った場合と比較して、ボルト15のトータル締付力の増加率は従来の皿ば ねの方がはるかに大きく、従って本実施例のようにコイルばね22を採用するこ とにより、該コイルばね22自体の長さが短縮可能であり、且つ電池本体20が 膨張した状態での該電池本体20に与える荷重はコイルばね22の方が大幅に低 減される。従ってボルト15の過剰な締付力に起因する電池本体20の各構成材 のクラックとか歪みの発生が生じないという作用が得られる。That is, even in the case of the present embodiment, the coil spring 22 contracts due to the expansion when the battery body 20 is heated, and the tightening force of the bolt 15 increases. The rate of increase in the total tightening force of the bolt 15 is much larger in the conventional countersunk plate than in the case of performing the above. Therefore, by adopting the coil spring 22 as in this embodiment, The length of the coil spring 22 itself can be shortened, and the load applied to the battery main body 20 when the battery main body 20 is expanded is significantly reduced in the coil spring 22. Therefore, it is possible to obtain an effect that no crack or distortion of each component of the battery body 20 due to the excessive tightening force of the bolt 15 is generated.

【0033】[0033]

【考案の効果】[Effect of device]

以上詳細に説明した本考案にかかる亜鉛−臭素電池の積層構造によれば、以下 に記す作用効果が得られる。即ち、電池本体の膨張によるコイルばねの縮みによ るボルトの締付力の増加率は、従来の皿ばねを用いた同様な増加率に比してはる かに小さいため、コイルばね自体の長さを短縮することが可能であり、電池本体 の全長を短縮することができて電池の設置スペースが小さくて済むという効果が 得られる。 According to the laminated structure of the zinc-bromine battery according to the present invention described in detail above, the following operational effects can be obtained. That is, the rate of increase in the tightening force of the bolt due to the contraction of the coil spring due to the expansion of the battery body is much smaller than the similar rate of increase using the conventional disc spring. The length can be shortened, and the total length of the battery main body can be shortened, and the effect is that the installation space for the battery can be reduced.

【0034】 又、電池本体の膨張時におけるボルトの過剰な締付力に起因する構成材のクラ ックとか歪みの発生が防止されとともに、頭初のボルトの締付力による負担が軽 減されるため、中間電極とかセパレータ板等の構成材の厚みを大きくする必要が なくなり、電池自体の重量が軽減されるとともにコストの低廉化がはかれるとい う効果がある。Further, cracking or distortion of the constituent materials due to excessive tightening force of the bolt when the battery main body is expanded is prevented, and the burden of the bolt tightening force at the beginning of the head is reduced. Therefore, it is not necessary to increase the thickness of the components such as the intermediate electrode and the separator plate, which has an effect that the weight of the battery itself is reduced and the cost is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案にかかる亜鉛−臭素電池の積層構造を適
用した電池本体の概要図。
FIG. 1 is a schematic view of a battery body to which a laminated structure of a zinc-bromine battery according to the present invention is applied.

【図2】電池本体の組付態様を示す斜視図。FIG. 2 is a perspective view showing an assembling mode of a battery body.

【図3】亜鉛−臭素電池本体の構成を示す分解斜視図。FIG. 3 is an exploded perspective view showing the structure of a zinc-bromine battery body.

【図4】各構成部品を組み付けた電池本体のモジュール
構造を示す概要図。
FIG. 4 is a schematic diagram showing a module structure of a battery main body in which each component is assembled.

【符号の説明】[Explanation of symbols]

1…中間電極 2…セパレータ板 3…セパレータ 8…締付端板 9…積層端板 10…正極マニホールド 11…負極マニホールド 12…チャンネル 13…マイクロチャンネル 15…ボルト 20…電池本体 21…ガラスエポキシ板 22…コイルばね 23…ナット 24…孔部 DESCRIPTION OF SYMBOLS 1 ... Intermediate electrode 2 ... Separator plate 3 ... Separator 8 ... Tightening end plate 9 ... Laminated end plate 10 ... Positive electrode manifold 11 ... Negative electrode manifold 12 ... Channel 13 ... Micro channel 15 ... Bolt 20 ... Battery body 21 ... Glass epoxy plate 22 … Coil spring 23… Nut 24… Hole

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 セパレータ板と中間電極とを重ねて単セ
ルとし、この単セルを複数個積層して電池本体を構成す
るとともに、該電池本体の両端部に集電メッシュを有す
る集電電極と、押え用の積層端板及び一対の締付端板と
を配置して、両締付端板間をばねの介在下で複数本のボ
ルトを用いて締付けることによって一体的に積層固定す
るようにした亜鉛−臭素電池において、 上記両締付端板間にコイルばねを介在させて、複数本の
ボルトを均等に締め付けるようにしたことを特徴とする
亜鉛−臭素電池の積層構造。
1. A separator cell and an intermediate electrode are stacked to form a single cell, and a plurality of the single cells are stacked to form a battery main body, and a current collecting electrode having a current collecting mesh at both ends of the battery main body. , Arranging a laminated end plate for pressing and a pair of tightening end plates, and tightening between the two tightening end plates with a plurality of bolts with a spring interposed, so that they are integrally laminated and fixed. In the zinc-bromine battery described above, a coil spring is interposed between both the tightening end plates to uniformly tighten a plurality of bolts.
JP012917U 1993-03-23 1993-03-23 Laminated structure of zinc-bromine battery Pending JPH0672162U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP012917U JPH0672162U (en) 1993-03-23 1993-03-23 Laminated structure of zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP012917U JPH0672162U (en) 1993-03-23 1993-03-23 Laminated structure of zinc-bromine battery

Publications (1)

Publication Number Publication Date
JPH0672162U true JPH0672162U (en) 1994-10-07

Family

ID=11818703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP012917U Pending JPH0672162U (en) 1993-03-23 1993-03-23 Laminated structure of zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPH0672162U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111601A (en) * 2015-03-25 2015-06-18 株式会社島津製作所 Band heater and oven using band heater
KR20160050839A (en) * 2014-10-31 2016-05-11 주식회사 엘지화학 Battery module and coupling means having reinforcing structure for swelling of battery cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160050839A (en) * 2014-10-31 2016-05-11 주식회사 엘지화학 Battery module and coupling means having reinforcing structure for swelling of battery cell
JP2015111601A (en) * 2015-03-25 2015-06-18 株式会社島津製作所 Band heater and oven using band heater

Similar Documents

Publication Publication Date Title
US11705575B2 (en) Battery module, battery pack, and vehicle
US5674641A (en) Battery module and method of making a battery
WO2021033476A1 (en) Power supply device, and electric vehicle and electrical storage device each equipped with same
JP7466525B2 (en) Power supply device, electric vehicle using the same, and power storage device
JP7276894B2 (en) Power supply device, vehicle equipped with the same, and shock absorber
JP7200223B2 (en) Power supply device and vehicle equipped with it
EP3467903A1 (en) Battery pack
JPH0672162U (en) Laminated structure of zinc-bromine battery
CN216648483U (en) Battery module and battery pack
US20220294064A1 (en) Power supply device, electric vehicle using same, and power storage device
JPH0615264U (en) Tightening end plate for zinc-bromine battery
JP2513626Y2 (en) Electrolyte circulation type battery stack tightening device
WO2021157139A1 (en) Power supply device, electric vehicle using same, and power storage device
CN211700403U (en) Square lithium battery module and battery pack using same
CN218039326U (en) Flow battery stack and flow battery
JP3141540B2 (en) Method of manufacturing current collector electrode for zinc-bromine battery
JP3170930B2 (en) Current collecting electrode of zinc-bromine battery and method of manufacturing the same
JP3161149B2 (en) Peripheral sealing method of zinc-bromine battery
JPH06333611A (en) Current collecting electrode taking-out structure for zinc-bromine battery
CN212257487U (en) Battery module
JPH06251808A (en) Manufacture of zinc-bromine battery
WO2020261728A1 (en) Power supply device and electric vehicle and power storage device equipped with same
JP3141599B2 (en) Current collecting electrode of zinc-bromine battery and method of manufacturing the same
JPH067156U (en) Current collecting electrode structure for zinc-bromine battery
JPH06302340A (en) Zinc-bromine battery and installation structure thereof