JPH06302340A - Zinc-bromine battery and installation structure thereof - Google Patents

Zinc-bromine battery and installation structure thereof

Info

Publication number
JPH06302340A
JPH06302340A JP5086597A JP8659793A JPH06302340A JP H06302340 A JPH06302340 A JP H06302340A JP 5086597 A JP5086597 A JP 5086597A JP 8659793 A JP8659793 A JP 8659793A JP H06302340 A JPH06302340 A JP H06302340A
Authority
JP
Japan
Prior art keywords
battery
end plates
zinc
tightening
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5086597A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kawakami
和彦 河上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5086597A priority Critical patent/JPH06302340A/en
Publication of JPH06302340A publication Critical patent/JPH06302340A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To enhance conveying performance in manufacturing and absorb expansion/contraction of constituting members by connecting respective bolts with a single connecting plate, and mounting the connecting plate with a pair of fastening end plates on members freely movable rectilinearly. CONSTITUTION:In a sub-module, cells C1-C3 laminated in series are adapted as one unit and current collecting electrodes 7, fastening end plates 8 and laminated end plates 9 for pressing positioned inside of the end plates 8 are arranged. Respective bolts 22 positioned outside of disk springs 23 are connected to each other by means of a single connecting plate 25, and the connecting plate 25 with a pair of fastening end plates 8 are mounted on members 26a, 26b, 26c freery movable rectilinearly. Since the fastening end plates 8 as well as the connecting plate 25 are freely movable laterally in the arrow A direction, expansion/contraction of constituting members can be absorbed by the members 26a-26c. Also, since the members 26a-26c are linear bearings, conveying performance in manufacturing can be enhanced and moving operation can be simplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電解液循環型積層二次電
池、特に電力貯蔵用亜鉛−臭素電池及びその設置構造に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte circulating type laminated secondary battery, and more particularly to a zinc-bromine battery for storing electric power and its installation structure.

【0002】[0002]

【従来の技術】亜鉛−臭素電池は正極活物質に臭素、負
極活物質に亜鉛を用いた2次電池であり、この電池は例
えば電力の昼と夜のアンバランスを解決させるために、
電力需要が少ない夜間に電力を貯蔵して、昼間に放出さ
せるため等に使用される。
2. Description of the Related Art A zinc-bromine battery is a secondary battery that uses bromine as a positive electrode active material and zinc as a negative electrode active material.
It is used to store electricity at night when electricity demand is low and to release it in the daytime.

【0003】充電時に正極電極側で発生した臭素は、電
解液に添加した臭素錯化剤と反応し、オイル状の沈殿物
となって正極側貯蔵槽へ戻され、放電時はポンプで単電
池内へ送り込まれ還元される。電解液の成分はZnBr
2水溶液と、抵抗を下げるためのNH4Cl等の塩と、負
極亜鉛側のデンドライトを防止し、均一な電着を促進さ
せるためのPb,Sn,4級アンモニウム塩類と、臭素
錯化剤とである。正極電極と負極電極の間にはセパレー
タを介挿してあり、正極電極で発生した臭素が負極電極
へ拡散して亜鉛と反応することによる自己放電を防止し
ている。
Bromine generated on the positive electrode side at the time of charging reacts with the bromine complexing agent added to the electrolytic solution to be returned to the positive electrode side storage tank as an oil-like precipitate, and at the time of discharging, it is pumped to the unit cell. It is sent in and returned. The component of the electrolytic solution is ZnBr
2 aqueous solution, a salt such as NH 4 Cl for reducing resistance, Pb, Sn, quaternary ammonium salts for preventing dendrite on the negative electrode zinc side and promoting uniform electrodeposition, and a bromine complexing agent Is. A separator is inserted between the positive electrode and the negative electrode to prevent self-discharge caused by the bromine generated in the positive electrode diffusing into the negative electrode and reacting with zinc.

【0004】この亜鉛−臭素電池は、主に電極をバイポ
ーラ型とし、複数個の単電池(単セル)を電気的に直列
に積層した電池本体と、電解液貯蔵槽と、これらの間に
電解液を循環させるポンプおよび配管系とで構成されて
いる。
In this zinc-bromine battery, the electrodes are mainly of a bipolar type, a battery body in which a plurality of unit cells (unit cells) are electrically stacked in series, an electrolytic solution storage tank, and an electrolytic solution between them. It is composed of a pump and a piping system for circulating the liquid.

【0005】図5は上記亜鉛−臭素電池を構成する電池
本体の一例を示す分解斜視図であり、矩形平板状のバイ
ポーラ型中間電極1の電極部1aの外周に絶縁性の枠体
1bが配置され、同様に矩形平板状のセパレータ板2
は、セパレータ3の外周に枠体2aが形成されている。
そして上記中間電極1にセパレータ板2及び必要に応じ
てパッキン4,スペーサメッシュ5を重ねて単セルを構
成し、この単セルを複数個積層して電池本体が構成され
ている。
FIG. 5 is an exploded perspective view showing an example of a battery body constituting the zinc-bromine battery, in which an insulating frame 1b is arranged on the outer periphery of an electrode portion 1a of a bipolar plate-shaped intermediate electrode 1 having a rectangular flat plate shape. Similarly, a rectangular flat plate-shaped separator plate 2
The frame 2a is formed on the outer periphery of the separator 3.
The separator plate 2 and, if necessary, the packing 4 and the spacer mesh 5 are stacked on the intermediate electrode 1 to form a single cell, and a plurality of the single cells are stacked to form a battery body.

【0006】積層された電池本体の両端部には、集電メ
ッシュ6を有する集電電極7と、一対の締付端板8と、
その内側に位置する押さえ用の積層端板9とが配置され
ている。そして両締付端板8,8間に後述する締付用の
ボルトを通して、このボルトを締め付けることにより、
一体的に積層固定された電池本体が構成される。
A collector electrode 7 having a collector mesh 6 and a pair of tightening end plates 8 are provided at both ends of the stacked battery bodies.
A pressing laminated end plate 9 located inside thereof is arranged. Then, a bolt for tightening, which will be described later, is passed between both the tightening end plates 8 and 8 to tighten the bolt,
A battery main body is integrally laminated and fixed.

【0007】上記のように構成された電池本体の各単セ
ル内には、各中間電極1及びセパレータ板2の枠体2a
の上下2箇所の隅角部に形成した正極マニホールド10
と、負極マニホールド11より、セパレータ板2の枠体
2aに設けられたチャンネル12及びマイクロチャンネ
ル13を介して電解液が夫々流入排出する。
In each unit cell of the battery body constructed as described above, each intermediate electrode 1 and the frame body 2a of the separator plate 2 are provided.
Positive electrode manifold 10 formed in two corners above and below
Then, the electrolytic solution flows in and out from the negative electrode manifold 11 through the channels 12 and the microchannels 13 provided in the frame body 2a of the separator plate 2, respectively.

【0008】上記の亜鉛−臭素電池は、50KW級電池
における電池効率として約80%、総合エネルギー効率
として約70%が確認されている。
The above zinc-bromine battery has been confirmed to have a battery efficiency of about 80% and a total energy efficiency of about 70% in a 50 KW class battery.

【0009】図6は上記亜鉛−臭素電池の作動原理を説
明するための概要図であり、図中の14は正極側貯蔵槽
であって該正極側貯蔵槽14内に正極電解液15と臭素
錯化合物16とが貯蔵されている。17は負極側貯蔵槽
であって該負極側貯蔵槽17内に負極電解液18が貯蔵
されている。そして正極電解液15は正極側ポンプ19
の駆動に伴って、四方弁20を介して図中の矢印に示し
た如く電池本体の正極マニホールド10から単セル内を
流通し、正極側貯蔵槽14に還流する一方、負極電解液
18は負極側ポンプ21の駆動に伴って、電池本体の負
極マニホールド11からセパレータ3に隔てられた単セ
ル内を流通して負極側貯蔵槽17に還流する。
FIG. 6 is a schematic diagram for explaining the operating principle of the zinc-bromine battery, in which 14 is a positive electrode side storage tank, and the positive electrode electrolyte solution 15 and bromine are contained in the positive electrode side storage tank 14. Complex compound 16 is stored. Reference numeral 17 denotes a negative electrode side storage tank in which the negative electrode electrolytic solution 18 is stored. The positive electrode electrolyte solution 15 is supplied to the positive electrode side pump 19
Driven by the four-way valve 20, flows from the positive electrode manifold 10 of the battery main body into the single cell through the four-way valve 20 and flows back to the positive electrode side storage tank 14, while the negative electrode electrolyte solution 18 flows into the negative electrode. As the side pump 21 is driven, the side pump 21 flows through the unit cell separated from the negative electrode manifold 11 of the battery body to the separator 3 and returns to the negative electrode side storage tank 17.

【0010】図7は前記各構成部品を組み付けた電池本
体のモジュール構造を示すものであって、一つのサブモ
ジュールは直列に積層された30個のセルC1もしくは
2,C3を1単位としており、図示例では該サブモジュ
ールが合計3単位,即ち90セルを基本としている。
尚、22,22は両締付端板8,8間に挿通された締付
用のボルト、23,23は皿ばねを示している。この皿
ばね23は、ボルト22の締付力による構成部材のクラ
ック発生を防止し、且つ外気温の変化とか充放電時の発
熱に起因する膨張,収縮に伴う破壊を防止するために配
置されている。
FIG. 7 shows a module structure of a battery main body in which the above-mentioned components are assembled. One sub-module has 30 cells C 1 or C 2 , C 3 stacked in series as one unit. In the illustrated example, the sub-module is based on a total of 3 units, that is, 90 cells.
Incidentally, 22 and 22 are bolts for tightening inserted between both tightening end plates 8 and 8, and 23 and 23 are disc springs. The disc spring 23 is arranged in order to prevent cracking of the constituent members due to the tightening force of the bolts 22 and to prevent breakage due to expansion and contraction due to changes in the outside air temperature and heat generated during charging and discharging. There is.

【0011】図8は電池本体を横型に配置した例を示す
側面図であり、図中の24はマニホールド用の穴であ
る。即ち、亜鉛−臭素電池の特性を良好に維持するため
には、電解液の循環中に該電解液中に不可避的に混入す
る空気を早急に電池外に排出することが必要であり、そ
のために電池本体は、基本的な設置構造として図8に示
した横型を採用している。
FIG. 8 is a side view showing an example in which the battery main body is arranged horizontally, and 24 in the figure is a hole for a manifold. That is, in order to maintain good characteristics of the zinc-bromine battery, it is necessary to expel air that is inevitably mixed in the electrolytic solution during the circulation of the electrolytic solution to the outside of the battery as soon as possible. The battery main body adopts the horizontal type shown in FIG. 8 as a basic installation structure.

【0012】この横型にすることにより、図6中の矢印
に示したように負極電解液18は常に下部から上部に流
れ、これに伴って電解液中の空気が抜け易くなる。尚、
正極電解液15は充電によって生成したコンプレックス
を電池内に均一に供給する必要があるため、平常時には
上部から下部へ流し、一定時間毎に下部から上部へ数分
間だけ流すことによって空気を排出している。
By adopting this horizontal type, the negative electrode electrolytic solution 18 always flows from the lower part to the upper part as shown by the arrow in FIG. 6, and accordingly, the air in the electrolytic solution becomes easy to escape. still,
Since the positive electrode electrolyte solution 15 needs to uniformly supply the complex generated by charging into the battery, it is flowed from the upper part to the lower part under normal conditions and is discharged from the lower part to the upper part at regular intervals for a few minutes to discharge air. There is.

【0013】通常の亜鉛−臭素電池の製造工程は、「積
層→締付調整→温水循環→冷却→締付力調整→エアによ
るシールテスト」の順で実施されているが、特に温水循
環後の冷却時に構成材のクリープによってユニット自体
が縮小する傾向があり、且つ温水の循環時にも空気が抜
け易くなることとシールテストの前に水を抜く必要があ
ることから電池本体は横型であることが望ましい。
The normal zinc-bromine battery manufacturing process is carried out in the order of "lamination → tightening adjustment → hot water circulation → cooling → tightening force adjustment → air seal test". The unit itself tends to shrink due to the creep of the components during cooling, and it is easy for the air to escape even when circulating hot water, and it is necessary to drain water before the seal test, so the battery body should be horizontal. desirable.

【0014】上記電池本体のモジュールを製造する際に
は、上記の各プラスチックを主体とする構成材を積層し
た後、20トン程度のプレスと温水循環工程を複数回繰
り返し、ボルト22を用いた締付けた後にエアを用いた
シールテストを行う方法が実施されている。全工程にか
かる日数は約8日/台となっている。
In manufacturing the module of the battery main body, after stacking the above-mentioned constituent materials mainly composed of plastics, a press of about 20 tons and a hot water circulating step are repeated a plurality of times, and a bolt 22 is used for tightening. After that, a method of performing a seal test using air is implemented. The number of days required for all processes is about 8 days / vehicle.

【0015】[0015]

【発明が解決しようとする課題】しかしながらこのよう
な従来の亜鉛−臭素電池の場合、電池本体を横型として
直接地面に設置した際の摩擦力によって該電池本体が不
規則に変形し、これに伴って各構成材に対する面圧が不
均一になって疲労破壊の発生が助長されてしまう外、製
造時の各材料のクリープに起因して電池特性にばらつき
が生じてしまうという課題があった。
However, in the case of such a conventional zinc-bromine battery, the battery body is deformed irregularly due to the frictional force when the battery body is installed horizontally on the ground directly. As a result, the surface pressure on each component becomes non-uniform, which promotes the occurrence of fatigue fracture, and there is a problem that the battery characteristics vary due to the creep of each material during manufacturing.

【0016】即ち、亜鉛−臭素電池の製造及び設置時に
は、電池本体を横型にして直接地面に載置すると、該電
池本体の持つ重量によって該電池本体に対して大きな摩
擦力が加わり、図9により模式的に表示したように、該
電池本体が接地面30に対して上部のみが不規則に動く
ことがある。この動きは前記温水循環時の出発材のばら
つきを抑える作用があるが、電池本体内における構成材
に対する面圧が不均一になるため、上記の作用が打ち消
されてしまい、電池の運転時における面圧上昇に伴って
各構成材の疲労破壊が助長されてしまうという問題があ
る。
That is, when manufacturing and installing a zinc-bromine battery, if the battery body is placed horizontally and placed directly on the ground, a large frictional force is applied to the battery body due to the weight of the battery body, and as shown in FIG. As schematically shown, the battery body may move irregularly only in the upper part with respect to the ground plane 30. This movement has the effect of suppressing variations in the starting material during the hot water circulation, but since the surface pressure on the constituent materials in the battery body becomes non-uniform, the above effect is canceled out and the surface during battery operation is canceled. There is a problem that the fatigue fracture of each component is promoted as the pressure rises.

【0017】上記に対処するため、例えば図10に示し
たように、下方に位置するボルト22に支持台31を一
体に設けて、電池本体が直接地面に触れないように設置
する手段が考えられるが、電池本体の持つ重量によって
ボルト22と支持台31に大きな曲げ力がかかってしま
い、運転中に下方のボルト22に変形が生じ易くなる
上、製造時の各工程毎に支持台31を取り外す必要があ
るため、煩瑣な操作を必要とするという難点が生じる。
In order to deal with the above, as shown in FIG. 10, for example, there may be considered a means in which a support base 31 is integrally provided on the lower bolt 22 so that the battery main body does not come into direct contact with the ground. However, a large bending force is applied to the bolt 22 and the support base 31 due to the weight of the battery body, and the lower bolt 22 is likely to be deformed during operation, and the support base 31 is removed at each manufacturing step. Since it is necessary, there is a difficulty that a complicated operation is required.

【0018】本発明は上記の点に鑑みてなされたもので
あり、電池本体を横型として設置した際の摩擦力によっ
て電池本体が不規則に変形することがなく、各構成材に
対する面圧を均一にして疲労破壊を防止することができ
るとともに製造時における搬送性を高めた亜鉛−臭素電
池及びその設置構造を得ることを目的とするものであ
る。
The present invention has been made in view of the above points, and does not deform the battery body irregularly due to a frictional force when the battery body is installed as a horizontal type, and makes the surface pressure of each component uniform. It is an object of the present invention to obtain a zinc-bromine battery and its installation structure which can prevent fatigue damage and have improved transportability during manufacturing.

【0019】[0019]

【課題を解決するための手段】本発明は上記目的を達成
するために、セパレータ板と中間電極とを重ねて単セル
とし、この単セルを複数個積層して電池本体を構成する
とともに、該電池本体の両端部に集電メッシュを有する
集電電極と、押え用の積層端板及び一対の締付端板とを
配置して、一方の締付端板の外側に配置した皿ばねの介
在下で両締付端板間をボルト締めして一体的に積層固定
するようにした亜鉛−臭素電池において、先ず請求項1
により、上記皿ばねの外側に位置する各ボルトを1枚の
接続板を用いて連結し、該接続板と前記一対の締付端板
を、自由に直線運動する部材上に搭載したことにより、
製造時における電池本体の搬送性を高め、且つ各構成材
の膨張・収縮を吸収するようにした亜鉛−臭素電池の構
成にしてある。
In order to achieve the above object, the present invention provides a single cell by stacking a separator plate and an intermediate electrode, and stacking a plurality of the single cells to form a battery main body. An interposing disc spring arranged on the outer side of one of the clamping end plates by disposing a collecting electrode having a collecting mesh at both ends of the battery body, a laminated end plate for pressing and a pair of clamping end plates. A zinc-bromine battery, in which both clamp end plates are bolted together to be integrally laminated and fixed below, first, claim 1
According to the above, each bolt located outside the disc spring is connected using one connecting plate, and the connecting plate and the pair of tightening end plates are mounted on a member that moves freely in a straight line.
The zinc-bromine battery is configured to enhance the transportability of the battery main body during manufacturing and absorb expansion and contraction of each component.

【0020】更に請求項2により、上記皿ばねの外側に
位置する各ボルトを1枚の接続板を用いて連結し、且つ
少なくとも皿ばねに近接した部位にある締付端板を、自
由に直線運動する部材上に搭載して運転時における各構
成材の膨張・収縮を吸収するようにした亜鉛−臭素電池
の設置構造を提供する。
According to a second aspect of the present invention, each bolt located outside the disc spring is connected by using one connecting plate, and at least the tightening end plate located in the vicinity of the disc spring is freely linear. (EN) Provided is a structure for installing a zinc-bromine battery which is mounted on a moving member and absorbs expansion and contraction of each constituent material during operation.

【0021】[0021]

【作用】かかる請求項1記載の亜鉛−臭素電池によれ
ば、自由に直線運動する部材によって電池本体を構成す
る締付端板と締付用のボルトを連結した接続板が直線方
向に自由に動くことができるため、この部材によって電
池本体の各構成材の膨張・収縮を吸収することが可能と
なり、しかも製造時には電池本体を直線運動する部材上
に乗降させるだけで移動することができるため、電池本
体の移動操作が極めて簡易化され、搬送性が高められ
る。
According to the zinc-bromine battery of the present invention, the tightening end plate constituting the battery body and the connecting plate connecting the tightening bolts can be freely moved in the linear direction by the member that moves in a straight line. Since it can move, this member can absorb expansion and contraction of each component of the battery main body, and at the time of manufacturing, the battery main body can be moved by simply getting on and off the member that moves linearly. The operation of moving the battery body is extremely simplified, and the transportability is improved.

【0022】又、請求項2記載の電池本体の設置構造に
よれば、少なくとも皿ばねに近接した部位にある締付端
板を自由に直線運動する部材上に搭載し、他の部位には
単に高さを調節する部材を配置することにより、運転時
における各構成材の膨張・収縮を吸収することが可能と
なる。
According to the installation structure of the battery main body of the second aspect, at least the tightening end plate located in the vicinity of the disc spring is mounted on the member which moves in a straight line, and the other parts are simply mounted. By arranging the member for adjusting the height, it becomes possible to absorb the expansion and contraction of each component during operation.

【0023】[0023]

【実施例】以下図面を参照しながら本発明にかかる亜鉛
−臭素電池及びその設置構造の一実施例を、前記従来の
構成部分と同一の構成部分に同一の符号を付して詳述す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a zinc-bromine battery and its installation structure according to the present invention will be described in detail below with reference to the drawings, in which the same reference numerals are given to the same components as the conventional components.

【0024】図1は本発明の基本的実施例を示す側面図
であり、電池を構成する一つのサブモジュールは直列に
積層された30個のセルC1もしくはC2,C3を1単位
としており、図示例では該サブモジュールが合計3単
位,即ち90セルを基本としている。各サブモジュール
の両端部には、集電メッシュを有する集電電極7と、一
対の締付端板8と、その内側に位置する押さえ用の積層
端板9とが配置されている。
FIG. 1 is a side view showing a basic embodiment of the present invention, in which one sub-module constituting a battery has 30 cells C 1 or C 2 , C 3 stacked in series as one unit. In the illustrated example, the submodule is based on a total of 3 units, that is, 90 cells. A collector electrode 7 having a collector mesh, a pair of tightening end plates 8 and a pressing laminated end plate 9 located inside thereof are arranged at both ends of each sub-module.

【0025】通常上記の締付端板8は、繊維強化プラス
チック樹脂(FRP)が採用され、積層端板9には塩化
ビニル樹脂(PVC)が採用されている。22は締付端
板8,8間に挿通された締付用のボルト、23は皿ばね
であり、両締付端板8,8間に複数本の上記締付用のボ
ルト22を通し、皿ばね23を介在して該ボルト22を
締め付けることにより、一体的に積層固定された電池本
体が構成される。
Usually, the tightening end plate 8 is made of fiber reinforced plastic resin (FRP), and the laminated end plate 9 is made of vinyl chloride resin (PVC). Reference numeral 22 denotes a tightening bolt inserted between the tightening end plates 8 and 8, 23 denotes a disc spring, and a plurality of the above tightening bolts 22 are passed between both tightening end plates 8 and 8, By tightening the bolts 22 with the disc springs 23 interposed, a battery body integrally laminated and fixed is configured.

【0026】皿ばね23は、ボルト22を用いて両締付
端板8,8間を締め付けた際の界面に集中する応力によ
って構成部材にクラック等が生じることを防止する機能
と、外気温の変化とか充放電時の発熱によって構成材の
膨張,収縮に起因する破壊を防止する機能とを有してい
て、且つ構成材に及ぼされる荷重変化を最小限にする作
用がある。
The disc spring 23 has a function of preventing cracks and the like from being generated in the constituent members due to stress concentrated at the interface when the two tightening end plates 8 are fastened with each other by using the bolts 22, and the outside temperature It has a function of preventing a change caused by expansion and contraction of the constituent material due to heat generation during charging / discharging, and has an effect of minimizing a load change exerted on the constituent material.

【0027】本実施例では、上記皿ばね23の外側に位
置する各ボルト22を、1枚の接続板25を用いて連結
し、該接続板25と前記一対の締付端板8を自由に直線
運動する部材、例えばリニアベアリング26a,26
b,26c上に搭載したことを特徴としている。上記し
た3個のリニアベアリング26a,26b,26c上へ
の電池本体の搭載は、主として電池本体の製造時に実施
する。
In this embodiment, the bolts 22 located outside the disc spring 23 are connected by using one connecting plate 25, and the connecting plate 25 and the pair of tightening end plates 8 are freely connected. Members that move linearly, such as linear bearings 26a, 26
It is characterized by being mounted on b and 26c. The mounting of the battery main body on the three linear bearings 26a, 26b, 26c described above is mainly performed at the time of manufacturing the battery main body.

【0028】従って本実施例によれば、該リニアベアリ
ング26a,26b,26cによって電池本体を構成す
る締付端板8及び接続板25が矢印Aに示したように図
面上の左右方向に自由に動くことが特徴となっている。
上記リニアベアリング26a,26b,26cにより、
各構成材の膨張・収縮を吸収することが可能であり、且
つ製造時における電池本体の搬送性を高めたことが本実
施例の作用上の特徴となっている。特に製造時にクレー
ン等を利用して電池本体をリニアベアリング26a,2
6b,26c上に乗降させるだけで電池本体を移動する
ことができるため、移動操作が極めて簡易化されるとい
う特徴が得られる。
Therefore, according to this embodiment, the linear bearings 26a, 26b and 26c allow the tightening end plate 8 and the connecting plate 25 constituting the battery main body to freely move in the left-right direction in the drawing as shown by the arrow A. It is characterized by movement.
With the linear bearings 26a, 26b, 26c,
The operational characteristics of this embodiment are that the expansion and contraction of each component can be absorbed and the transportability of the battery main body at the time of manufacturing is improved. Especially at the time of manufacturing, the battery main body is used for the linear bearings 26a, 2 by using a crane or the like.
Since the battery main body can be moved only by getting on and off the 6b and 26c, the characteristic that the moving operation is extremely simplified is obtained.

【0029】次に上記電池本体の設置時における構造を
説明する。図1の例では3個のリニアベアリング26
a,26b,26cを用いた例を示しているが、該電池
本体の設置時には必ずしも3個のリニアベアリングを使
用しなくても良いものであり、少なくとも図1における
皿ばね23に近接した部位にある締付端板8をリニアベ
アリング26b上に搭載し、他のリニアベアリング26
a,26cに相当する部位は単に高さを調節する部材を
配置するだけで良い。
Next, the structure of the battery body when it is installed will be described. In the example of FIG. 1, three linear bearings 26
Although an example using a, 26b, and 26c is shown, it is not always necessary to use three linear bearings when the battery main body is installed, and at least a portion close to the disc spring 23 in FIG. One tightening end plate 8 is mounted on the linear bearing 26b, and the other linear bearing 26
For the parts corresponding to a and 26c, a member for adjusting the height may simply be arranged.

【0030】このような1個のリニアベアリング26b
だけを用いて設置することにより、該リニアベアリング
26bによって運転時における各構成材の膨張・収縮を
吸収することが可能である。
One such linear bearing 26b
By using only the linear bearing 26b, it is possible to absorb the expansion and contraction of each component during operation by the linear bearing 26b.

【0031】以下に本実施例を特性上の評価に基づいて
説明する。即ち、電池本体の製造工程におけるシール性
の試験は、上記の各プラスチックを主体とする構成材を
積層した後、20トン程度のプレスと温水循環工程を複
数回繰り返し、ボルト22を用いて締付けを行った後に
エアを用いたシールテストを行う方法が実施されてい
る。上記エアを所定量入れた時に電池本体は電極構造に
対応して変形し、各ボルト22の張力が夫々変化する。
その状態を自由状態の縦型とリニアベアリング上に乗せ
た横型について比較した結果を図2,図3に示す。
The present embodiment will be described below based on the evaluation of characteristics. That is, in the test of the sealing property in the manufacturing process of the battery main body, after stacking the constituent materials mainly composed of the above plastics, the press of about 20 tons and the hot water circulating process are repeated a plurality of times, and the bolts 22 are used for tightening. After that, a method of performing a seal test using air is implemented. When a predetermined amount of the air is introduced, the battery body is deformed corresponding to the electrode structure, and the tension of each bolt 22 is changed.
2 and 3 show the results of comparison of the state between the vertical type in the free state and the horizontal type mounted on the linear bearing.

【0032】図2は電池本体を自由状態の縦型にした場
合の各ボルト22,22の張力を歪ゲージを用いて測定
した結果であり、図3は電池本体をリニアベアリング上
に乗せた横型の場合における同様な張力測定結果を示し
ている。尚、エアを入れる前の各ボルト22,22の張
力は全て同一であり、図2.図3中の数字は、ボルト2
2,22全部の張力平均値を1とした時の比率を表わし
ている。
FIG. 2 shows the results of measuring the tensions of the bolts 22 and 22 using a strain gauge when the battery body is a vertical type in a free state, and FIG. 3 is a horizontal type in which the battery body is placed on a linear bearing. The same tension measurement result in the case of is shown. The tensions of the bolts 22 and 22 before the air is introduced are all the same. The numbers in Fig. 3 are bolts 2.
It shows the ratio when the average tension value of all 2, 22 is set to 1.

【0033】図2,図3によれば、電池本体を縦型にし
た場合と略同じ状態がリニアベアリング上における横型
の場合にも実現していることが判明した。
According to FIGS. 2 and 3, it has been found that substantially the same state as in the case where the battery main body is vertical type is realized also in the horizontal type on the linear bearing.

【0034】図4は電池本体を製造する際の「積層→締
付調整→温水循環(1回目)→冷却→締付調整→温水循
環(2回目)→冷却」という各工程における冷却時にお
ける皿ばね23,23の各位置に対応する変化量(m
m)をプロットしたグラフである。グラフ(イ)は温水
循環(1回目)後の冷却時における変化量を示し、グラ
フ(ロ)は温水循環(2回目)後の冷却時における変化
量を示している。上記の締付調整とは、全ボルト22の
張力を各工程毎に同一とし、且つ全体の張力を常に一定
にすることを意味している。
FIG. 4 shows a plate during cooling in each step of "stacking → tightening adjustment → hot water circulation (first time) → cooling → tightening adjustment → hot water circulation (second time) → cooling" when manufacturing the battery body. Amount of change corresponding to each position of the springs 23, 23 (m
It is the graph which plotted m). The graph (a) shows the change amount at the time of cooling after the hot water circulation (first time), and the graph (b) shows the change amount at the time of cooling after the hot water circulation (second time). The above-mentioned tightening adjustment means that the tensions of all the bolts 22 are made the same in each process, and the overall tension is always constant.

【0035】皿ばね23.23の位置は、図示したよう
にサイド部(1〜5),上部(6〜9),サイド部(1
0〜14),下部(15〜18)とした。皿ばね23.
23の変化量(mm)は、ボルト22による締付調整時
を基準として測定した。
The positions of the disc springs 23.23 are, as shown in the figure, the side portions (1-5), the upper portion (6-9), and the side portions (1
0-14) and the lower part (15-18). Disc spring 23.
The change amount (mm) of 23 was measured with reference to the time of tightening adjustment with the bolt 22.

【0036】図4によれば、各皿ばね23.23は上部
と下部が略同一の熱膨張と収縮をしていることが理解さ
れ、従ってリニアベアリング上で電池本体を横型に配置
しても何等問題がないことが判明した。
It can be seen from FIG. 4 that each disc spring 23.23 has substantially the same thermal expansion and contraction at the top and bottom, so that even if the battery body is arranged horizontally on the linear bearing. It turned out that there was no problem.

【0037】[0037]

【発明の効果】以上詳細に説明したように、本発明にか
かる亜鉛−臭素電池及びその設置構造によれば、自由に
直線運動する部材によって電池本体を構成する締付端板
が直線方向に自由に動くことができるため、この部材に
よって電池本体の各構成材の膨張・収縮を吸収すること
が可能となる。そして電池本体を横型にして設置した際
の各構成材に対する面圧が均一となり、各構成材の疲労
破壊の発生を防止することができるため、構成材におけ
るクラックとか歪み等の発生を防止して、製品寿命を延
ばすことが可能となる。
As described in detail above, according to the zinc-bromine battery and the installation structure thereof according to the present invention, the tightening end plate constituting the battery main body is free to move in the linear direction by the member that moves linearly freely. Since this member can move to the above position, it is possible to absorb expansion and contraction of each component of the battery body by this member. And when the battery body is installed horizontally, the surface pressure on each component becomes uniform, and the fatigue fracture of each component can be prevented, so that the occurrence of cracks or strains in the component is prevented. It is possible to extend the product life.

【0038】特に製造時には電池本体を直線運動する部
材上に乗降させるだけで移動することができるため、電
池本体の移動操作が極めて簡易化されて搬送性を高める
ことが出来る。そして製造時の各材料のクリープ量は均
一となって電池特性のばらつきがなくなり、設置後の運
転時にも構成材に異常な応力が発生せず、且つ電池本体
の持つ重量によってボルトに大きな曲げ力が加えられな
いため、該ボルトの変形が生じることが防止されて電池
の性能を高度に維持することができる。
In particular, at the time of manufacture, since the battery body can be moved only by getting on and off the member which moves linearly, the operation of moving the battery body can be extremely simplified and the transportability can be improved. And the creep amount of each material during manufacturing becomes uniform, there is no variation in battery characteristics, abnormal stress does not occur in the components even during operation after installation, and a large bending force is applied to the bolt due to the weight of the battery body. Is not added, the deformation of the bolt is prevented and the battery performance can be maintained at a high level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる亜鉛−臭素電池及びその設置構
造の一実施例を示す正面図。
FIG. 1 is a front view showing an embodiment of a zinc-bromine battery and an installation structure thereof according to the present invention.

【図2】電池本体を自由状態の縦型にした場合の各ボル
トの張力を測定した結果を示す概要図。
FIG. 2 is a schematic diagram showing the results of measuring the tension of each bolt when the battery body is a vertical type in a free state.

【図3】電池本体を横型にした場合の各ボルトの張力を
測定した結果を示す概要図。
FIG. 3 is a schematic diagram showing the results of measuring the tension of each bolt when the battery body is horizontal.

【図4】本実施例における冷却時の皿ばね変化量を示す
グラフ。
FIG. 4 is a graph showing the amount of change of a disc spring during cooling in this embodiment.

【図5】亜鉛−臭素電池本体の構成を示す分解斜視図。FIG. 5 is an exploded perspective view showing the configuration of a zinc-bromine battery body.

【図6】亜鉛−臭素電池の動作原理を示す概要図。FIG. 6 is a schematic diagram showing the operating principle of a zinc-bromine battery.

【図7】各構成部品を組み付けた電池本体のモジュール
構造を示す概要図。
FIG. 7 is a schematic diagram showing a module structure of a battery main body in which each component is assembled.

【図8】図7の左側面図。8 is a left side view of FIG. 7.

【図9】電池本体を横型にして直接地面に載置した状態
を示す模式図。
FIG. 9 is a schematic view showing a state in which the battery main body is horizontal and is directly placed on the ground.

【図10】従来の亜鉛−臭素電池の設置構造例を示す正
面図。
FIG. 10 is a front view showing an example of a conventional zinc-bromine battery installation structure.

【符号の説明】[Explanation of symbols]

1…中間電極 2…セパレータ板 3…セパレータ 8…締付端板 9…積層端板 10…正極マニホールド 11…負極マニホールド 12…チャンネル 13…マイクロチャンネル 14…正極側貯蔵槽 17…負極側貯蔵槽 19…正極側ポンプ 21…負極側ポンプ 22…ボルト 23…皿ばね 25…接続板 26a,26b,26c…リニアベアリング DESCRIPTION OF SYMBOLS 1 ... Intermediate electrode 2 ... Separator plate 3 ... Separator 8 ... Clamping end plate 9 ... Laminated end plate 10 ... Positive electrode manifold 11 ... Negative electrode manifold 12 ... Channel 13 ... Microchannel 14 ... Positive electrode side storage tank 17 ... Negative side storage tank 19 ... Positive side pump 21 ... Negative side pump 22 ... Bolt 23 ... Disc spring 25 ... Connection plate 26a, 26b, 26c ... Linear bearing

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セパレータ板と中間電極とを重ねて単セ
ルとし、この単セルを複数個積層して電池本体を構成す
るとともに、該電池本体の両端部に集電メッシュを有す
る集電電極と、押え用の積層端板及び一対の締付端板と
を配置して、一方の締付端板の外側に配置した皿ばねの
介在下で両締付端板間をボルト締めして一体的に積層固
定するようにした亜鉛−臭素電池において、 上記皿ばねの外側に位置する各ボルトを1枚の接続板を
用いて連結し、該接続板と前記一対の締付端板を、自由
に直線運動する部材上に搭載したことにより、製造時に
おける電池本体の搬送性を高め、且つ各構成材の膨張・
収縮を吸収するようにしたことを特徴とする亜鉛−臭素
電池。
1. A separator cell and an intermediate electrode are stacked to form a single cell, and a plurality of the single cells are stacked to form a battery main body, and a current collecting electrode having a current collecting mesh at both ends of the battery main body. , Laminated end plates for pressing and a pair of tightening end plates are arranged, and bolts are tightened between both tightening end plates with the interposition of a disc spring arranged outside one of the tightening end plates. In the zinc-bromine battery, the bolts located outside the disc spring are connected using a single connecting plate, and the connecting plate and the pair of tightening end plates are freely connected. By mounting on a member that moves in a straight line, the transportability of the battery main body during manufacturing is improved, and the expansion and
A zinc-bromine battery characterized by absorbing shrinkage.
【請求項2】 セパレータ板と中間電極とを重ねて単セ
ルとし、この単セルを複数個積層して電池本体を構成す
るとともに、該電池本体の両端部に集電メッシュを有す
る集電電極と、押え用の積層端板及び一対の締付端板と
を配置して、一方の締付端板の外側に配置した皿ばねの
介在下で両締付端板間をボルト締めして一体的に積層固
定するようにした亜鉛−臭素電池の設置構造において、 上記皿ばねの外側に位置する各ボルトを1枚の接続板を
用いて連結し、且つ少なくとも皿ばねに近接した部位に
ある締付端板を、自由に直線運動する部材上に搭載して
運転時における各構成材の膨張・収縮を吸収するように
したことを特徴とする亜鉛−臭素電池の設置構造。
2. A separator plate and an intermediate electrode are stacked to form a single cell, and a plurality of the single cells are laminated to form a battery main body, and a current collecting electrode having a current collecting mesh at both ends of the battery main body. , Laminated end plates for pressing and a pair of tightening end plates are arranged, and bolts are tightened between both tightening end plates with the interposition of a disc spring arranged outside one of the tightening end plates. In the installation structure of the zinc-bromine battery that is laminated and fixed to, the bolts located outside the disc spring are connected by using one connecting plate, and the tightening is provided at least at a portion close to the disc spring. An installation structure of a zinc-bromine battery, characterized in that the end plate is mounted on a member that moves freely in a straight line so as to absorb expansion and contraction of each constituent material during operation.
【請求項3】 前記自由に直線運動する部材がリニアベ
アリングである請求項1,2記載の亜鉛−臭素電池及び
その設置構造。
3. The zinc-bromine battery and its installation structure according to claim 1, wherein the member which moves linearly freely is a linear bearing.
JP5086597A 1993-04-14 1993-04-14 Zinc-bromine battery and installation structure thereof Pending JPH06302340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5086597A JPH06302340A (en) 1993-04-14 1993-04-14 Zinc-bromine battery and installation structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5086597A JPH06302340A (en) 1993-04-14 1993-04-14 Zinc-bromine battery and installation structure thereof

Publications (1)

Publication Number Publication Date
JPH06302340A true JPH06302340A (en) 1994-10-28

Family

ID=13891424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5086597A Pending JPH06302340A (en) 1993-04-14 1993-04-14 Zinc-bromine battery and installation structure thereof

Country Status (1)

Country Link
JP (1) JPH06302340A (en)

Similar Documents

Publication Publication Date Title
US20220352591A1 (en) Battery Pack and Vehicle Comprising Same
EP2682999B1 (en) Battery pack having excellent structural reliability
KR101814735B1 (en) Battery module
US9711819B2 (en) Mount structure for fuel cell stack
US10033062B2 (en) Fuel cell stack and mount structure therefor
US20110151311A1 (en) Battery pack
EP2533320A2 (en) Battery pack with a reinforcing member
EP2634834A2 (en) Battery pack having improved durability
KR101799565B1 (en) Battery Pack of Improved Safety
WO2021033476A1 (en) Power supply device, and electric vehicle and electrical storage device each equipped with same
KR101764842B1 (en) Battery Pack Including Spacer
CN110120476B (en) Battery module having a stack of cells of a battery
US20060188771A1 (en) Fuel cell stack compression assembly
KR100569133B1 (en) A fuel cell module for electric vehicles
JPH06302340A (en) Zinc-bromine battery and installation structure thereof
KR100514375B1 (en) A device for tightening stacks of fuel cell in electric vehicles
JPH0714617A (en) Current collecting electrode of zinc-bromine battery
CN212695271U (en) Lithium battery box with good protection performance
JP3170930B2 (en) Current collecting electrode of zinc-bromine battery and method of manufacturing the same
JP3141599B2 (en) Current collecting electrode of zinc-bromine battery and method of manufacturing the same
CN219226448U (en) Double big module battery package
JPH06251808A (en) Manufacture of zinc-bromine battery
JPH0672162U (en) Laminated structure of zinc-bromine battery
JP3161149B2 (en) Peripheral sealing method of zinc-bromine battery
JPH0660058U (en) Current collector for zinc-bromine battery