JPH0660058U - Current collector for zinc-bromine battery - Google Patents

Current collector for zinc-bromine battery

Info

Publication number
JPH0660058U
JPH0660058U JP001697U JP169793U JPH0660058U JP H0660058 U JPH0660058 U JP H0660058U JP 001697 U JP001697 U JP 001697U JP 169793 U JP169793 U JP 169793U JP H0660058 U JPH0660058 U JP H0660058U
Authority
JP
Japan
Prior art keywords
electrode
current collecting
zinc
insulating frame
collecting electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP001697U
Other languages
Japanese (ja)
Inventor
健一郎 陣内
靖浩 吉岡
寛 細野
保雄 安藤
康晴 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP001697U priority Critical patent/JPH0660058U/en
Publication of JPH0660058U publication Critical patent/JPH0660058U/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Abstract

(57)【要約】 【目的】 熱応力及び外力に起因する集電電極の「反
り」を防止するとともに、集電電極自体の機械的強度を
大きくした亜鉛−臭素電池の集電電極を提供することを
目的とする。 【構成】 集電電極7は、シート状の絶縁枠材16bの
複数枚を積層することによって形成される孔部17内に
カーボンプラスチック電極15を組み込むとともに、背
面a側に位置する絶縁枠材16bの一部分をカーボンプ
ラスチック電極15の表面に沿って進入させたオーバー
ラップ部16cを設けて、一体的に熱溶着してある。上
記オーバーラップ部16cは、集電電極7の背面側に位
置する1枚もしくは2枚のシート状絶縁枠材16bによ
って形成されており、このオーバーラップ部16cの厚
みは1.0〜2.0mm、オーバーラップ部16cの長
さは10〜15cmの範囲にあるように設定されてい
る。
(57) [Abstract] [Purpose] To provide a current collecting electrode for a zinc-bromine battery, in which “warpage” of the current collecting electrode due to thermal stress and external force is prevented and the mechanical strength of the current collecting electrode itself is increased. The purpose is to [Structure] The collector electrode 7 has a carbon plastic electrode 15 incorporated in a hole 17 formed by laminating a plurality of sheet-shaped insulating frame members 16b, and the insulating frame member 16b positioned on the rear surface a side. An overlapping portion 16c in which a part of the above is inserted along the surface of the carbon plastic electrode 15 is provided and integrally heat-welded. The overlapping portion 16c is formed by one or two sheet-shaped insulating frame members 16b located on the back surface side of the collecting electrode 7, and the thickness of the overlapping portion 16c is 1.0 to 2.0 mm. The length of the overlapping portion 16c is set to be in the range of 10 to 15 cm.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は電解液循環型積層二次電池、特に亜鉛−臭素電池の構成部材である集 電電極に関するものである。 The present invention relates to a collecting electrode which is a constituent member of an electrolyte circulating type laminated secondary battery, particularly a zinc-bromine battery.

【0002】[0002]

【従来の技術】[Prior art]

亜鉛−臭素電池は正極活物質に臭素、負極活物質に亜鉛を用いた2次電池であ り、この電池は例えば電力の昼と夜のアンバランスを解決させるために、電力需 要が少ない夜間に電力を貯蔵して、昼間に放出させるため等に使用される。 Zinc-bromine batteries are secondary batteries that use bromine as the positive electrode active material and zinc as the negative electrode active material. For example, this battery is used at night when power demand is low to solve the imbalance between day and night. It is used to store electricity and discharge it in the daytime.

【0003】 充電時に正極電極側で発生した臭素は、電解液に添加した臭素錯化剤と反応し 、オイル状の沈殿物となって貯蔵タンクへ戻され、放電時はポンプで単電池内へ 送り込まれ還元される。電解液の成分はZnBr2水溶液と、抵抗を下げるため のNH4Cl等の塩と、負極亜鉛側のデンドライトを防止し、均一な電着を促進 させるためのPb,Sn,4級アンモニウム塩類と、臭素錯化剤とである。正極 電極と負極電極の間にはセパレータを介挿してあり、正極電極で発生した臭素が 負極電極へ拡散して亜鉛と反応することによる自己放電を防止している。Bromine generated on the positive electrode side at the time of charging reacts with the bromine complexing agent added to the electrolytic solution to be returned as an oily precipitate to the storage tank, and at the time of discharging it is pumped into the unit cell. It is sent and returned. The components of the electrolytic solution are a ZnBr 2 aqueous solution, a salt such as NH 4 Cl for reducing the resistance, and Pb, Sn, and quaternary ammonium salts for preventing dendrite on the negative electrode zinc side and promoting uniform electrodeposition. , With a bromine complexing agent. A separator is inserted between the positive electrode and the negative electrode to prevent self-discharge due to the bromine generated in the positive electrode diffusing into the negative electrode and reacting with zinc.

【0004】 この亜鉛−臭素電池の化学反応は、The chemical reaction of this zinc-bromine battery is

【0005】[0005]

【化1】 充電時……正極:2Br-→Br2+2e-,負極:Zn+++2e-→Zn 放電時……正極:2Br-←Br2+2e-,負極:Zn+++2e-←Zn で表される。[Chemical Formula 1] During charging: Positive electrode: 2Br → Br 2 + 2e , Negative electrode: Zn ++ + 2e → Zn During discharging: Positive electrode: 2Br ← Br 2 + 2e , Negative electrode: Zn ++ + 2e ← Zn It is represented by.

【0006】 この亜鉛−臭素電池は、主に電極をバイポーラ型とし、複数個の単電池(単セ ル)を電気的に直列に積層した電池本体と、電解液貯蔵槽と、これらの間に電解 液を循環させるポンプおよび配管系とで構成されている。This zinc-bromine battery is mainly of a bipolar type and has a battery main body in which a plurality of cells (cells) are electrically stacked in series, an electrolytic solution storage tank, and a space between them. It consists of a pump and a piping system that circulates the electrolyte.

【0007】 図9は上記亜鉛−臭素電池を構成する電池本体の一例を示す分解斜視図であり 、矩形平板状のバイポーラ型中間電極1の電極部1aの外周に絶縁性の枠体1b が配置され、同様に矩形平板状のセパレータ板2は、セパレータ3の外周に枠体 2aが形成されている。そして上記中間電極1にセパレータ板2及び必要に応じ てパッキン4,スペーサメッシュ5を重ねて単セルを構成し、この単セルを複数 個積層して電池本体が構成されている。FIG. 9 is an exploded perspective view showing an example of a battery main body that constitutes the above zinc-bromine battery, in which an insulating frame 1b is arranged on the outer periphery of the electrode portion 1a of the bipolar plate-shaped intermediate electrode 1 having a rectangular flat plate shape. Similarly, in the separator plate 2 having a rectangular flat plate shape, the frame body 2 a is formed on the outer periphery of the separator 3. The separator plate 2 and, if necessary, the packing 4 and the spacer mesh 5 are stacked on the intermediate electrode 1 to form a single cell, and a plurality of the single cells are laminated to form a battery body.

【0008】 積層された電池本体の両端部には、集電メッシュ6を有する集電電極7と、一 対の締付端板8と、その内側に位置する押さえ用の積層端板9とが配置されてい る。そして両締付端板8,8間に図示しないボルトを通して、このボルトを締め 付けることにより、一体的に積層固定された電池本体が構成される。A collector electrode 7 having a collector mesh 6, a pair of tightening end plates 8 and a stacking end plate 9 for pressing, which is located inside the collector electrodes 7, are provided at both ends of the stacked battery bodies. It is arranged. Then, a bolt (not shown) is passed between both the tightening end plates 8 and 8 to fasten the bolt to form a battery body integrally laminated and fixed.

【0009】 上記のように構成された電池本体の各単セル内には、各中間電極1及びセパレ ータ板2の枠体2aの上下2箇所の隅角部に形成した正極マニホールド10と、 負極マニホールド11より、セパレータ板2の枠体2aに設けられたチャンネル 12及びマイクロチャンネル13を介して電解液が夫々流入排出する。In each unit cell of the battery main body configured as described above, a positive electrode manifold 10 formed at two upper and lower corners of the intermediate electrode 1 and the frame body 2 a of the separator plate 2, The electrolyte solution flows in and out from the negative electrode manifold 11 through the channels 12 and the microchannels 13 provided in the frame body 2a of the separator plate 2, respectively.

【0010】 このように構成された亜鉛−臭素電池は、50KW級電池における電池効率と して約80%、総合エネルギー効率として約70%が確認されている。It has been confirmed that the zinc-bromine battery configured as described above has a battery efficiency of about 80% in a 50 KW class battery and an overall energy efficiency of about 70%.

【0011】 上記の集電電極7は、図10,図11に示したように略1mm厚のシート状絶 縁枠材16a上に、この絶縁枠材16aと同一厚で孔部17が中抜きされた複数 枚の絶縁枠材16bを積層し、この孔部17内に略1mm厚のカーボンプラスチ ック電極15aと、真ちゅう製の集電メッシュ6及び略3mm厚のカーボンプラ スチック電極15bとをサンドイッチ状に順次組み込み、図外の金型を利用して 所定の温度と圧力条件下でのヒートプレス手段に基づいて一体化して製造される 。更に上記の絶縁枠材16a,16bには、マニホールド用の穴18が開口され ている。As shown in FIGS. 10 and 11, the current collecting electrode 7 is formed on a sheet-shaped insulating frame member 16 a having a thickness of about 1 mm and having the same thickness as that of the insulating frame member 16 a, and the hole 17 is hollowed out. A plurality of insulating frame members 16b are laminated, and a carbon plastic electrode 15a having a thickness of about 1 mm, a brass current collecting mesh 6 and a carbon plastic electrode 15b having a thickness of about 3 mm are stacked in the hole 17. It is sequentially assembled in a sandwich form, and is integrally manufactured by using a die (not shown) based on heat pressing means under predetermined temperature and pressure conditions. Further, holes 18 for the manifold are opened in the insulating frame members 16a and 16b.

【0012】 上記のヒートプレスの条件として、例えば150℃,55kg/cm2が採用 される。カーボンプラスチック電極15a,15bは、ポリエチレンとカーボン グラファイトを混合して成形した部材であり、臭素に対する耐腐食性を有してい る。As conditions for the above heat press, for example, 150 ° C. and 55 kg / cm 2 are adopted. The carbon plastic electrodes 15a and 15b are members formed by mixing polyethylene and carbon graphite, and have corrosion resistance against bromine.

【0013】 上記集電メッシュ6から導出された電力取出用の端子片6aは、カーボンプラ スチック電極15aと絶縁枠材16aに形成されたスリット14を通って外方に 導き出され、図外の集電ブスバーに連結されている。図11中の矢印aは背面側 を、矢印bは接液側を夫々示している。The terminal piece 6a for extracting electric power, which is led out from the current collecting mesh 6, is led out to the outside through the slits 14 formed in the carbon plastic electrode 15a and the insulating frame member 16a, and is not shown in the drawing. It is connected to the electric bus bar. The arrow a in FIG. 11 indicates the back side and the arrow b indicates the liquid contact side.

【0014】[0014]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながらこのような従来の亜鉛−臭素電池に用いられている集電電極7の 場合、電解液に対する背面側aと接液側b(図11中に図示)との材質の相違に 基づいて熱収縮率とか線膨張係数に差が生じてしまうことが避けられず、特に温 度低下時には、上記熱収縮率の差によって絶縁枠材16a,16bにクラックと か「そり」が生じてしまい、集電電極の平面性が低下する惧れが生じる。 However, in the case of the current collecting electrode 7 used in such a conventional zinc-bromine battery, heat shrinkage occurs due to the difference in material between the back side a and the liquid contact side b (shown in FIG. 11) with respect to the electrolytic solution. It is unavoidable that there is a difference in the coefficient of thermal expansion or the coefficient of linear expansion, and especially when the temperature drops, cracks or “warps” occur in the insulating frame members 16a, 16b due to the difference in the thermal contraction rate, and the current collection. There is a fear that the flatness of the electrode may be deteriorated.

【0015】 集電電極7の平面性が低下すると、前記の図9で説明したように、電池本体を 構成する締付端板間8,8をボルトを用いて締め付けた際に、集電電極7の界面 から液漏れが生じ易くなり、蓄えられた電力の損失が生じてしまうという難点が 発生する。この液漏れをなくすためにボルトによる締付力を強力にすると、界面 に集中する応力によって構成部材に前記クラックが生じ易くなるという問題点が ある。そのため、通常ボルトに皿ばねを取り付けて荷重変化を最小限にする手段 が用いられているが、クラック防止対策として必ずしも充分であるとは言えない という問題が残っている。When the flatness of the collector electrode 7 is lowered, as described in FIG. 9 above, when the clamp end plates 8 and 8 constituting the battery body are tightened with bolts, the collector electrode 7 The liquid easily leaks from the interface of No. 7 and the stored electric power is lost. If the tightening force of the bolts is increased in order to eliminate this liquid leakage, there is a problem in that the stress concentrated on the interface easily causes the cracks in the constituent members. For this reason, a means for attaching a disc spring to the bolt to minimize the load change is usually used, but the problem that it cannot be said to be sufficient as a crack prevention measure remains.

【0016】 上記絶縁枠材16a,16bは、通常ポリエチレン樹脂にタルクを混合したも のが用いられており、純粋のポリエチレン樹脂に比して破断時の「伸び」は小さ く、これが上記クラックが生じる原因ともなっている。The insulating frame members 16a and 16b are usually made of polyethylene resin mixed with talc, and have a smaller “elongation” at break than pure polyethylene resin. It is also a cause.

【0017】 更にカーボンプラスチック電極15a,15bは、前記したようにポリエチレ ンとカーボングラファイトを混合して成形した部材であるため、無機フィラーが 多量に含まれているため、電極自体が固くてもろいという性質があり、前記クラ ックが発生し易い要因ともなっている。Furthermore, since the carbon plastic electrodes 15a and 15b are members formed by mixing polyethylene and carbon graphite as described above, they contain a large amount of inorganic filler, and therefore the electrodes themselves are said to be hard and brittle. It is characteristic, and it is also a factor that the crack easily occurs.

【0018】 他方で、厚み方向での材質の相違に起因する集電電極7の前記「そり」をなく すための一手段として、図11に示した絶縁枠材16aを取り去ることによって 、該集電電極7を構成する絶縁枠材16bとカーボンプラスチック電極15a, 15bとを厚み方向で略対称的に配置して溶着する手段も試みられている。この ような手段によれば、熱収縮に起因する集電電極の「反り」の発生を最小限とす ることが出来るが、絶縁枠材16bとカーボンプラスチック電極15bとの溶着 界面が表裏両方に露出してしまうため、この溶着界面による耐破断性とか耐歪性 の低下による強度面での難点が生じる惧れがある。更に該集電電極7を電池本体 に組み付けた際の該集電電極7の背面a側の機械的強度が不足してしまうという 問題点が生じる。On the other hand, as one means for eliminating the above-mentioned “warpage” of the collector electrode 7 due to the difference in material in the thickness direction, the insulating frame member 16a shown in FIG. An attempt has also been made to arrange and weld the insulating frame member 16b and the carbon plastic electrodes 15a and 15b forming the electric electrode 7 in a substantially symmetrical manner in the thickness direction. By such means, it is possible to minimize the occurrence of “warpage” of the collector electrode due to heat shrinkage, but the welding interface between the insulating frame member 16b and the carbon plastic electrode 15b is on both the front and back sides. Since it is exposed, there is a possibility that a difficulty in strength may occur due to a decrease in rupture resistance and strain resistance due to the weld interface. Further, there is a problem that the mechanical strength of the rear surface a side of the current collecting electrode 7 becomes insufficient when the current collecting electrode 7 is assembled to the battery body.

【0019】 本考案は上記の点に鑑みてなされたものであり、集電電極の熱収縮に起因する そり現象と、このそり現象に起因する電解液の液洩れ等の特性不良を誘発する原 因をなくし、且つ集電電極自体の機械的強度を大きくして電池の性能を高めるこ とができる亜鉛−臭素電池の集電電極を提供することを目的とするものである。The present invention has been made in view of the above points, and causes a warp phenomenon caused by thermal contraction of a current collecting electrode and a characteristic defect such as electrolyte leakage caused by the warp phenomenon. It is an object of the present invention to provide a current collecting electrode for a zinc-bromine battery that can eliminate the cause and increase the mechanical strength of the current collecting electrode itself to enhance the battery performance.

【0020】[0020]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は上記目的を達成するために、矩形平板状の中間電極にセパレータ板を 重ねて単セルを形成し、この単セルを複数個積層して電池本体を構成するととも に、該電池本体の両端部に、一対の集電電極と締付端板を配置し、両締付端板間 をボルト締めすることによって一体的に積層固定するようにした亜鉛−臭素電池 の集電電極において、シート状の絶縁枠材の複数枚を積層することによって形成 される孔部内にカーボンプラスチック電極を組み込むとともに、背面側に位置す る絶縁枠材の一部分をカーボンプラスチック電極の表面に沿って進入させたオー バーラップ部を設けて、一体的に熱溶着した亜鉛−臭素電池の集電電極を提供す る。 In order to achieve the above object, the present invention forms a single cell by stacking a separator plate on a rectangular flat plate-shaped intermediate electrode, and stacks a plurality of the single cells to form a battery main body. A sheet of zinc-bromine battery current collecting electrodes, in which a pair of current collecting electrodes and a tightening end plate are arranged at both ends, and the two tightening end plates are bolted together to be integrally laminated and fixed. The carbon plastic electrode was incorporated into the hole formed by laminating a plurality of insulating frame materials, and a part of the insulating frame material located on the back side was inserted along the surface of the carbon plastic electrode. A burlap portion is provided to provide a current-collecting electrode for a zinc-bromine battery integrally heat-welded.

【0021】 前記オーバーラップ部は集電電極の背面側に位置する1枚もしくは2枚のシー ト状絶縁枠材によって形成されており、このオーバーラップ部の厚みは1.0〜 2.0mm、オーバーラップ部の長さは10〜15cmの範囲にあるように設定 されている。The overlapped portion is formed by one or two sheet-shaped insulating frame members located on the back side of the collector electrode, and the thickness of the overlapped portion is 1.0 to 2.0 mm. The length of the overlapping part is set to be in the range of 10 to 15 cm.

【0022】[0022]

【作用】[Action]

かかる集電電極によれば、カーボンプラスチック電極と絶縁枠材とが厚み方向 で略対称的に配置されたことにより、熱応力及び外力に起因する集電電極の「そ り」の発生が最小限となり、且つ背面側に位置する絶縁枠材の一部分をカーボン プラスチック電極の表面に沿って進入させたオーバーラップ部を設けたことによ り、絶縁枠材とカーボンブラスチック電極との界面の耐破断性が高められ、しか も耐歪量,外部圧力に対する耐圧性,曲げ特性及び繰り返し疲労特性の各特性項 目をも満足する集電電極が得られる。 According to such a collecting electrode, since the carbon plastic electrode and the insulating frame material are arranged substantially symmetrically in the thickness direction, the occurrence of the “warp” of the collecting electrode due to thermal stress and external force is minimized. And, by providing an overlap part where a part of the insulating frame material located on the back side penetrates along the surface of the carbon plastic electrode, rupture resistance at the interface between the insulating frame material and the carbon plastic electrode is provided. Therefore, a collector electrode is obtained that satisfies the characteristics of strain resistance, pressure resistance against external pressure, bending characteristics and cyclic fatigue characteristics.

【0023】[0023]

【実施例】【Example】

以下図面を参照しながら本考案にかかる亜鉛−臭素電池の集電電極の一実施例 を、前記図11に示した構成部分と同一の構成部分に同一の符号を付して詳述す る。 An embodiment of the current collecting electrode of a zinc-bromine battery according to the present invention will be described in detail below with reference to the drawings, with the same components as those shown in FIG.

【0024】 図1(A)(B)(C)は本実施例にかかる集電電極7の具体的な構成を示す ものであり、図中の15はカーボンプラスチック電極、16bは略1mm厚のシ ート状の絶縁枠材である。この絶縁枠材16bの複数枚を積層することによって 形成される孔部17内に上記カーボンプラスチック電極15が一体的に組み込ま れ、熱溶着されている。1 (A), (B) and (C) show a specific structure of the current collecting electrode 7 according to this embodiment, in which 15 is a carbon plastic electrode and 16b is a thickness of about 1 mm. It is a sheet-shaped insulating frame material. The carbon plastic electrode 15 is integrally incorporated in a hole 17 formed by laminating a plurality of the insulating frame members 16b and heat-welded.

【0025】 そして図1(A)の例では、最も背面a側に位置する1枚の絶縁枠材16bの 一部分がカーボンプラスチック電極15方向に進入したオーバーラップ部16c が形成されている。又、図1(B)の例では、背面a側に位置する2枚の絶縁枠 材16b,16bによってオーバーラップ部16cが形成されており、図1(C )の例では、背面a側に位置する3枚の絶縁枠材16b,16b,16bによっ てオーバーラップ部16cが形成されている。In the example of FIG. 1 (A), a part of one insulating frame member 16b located on the rear surface a side is formed with an overlapping portion 16c in which the part of the insulating frame member 16b enters in the direction of the carbon plastic electrode 15. Further, in the example of FIG. 1 (B), the overlapping portion 16c is formed by the two insulating frame members 16b, 16b located on the rear surface a side. In the example of FIG. 1 (C), the overlapping portion 16c is formed on the rear surface a side. An overlapping portion 16c is formed by the three insulating frame members 16b, 16b, 16b located.

【0026】 上記カーボンプラスチック電極15と絶縁枠材16bは、図11によって説明 した例と同様に製作する。即ち、図11に示したシート状絶縁枠材16bの複数 枚を積層して、孔部17内に上記オーバーラップ部が形成されたカーボンプラス チック電極15aと真ちゅう製の集電メッシュ6及びカーボンプラスチック電極 15bとを順次組み込み、金型を利用したヒートプレス手段により一体的に成形 する。The carbon plastic electrode 15 and the insulating frame member 16b are manufactured in the same manner as the example described with reference to FIG. That is, by stacking a plurality of sheet-like insulating frame members 16b shown in FIG. 11, the carbon plastic electrode 15a having the above-mentioned overlapped portion in the hole 17 and the brass current collecting mesh 6 and the carbon plastic. The electrodes 15b are sequentially incorporated, and integrally molded by heat pressing means using a mold.

【0027】 従って図1(A)の例では、オーバーラップ部16cの厚みが略1mmであり 、図1(B)の例では、オーバーラップ部16cの厚みが略2mm,図1(C) の例では、該オーバーラップ部16cの厚みが略3mmとなっている。Therefore, in the example of FIG. 1 (A), the thickness of the overlapping portion 16c is approximately 1 mm, and in the example of FIG. 1 (B), the thickness of the overlapping portion 16c is approximately 2 mm, and the thickness of the overlapping portion 16c is approximately 2 mm. In the example, the thickness of the overlapping portion 16c is about 3 mm.

【0028】 このようにして得られた3タイプの集電電極7の各種特性を評価するために、 以下に記す各項目を測定した。In order to evaluate various characteristics of the thus obtained three types of collector electrodes 7, the following items were measured.

【0029】 (1)そり量の測定 得られた集電電極7の「そり」発生の有無を確認するため、本実施例によって 得られた3タイプの集電電極7を大きめのアルミニウム板(約3mm厚)で挟み 、150kgの錘りを24時間かけた後、フリー状態で放置し、図2に示す1〜 12までの12点でそりの大きさを測定した。測定は図3に示したように定盤2 0上に集電電極7を載置し、ハイドゲージ21による測定値Xを用いた。(1) Measurement of amount of warpage In order to confirm whether or not “warpage” occurred in the obtained current collecting electrode 7, the three types of current collecting electrodes 7 obtained in this example were prepared using a large aluminum plate (about (3 mm thick), a 150 kg weight was applied for 24 hours, then left in a free state, and the size of the sled was measured at 12 points 1 to 12 shown in FIG. For the measurement, as shown in FIG. 3, the collecting electrode 7 was placed on the surface plate 20 and the measured value X by the hide gauge 21 was used.

【0030】 図4は上記測定によるそり量(mm)と放置日数の関係を示すグラフであり、 (イ)は前記オーバーラップ部16cが1枚の場合、(ロ)はオーバーラップ部 16cが2枚の場合、(ハ)はオーバーラップ部16cが3枚の場合をそれぞれ 示している。FIG. 4 is a graph showing the relationship between the amount of warpage (mm) measured above and the number of days left to stand. (A) shows the case where the overlapping portion 16c is one, and (b) shows that the overlapping portion 16c has two. In the case of the number of sheets, (C) shows the case where the number of overlapping portions 16c is three.

【0031】 図4のグラフから、集電電極7のそり量は、オーバーラップ部16cが1枚の 場合が最も少なく、該オーバーラップ部16cが2枚,3枚と増えるのに伴って そり量が増大していることが判明した。From the graph of FIG. 4, the amount of warpage of the collecting electrode 7 is the smallest when the number of the overlapping portions 16c is one, and the amount of warpage is increased as the number of the overlapping portions 16c increases to two or three. Was found to be increasing.

【0032】 一方、図5は前記オーバーラップ部16cの長さとそり量(mm)の関係を示 すグラフであり、上記オーバーラップ部16cの長さは10〜15cmの範囲に あればそり量が少ないことが分かった。On the other hand, FIG. 5 is a graph showing the relationship between the length of the overlapping portion 16c and the warp amount (mm). If the length of the overlapping portion 16c is in the range of 10 to 15 cm, the warp amount is Turned out to be few.

【0033】 (2)締め付け歪の測定 上記のそり量(mm)は、亜鉛−臭素電池を構成するセパレータと中間電極と を積層した両側に積層端板を置いて、ボルトを用いて締め付けた時の歪発生量に 関係している。表1はオーバーラップ部16cの厚みを1.0mm,2.0mm ,3.0mmとした集電電極7を用いて電池本体を構成し、締付トルク300k g−cmで均等締めを行った場合の平均そり量(mm)と発生歪(×10-6)を 測定した結果を示している。(2) Measurement of tightening strain The above warpage amount (mm) is measured when the laminated end plates are placed on both sides of the separator and the intermediate electrode that compose the zinc-bromine battery and the bolts are tightened with bolts. It is related to the amount of strain generation. Table 1 shows a case where the battery body is configured by using the collector electrode 7 in which the thickness of the overlapping portion 16c is 1.0 mm, 2.0 mm, and 3.0 mm, and uniform tightening is performed with a tightening torque of 300 kg-cm. The results of measuring the average warp amount (mm) and the generated strain (× 10 −6 ) of the are shown.

【0034】[0034]

【表1】 [Table 1]

【0035】 表1によれば、平均そり量が大きいものほど発生歪が大きいことが分かる。特 に締め付けによる静的歪は、4000(×10-6)以内が安全領域であることが 経験的に知られており、従って前記3タイプの集電電極7のうち、オーバーラッ プ部16cの厚みは1.0mm〜2.0mm,枚数にして1枚もしくは2枚のも のが適当であり、3枚のものは不適当であることが理解される。From Table 1, it can be seen that the larger the average warp amount, the larger the generated strain. In particular, it is empirically known that the static strain due to tightening is within 4000 (× 10 -6 ) as a safe area. Therefore, of the three types of current collecting electrodes 7, the overlap portion 16c of It is understood that the thickness is 1.0 mm to 2.0 mm, and it is suitable that the number of sheets is one or two, and the number of three is not suitable.

【0036】 (3)エアによる加圧特性測定 電池本体内のセルには、ポンプの圧力によりカーボンプラスチック電極側から 押さえ付ける正圧と、電解液の液抜きの際に発生するカーボンプラスチックを引 っ張る負圧とがかかっている。前記そり量と締付歪の測定結果からオーバーラッ プ部16cの枚数は1枚か2枚が良いことが判明したため、図6に示したように 集電電極7の表裏両面にゲージ22,22を2個ずつ取り付けてエアによる加圧 特性を測定した。(3) Measurement of Pressurization Characteristic by Air In the cell in the battery main body, a positive pressure to be pressed from the carbon plastic electrode side by the pressure of the pump and a carbon plastic generated when the electrolytic solution is drained are drawn. A negative pressure is applied. From the measurement results of the warp amount and the tightening strain, it was found that the number of the overlapping portions 16c should be one or two. Therefore, as shown in FIG. Two of them were attached and the pressurization characteristics by air were measured.

【0037】 図7は上記測定によって得られたエア圧力−歪曲線であり、(イ)は前記オー バーラップ部16cが1枚の場合、(ロ)はオーバーラップ部16cが2枚の場 合をそれぞれ示している。(イ)の例では、エア圧力が0.7(kg/cm2) の負圧によって同図の破断箇所X、即ち絶縁枠材16bとカーボンプラスチック 電極15との界面部分で集電電極7が破断したが、(ロ)の例では、エア圧力が 0.5(kg/cm2)の負圧によって破断箇所Y、即ち上記界面部分よりも内 側に寄った部分で集電電極7が破断した。その時の破断歪は、(イ)の例では1 5000(×10-6)であったのに対して(ロ)の例では9000(×10-6) であった。FIG. 7 is an air pressure-strain curve obtained by the above measurement. (A) shows the case where the number of the overlapping portions 16c is one, and (b) shows the case where the number of the overlapping portions 16c is two. Shown respectively. In the example of (a), the current collecting electrode 7 is broken by the negative pressure of the air pressure of 0.7 (kg / cm 2 ) at the break point X in the figure, that is, at the interface between the insulating frame member 16b and the carbon plastic electrode 15. Although it broke, in the example of (b), the collector electrode 7 broke at the breaking point Y, that is, the portion closer to the inner side than the interface portion due to the negative pressure of the air pressure of 0.5 (kg / cm 2 ). did. The breaking strain at that time was 15000 (× 10 −6 ) in the example (a), whereas it was 9000 (× 10 −6 ) in the example (b).

【0038】 (4)テストピースによる曲げ特性測定 各集電電極7の絶縁枠材16cとカーボンブラスチック電極15との界面の強 度を比較するため、図8に示したように集電電極7から幅1.5cm,長さ15 cmのテストピース7aを多数個切り出して、このテストピース7aに対して前 記図6に示したゲージ22,22と同一のゲージを取り付けて曲げ試験を実施し た。その結果、オーバーラップ部16cが1枚の場合には、10ピースの全てが 図7に示した破断箇所Xで破断し、オーバーラップ部16cが2枚の場合には、 10ピース中の7個が図7に示した破断箇所Yで破断した。この結果はエアによ る加圧特性測定結果とほぼ一致している。(4) Measurement of Bending Property by Test Piece In order to compare the strength of the interface between the insulating frame member 16c of each collector electrode 7 and the carbon plastic electrode 15, as shown in FIG. A large number of test pieces 7a having a width of 1.5 cm and a length of 15 cm were cut out from the test piece 7a, and the same gauges as the gauges 22 and 22 shown in FIG. 6 were attached to the test pieces 7a to perform a bending test. It was As a result, when the number of the overlapping portions 16c is one, all of the 10 pieces are broken at the breaking point X shown in FIG. 7, and when the number of the overlapping portions 16c is two, seven of the 10 pieces are broken. Was broken at the break point Y shown in FIG. This result almost agrees with the measurement result of the pressurization characteristic by air.

【0039】 (5)テストピースによる繰り返し疲労試験 前記のテストピース7aを利用して、繰り返し試験機によって引張りと圧縮を 該テストピース7aが破断するまで連続して行ったところ、前記オーバーラップ 部16cが1枚の場合には2万回以上の繰り返しに耐えたが、オーバーラップ部 16cが2枚の場合には5000回で破断した。(5) Repeated Fatigue Test Using Test Piece Using the test piece 7a, tension and compression were continuously performed by a repeat tester until the test piece 7a broke, and the overlapping portion 16c In the case of one sheet, the sheet withstood repeated 20,000 times or more, but in the case of two sheets of overlapping portion 16c, the sheet was broken at 5000 times.

【0040】 以上説明した各試験結果から、本実施例にかかる3タイプの集電電極7のうち 、オーバーラップ部16cの枚数は1枚もしくは2枚、厚みに換算すると1.0 〜2.0mmの範囲が適当であり、該オーバーラップ部16cの長さは10〜1 5cmの範囲が適当であることが判明した。From the test results described above, of the three types of current collecting electrodes 7 according to the present embodiment, the number of the overlapping portions 16c is one or two, which is 1.0 to 2.0 mm in terms of thickness. It was found that the range of 10 to 15 cm is suitable, and the length of the overlapping portion 16c is 10 to 15 cm.

【0041】[0041]

【考案の効果】[Effect of device]

以上詳細に説明したように、本考案にかかる集電電極は、シート状の絶縁枠材 の複数枚を積層することによって形成される孔部内にカーボンプラスチック電極 を組み込み、背面側に位置する絶縁枠材の一部分をカーボンプラスチック電極の 表面に沿って進入させたオーバーラップ部を設けて、一体的に熱溶着したことに より、カーボンプラスチック電極と絶縁枠材とが厚み方向で略対称的に配置され ており、それに伴って熱応力に起因する集電電極の「そり」とかクラックの発生 が最小限となり、しかも集電電極の平面性が良好に維持されるため、電池本体か らの液漏れをなくすためにボルトによる締付力を不必要なまでに強力にすること が要求されず、組付性が高められるという効果が得られる。 As described in detail above, the current collecting electrode according to the present invention has the carbon plastic electrode incorporated in the hole formed by laminating a plurality of sheet-shaped insulating frame members, and the insulating frame positioned on the back side is The carbon plastic electrode and the insulating frame material are arranged substantially symmetrically in the thickness direction by providing an overlap part in which a part of the material has entered along the surface of the carbon plastic electrode and integrally heat welding. As a result, the occurrence of “warpage” or cracks in the current collector electrode due to thermal stress is minimized, and the flatness of the current collector electrode is maintained well, which prevents liquid leakage from the battery body. It is not necessary to unnecessarily increase the tightening force of the bolts in order to eliminate it, and the effect that the assemblability is enhanced is obtained.

【0042】 更に前記オーバーラップ部を設けたことによって絶縁枠材とカーボンプラスチ ック電極との溶着界面が集電電極の表裏両方に露出することがなくなり、絶縁枠 材とカーボンブラスチック電極との界面の耐破断性が高められ、しかも耐歪量, 外部圧力に対する耐圧性,曲げ特性及び繰り返し疲労特性の各特性項目をも満足 する集電電極を得ることができる。Further, by providing the overlapping portion, the welding interface between the insulating frame member and the carbon plastic electrode is not exposed on both the front and back of the current collecting electrode, and the insulating frame member and the carbon plastic electrode are not exposed. It is possible to obtain a current-collecting electrode that has improved rupture resistance at the interface and that also satisfies the strain resistance, pressure resistance against external pressure, bending characteristics, and repeated fatigue characteristics.

【0043】 従って本考案によれば、集電電極の熱収縮に起因するそり現象と、このそり現 象に起因する電解液の液洩れ等の特性不良を誘発する原因をなくし、且つ機械的 強度を高めた亜鉛−臭素電池の集電電極を提供するものである。Therefore, according to the present invention, the warpage phenomenon caused by the thermal contraction of the current collecting electrode and the cause of the characteristic failure such as the electrolyte leakage due to the warpage phenomenon are eliminated and the mechanical strength is eliminated. The present invention provides a current collecting electrode for a zinc-bromine battery, which has a high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(A)(B)(C)は本考案の具体的な実
施例を概略的に説明するための要部断面図。
1A, 1B, and 1C are cross-sectional views of a main part for schematically explaining a specific embodiment of the present invention.

【図2】本実施例における「そり」の測定箇所を示す平
面図。
FIG. 2 is a plan view showing measurement points of “sledding” in the present embodiment.

【図3】上記「そり」を測定するゲージの概略側面図。FIG. 3 is a schematic side view of a gauge for measuring the “warpage”.

【図4】図1に示した各実施例のそり量と放置日数の相
関を示すグラフ。
FIG. 4 is a graph showing the correlation between the amount of warpage and the number of days left for each of the examples shown in FIG.

【図5】上記実施例における「そり量」とオーバーラッ
プ部の長さとの相関を示すグラフ。
FIG. 5 is a graph showing the correlation between the “warpage amount” and the length of the overlapping portion in the above embodiment.

【図6】集電電極のエアによる加圧特性測定時のゲージ
の取付位置を示す概要図。
FIG. 6 is a schematic view showing a mounting position of a gauge at the time of measuring a pressurizing characteristic of a collector electrode by air.

【図7】集電電極に対するエア圧力と歪量との相関と、
該集電電極の破断位置とを対照的に示す概要図。
FIG. 7 shows the correlation between the air pressure on the collector electrode and the strain amount,
FIG. 5 is a schematic view showing the breakage position of the current collecting electrode in contrast to FIG.

【図8】本実施例における曲げ強度を測定するテストピ
ースを示す平面図。
FIG. 8 is a plan view showing a test piece for measuring bending strength in this example.

【図9】亜鉛−臭素電池の電池本体を示す要部分解斜視
図。
FIG. 9 is an exploded perspective view of essential parts showing a battery body of a zinc-bromine battery.

【図10】従来の集電電極の構造例を示す平面図。FIG. 10 is a plan view showing a structural example of a conventional collector electrode.

【図11】従来の集電電極の組付構造例を示す要部分解
断面図。
FIG. 11 is an exploded cross-sectional view of a main part showing an example of a conventional assembling structure of a collector electrode.

【符号の説明】[Explanation of symbols]

1…中間電極 1a…電極部 1b…枠体 3…セパレータ 6…集電メッシュ 6a…端子片 7…集電電極 7a…テストピース 8…締付端板 9…積層端板 10…正極マニホールド 11…負極マニホールド 12…チャンネル 13…マイクロチャンネル 15…カーボンプラスチック電極 16b…絶縁枠材 16c…オーバーラップ部 17…孔部 20…定盤 21…ハイドゲージ DESCRIPTION OF SYMBOLS 1 ... Intermediate electrode 1a ... Electrode part 1b ... Frame 3 ... Separator 6 ... Current collecting mesh 6a ... Terminal piece 7 ... Current collecting electrode 7a ... Test piece 8 ... Clamping end plate 9 ... Laminated end plate 10 ... Positive electrode manifold 11 ... Negative electrode manifold 12 ... Channel 13 ... Micro channel 15 ... Carbon plastic electrode 16b ... Insulating frame material 16c ... Overlap part 17 ... Hole part 20 ... Surface plate 21 ... Hide gauge

───────────────────────────────────────────────────── フロントページの続き (72)考案者 安藤 保雄 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)考案者 並木 康晴 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Ando 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Stock Company Inside the Shameidensha (72) Inventor Yasuharu Namiki 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Stock Association Shameidensha

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 矩形平板状の中間電極にセパレータ板を
重ねて単セルを形成し、この単セルを複数個積層して電
池本体を構成するとともに、該電池本体の両端部に、一
対の集電電極と締付端板を配置し、両締付端板間をボル
ト締めすることによって一体的に積層固定するようにし
た亜鉛−臭素電池の集電電極において、 シート状の絶縁枠材の複数枚を積層することによって形
成される孔部内にカーボンプラスチック電極を組み込む
とともに、背面側に位置する絶縁枠材の一部分をカーボ
ンプラスチック電極の表面に沿って進入させたオーバー
ラップ部を設けて、一体的に熱溶着したことを特徴とす
る亜鉛−臭素電池の集電電極。
1. A rectangular flat plate-shaped intermediate electrode is laminated with a separator plate to form a single cell, and a plurality of the single cells are laminated to form a battery main body, and a pair of collectors are provided at both ends of the battery main body. A collector electrode for a zinc-bromine battery, in which a current-carrying electrode and a tightening end plate are arranged, and the two tightening end plates are bolted together so that they are integrally laminated and fixed. The carbon plastic electrode is incorporated in the hole formed by stacking the sheets, and an overlapping part is provided by inserting a part of the insulating frame material located on the back side along the surface of the carbon plastic electrode to provide an integrated structure. A current collecting electrode for a zinc-bromine battery, characterized by being heat-welded to.
【請求項2】 集電電極の背面側に位置する1枚もしく
は2枚のシート状絶縁枠材によって前記オーバーラップ
部を形成した請求項1記載の亜鉛−臭素電池の集電電
極。
2. The current collecting electrode for a zinc-bromine battery according to claim 1, wherein the overlapping portion is formed by one or two sheet-shaped insulating frame members located on the back surface side of the current collecting electrode.
【請求項3】 前記オーバーラップ部の厚みは1.0m
m〜2.0mm、オーバーラップ部の長さは10〜15
cmの範囲にあることを特徴とする請求項1記載の亜鉛
−臭素電池の集電電極。
3. The thickness of the overlap portion is 1.0 m
m-2.0mm, the length of the overlap is 10-15
The current collecting electrode of the zinc-bromine battery according to claim 1, which is in a range of cm.
JP001697U 1993-01-27 1993-01-27 Current collector for zinc-bromine battery Pending JPH0660058U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP001697U JPH0660058U (en) 1993-01-27 1993-01-27 Current collector for zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP001697U JPH0660058U (en) 1993-01-27 1993-01-27 Current collector for zinc-bromine battery

Publications (1)

Publication Number Publication Date
JPH0660058U true JPH0660058U (en) 1994-08-19

Family

ID=11508731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP001697U Pending JPH0660058U (en) 1993-01-27 1993-01-27 Current collector for zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPH0660058U (en)

Similar Documents

Publication Publication Date Title
EP3678208B1 (en) Battery module, battery pack, and vehicle
US9350008B2 (en) Automobile cell and related method
KR102491457B1 (en) battery pack and vehicle
JP3657538B2 (en) Cell stack for redox flow battery
US9123476B2 (en) Tab lead and method of producing the same
KR20130012547A (en) Battery module of improved reliability and battery pack employed with the same
WO2008002024A1 (en) Electrode plate for battery cell and process of preparing the same
KR102630853B1 (en) Pouch-Type Secondary Battery Having Heat Transfer Member
KR20140004635A (en) Electrochemical energy storage device having flat cells and spacing elements
JP2015005488A (en) Planar battery pack and planar battery pack group constituted by combining a plurality of them
JPH0660058U (en) Current collector for zinc-bromine battery
JPH0714617A (en) Current collecting electrode of zinc-bromine battery
JP3225664B2 (en) Current-collecting electrodes for zinc-bromine batteries
JP3141599B2 (en) Current collecting electrode of zinc-bromine battery and method of manufacturing the same
JP3170930B2 (en) Current collecting electrode of zinc-bromine battery and method of manufacturing the same
JPH0615263U (en) Current collector for zinc-bromine battery
JPH0662460U (en) Current collector for zinc-bromine battery
JPH06333611A (en) Current collecting electrode taking-out structure for zinc-bromine battery
JPH0682759U (en) Current collector for zinc-bromine battery
JPH0682757U (en) Current collector for zinc-bromine battery
JP3141540B2 (en) Method of manufacturing current collector electrode for zinc-bromine battery
JPH0680262U (en) Current collector for zinc-bromine battery
CN214706141U (en) Battery pack
CN221201491U (en) Battery cell
JPH0660055U (en) Current collector for zinc-bromine battery