JPH06251808A - Manufacture of zinc-bromine battery - Google Patents

Manufacture of zinc-bromine battery

Info

Publication number
JPH06251808A
JPH06251808A JP5036255A JP3625593A JPH06251808A JP H06251808 A JPH06251808 A JP H06251808A JP 5036255 A JP5036255 A JP 5036255A JP 3625593 A JP3625593 A JP 3625593A JP H06251808 A JPH06251808 A JP H06251808A
Authority
JP
Japan
Prior art keywords
bolts
tightening force
battery
zinc
tightening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5036255A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kawakami
和彦 河上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5036255A priority Critical patent/JPH06251808A/en
Publication of JPH06251808A publication Critical patent/JPH06251808A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To assemble a battery mainframe under almost the best conditions by finding the minimum fastening force on bolts from test pieces and applying necessary face pressure, lib area and disc spring constants as factors thereto. CONSTITUTION:Test pieces which are made up of the same material as separator plates 2 have and test pieces which are made up of the same material as middle electrodes have and arranged between the preceding test pieces are each fastened with fastening bolts. After libs which are protruded on both faces of the center test piece are adhered to the faces of the test pieces on both sides for assembly until they are thrusted and deformed, 1-atmospheric- pressure air is introduced from a pressure source through a valve, a pressure gage and a connection jig inward of the test pieces on both sides and in the meantime its pressure change is checked. The tension of the bolts at the time when no pressure change occurs is measured. Next, during assembling a battery mainframe, the middle electrode and the separator 2 are fastened with the bolts in the way of applying the same tension to the bolts at positions A-H, K-Q.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電解液循環型積層二次電
池、特に電力貯蔵用亜鉛−臭素電池の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrolyte circulating type laminated secondary battery, in particular a zinc-bromine battery for power storage.

【0002】[0002]

【従来の技術】亜鉛−臭素電池は正極活物質に臭素、負
極活物質に亜鉛を用いた2次電池であり、この電池は例
えば電力の昼と夜のアンバランスを解決させるために、
電力需要が少ない夜間に電力を貯蔵して、昼間に放出さ
せるため等に使用される。
2. Description of the Related Art A zinc-bromine battery is a secondary battery that uses bromine as a positive electrode active material and zinc as a negative electrode active material.
It is used to store electricity at night when electricity demand is low and to release it in the daytime.

【0003】充電時に正極電極側で発生した臭素は、電
解液に添加した臭素錯化剤と反応し、オイル状の沈殿物
となって正極側貯蔵槽へ戻され、放電時はポンプで単電
池内へ送り込まれ還元される。電解液の成分はZnBr
2水溶液と、抵抗を下げるためのNH4Cl等の塩と、負
極亜鉛側のデンドライトを防止し、均一な電着を促進さ
せるためのPb,Sn,4級アンモニウム塩類と、臭素
錯化剤とである。正極電極と負極電極の間にはセパレー
タを介挿してあり、正極電極で発生した臭素が負極電極
へ拡散して亜鉛と反応することによる自己放電を防止し
ている。
Bromine generated on the positive electrode side at the time of charging reacts with the bromine complexing agent added to the electrolytic solution to be returned to the positive electrode side storage tank as an oil-like precipitate, and at the time of discharging, it is pumped to the unit cell. It is sent in and returned. The component of the electrolytic solution is ZnBr
2 aqueous solution, a salt such as NH 4 Cl for reducing resistance, Pb, Sn, quaternary ammonium salts for preventing dendrite on the negative electrode zinc side and promoting uniform electrodeposition, and a bromine complexing agent Is. A separator is inserted between the positive electrode and the negative electrode to prevent self-discharge caused by the bromine generated in the positive electrode diffusing into the negative electrode and reacting with zinc.

【0004】この亜鉛−臭素電池は、主に電極をバイポ
ーラ型とし、複数個の単電池(単セル)を電気的に直列
に積層した電池本体と、電解液貯蔵槽と、これらの間に
電解液を循環させるポンプおよび配管系とで構成されて
いる。
In this zinc-bromine battery, the electrodes are mainly of a bipolar type, a battery body in which a plurality of unit cells (unit cells) are electrically stacked in series, an electrolytic solution storage tank, and an electrolytic solution between them. It is composed of a pump and a piping system for circulating the liquid.

【0005】図9は上記亜鉛−臭素電池を構成する電池
本体の一例を示す分解斜視図であり、矩形平板状のバイ
ポーラ型中間電極1の電極部1aの外周に絶縁性の枠体
1bが配置され、同様に矩形平板状のセパレータ板2
は、セパレータ3の外周に枠体2aが形成されている。
そして上記中間電極1にセパレータ板2及び必要に応じ
てパッキン4,スペーサメッシュ5を重ねて単セルを構
成し、この単セルを複数個積層して電池本体が構成され
ている。
FIG. 9 is an exploded perspective view showing an example of a battery main body which constitutes the above zinc-bromine battery, in which an insulating frame 1b is arranged on the outer periphery of an electrode portion 1a of a bipolar flat intermediate electrode 1 having a rectangular flat plate shape. Similarly, a rectangular flat plate-shaped separator plate 2
The frame 2a is formed on the outer periphery of the separator 3.
The separator plate 2 and, if necessary, the packing 4 and the spacer mesh 5 are stacked on the intermediate electrode 1 to form a single cell, and a plurality of the single cells are stacked to form a battery body.

【0006】積層された電池本体の両端部には、集電メ
ッシュ6を有する集電電極7と、一対の締付端板8と、
その内側に位置する押さえ用の積層端板9とが配置され
ている。そして両締付端板8,8間に後述する締付用の
ボルトを通して、このボルトを締め付けることにより、
一体的に積層固定された電池本体が構成される。
A collector electrode 7 having a collector mesh 6 and a pair of tightening end plates 8 are provided at both ends of the stacked battery bodies.
A pressing laminated end plate 9 located inside thereof is arranged. Then, a bolt for tightening, which will be described later, is passed between both the tightening end plates 8 and 8 to tighten the bolt,
A battery main body is integrally laminated and fixed.

【0007】上記のように構成された電池本体の各単セ
ル内には、各中間電極1及びセパレータ板2の枠体2a
の上下2箇所の隅角部に形成した正極マニホールド10
と、負極マニホールド11より、セパレータ板2の枠体
2aに設けられたチャンネル12及びマイクロチャンネ
ル13を介して電解液が夫々流入排出する。
In each unit cell of the battery body constructed as described above, each intermediate electrode 1 and the frame body 2a of the separator plate 2 are provided.
Positive electrode manifold 10 formed in two corners above and below
Then, the electrolytic solution flows in and out from the negative electrode manifold 11 through the channels 12 and the microchannels 13 provided in the frame body 2a of the separator plate 2, respectively.

【0008】上記の亜鉛−臭素電池は、50KW級電池
における電池効率として約80%、総合エネルギー効率
として約70%が確認されている。
The above zinc-bromine battery has been confirmed to have a battery efficiency of about 80% and a total energy efficiency of about 70% in a 50 KW class battery.

【0009】図10は上記亜鉛−臭素電池の作動原理を
説明するための概要図であり、図中の14は正極側貯蔵
槽であって該正極側貯蔵槽14内に正極電解液15と臭
素錯化合物16とが貯蔵されている。17は負極側貯蔵
槽であって該負極側貯蔵槽17内に負極電解液18が貯
蔵されている。そして正極電解液15は正極側ポンプ1
9の駆動に伴って、四方弁20を介して図中の矢印に示
した如く電池本体の正極マニホールド10から単セル内
を流通し、正極側貯蔵槽14に還流する一方、負極電解
液18は負極側ポンプ21の駆動に伴って、電池本体の
負極マニホールド11からセパレータ3に隔てられた単
セル内を流通して負極側貯蔵槽17に還流する。
FIG. 10 is a schematic diagram for explaining the operating principle of the zinc-bromine battery, in which 14 is a positive electrode side storage tank in which the positive electrode electrolyte solution 15 and bromine are stored. Complex compound 16 is stored. Reference numeral 17 denotes a negative electrode side storage tank in which the negative electrode electrolytic solution 18 is stored. The positive electrode electrolyte solution 15 is used as the positive electrode side pump 1.
With the driving of 9, the inside of the single cell flows from the positive electrode manifold 10 of the battery main body through the four-way valve 20 as shown by the arrow in the figure and flows back to the positive electrode side storage tank 14, while the negative electrode electrolytic solution 18 As the negative electrode side pump 21 is driven, it flows through the single cell separated from the negative electrode manifold 11 of the battery body to the separator 3 and returns to the negative electrode side storage tank 17.

【0010】図11は前記各構成部品を組み付けた電池
本体のモジュール構造を示すものであって、一つのサブ
モジュールは直列に積層された30個のセルC1もしく
はC2,C3を1単位としており、図示例では該サブモジ
ュールが合計3単位,即ち90セルを基本としている。
尚、22は両締付端板8,8間に挿通された締付用のボ
ルト、23は皿ばねを示している。この皿ばね23は、
ボルト22を用いて両締付端板8,8間を締め付けた際
の界面に集中する応力によって構成部材にクラック等が
生じることを防止する機能と、外気温の変化とか充放電
時の発熱によって構成材の膨張,収縮に起因する破壊を
防止する機能とを有していて、且つ構成材に及ぼされる
荷重変化を最小限にする作用がある。
FIG. 11 shows a module structure of a battery main body in which the above-mentioned components are assembled. One sub-module comprises 30 cells C 1 or C 2 , C 3 stacked in series as one unit. In the illustrated example, the sub-module is based on a total of 3 units, that is, 90 cells.
Incidentally, 22 is a tightening bolt inserted between both tightening end plates 8 and 23 is a disc spring. This disc spring 23
The function of preventing cracks and the like from being generated in the components due to the stress concentrated at the interface when tightening between the tightening end plates 8 using the bolts 22 and the change in the outside temperature or the heat generated during charging / discharging. It has a function of preventing breakage due to expansion and contraction of the constituent material, and has an action of minimizing a load change exerted on the constituent material.

【0011】通常上記の締付端板8は、繊維強化プラス
チック樹脂(FRP)が採用され、中間電極1の枠体1
bは塩化ビニル樹脂(PVC)が、セパレータ板2には
比較的硬いポリエチレン樹脂が採用されている。図12
に示す24はマニホールド用の穴である。
Usually, the tightening end plate 8 is made of fiber reinforced plastic resin (FRP), and the frame body 1 of the intermediate electrode 1 is used.
A vinyl chloride resin (PVC) is used for b, and a relatively hard polyethylene resin is used for the separator plate 2. 12
Reference numeral 24 denotes a hole for the manifold.

【0012】上記電池本体のモジュールを製造する際に
は、上記の各プラスチックを主体とする構成材を積層し
た後、20トン程度のプレスと温水循環工程を複数回繰
り返し、ボルト22を用いた締付けた後にエアを用いた
シールテストを行う方法が実施されている。全工程にか
かる日数は約8日/台となっている。
In manufacturing the module of the battery main body, after stacking the above-mentioned constituent materials mainly composed of plastics, a press of about 20 tons and a hot water circulating step are repeated a plurality of times, and a bolt 22 is used for tightening. After that, a method of performing a seal test using air is implemented. The number of days required for all processes is about 8 days / vehicle.

【0013】図13は前記セパレータ板2の具体的な構
成を示しており、同図のA−A線に沿う断面図である図
14に示したように、正極マニホールド10に連なるチ
ャンネル12の両側にはリブ25,25が突設されてお
り、このリブ25,25によって電解液の流路が画成さ
れている。
FIG. 13 shows a specific structure of the separator plate 2. As shown in FIG. 14 which is a sectional view taken along the line AA in FIG. 13, both sides of the channel 12 connected to the positive electrode manifold 10 are shown. Ribs 25, 25 project from the ribs 25, 25, and the ribs 25, 25 define the flow path of the electrolytic solution.

【0014】[0014]

【発明が解決しようとする課題】しかしながら上記亜鉛
−臭素電池を製造する際に、ボルト22の最低締付力
と、温度変化に伴って生じるクリープに対処するために
行う該ボルト22の最終締付力の大きさ等に関して明確
な指標が設定されていないため、シール性が経時的に劣
化してしまうことがあるという課題があった。
However, in manufacturing the above zinc-bromine battery, the minimum tightening force of the bolt 22 and the final tightening of the bolt 22 for coping with the creep caused by the temperature change. There is a problem that the sealability may deteriorate with time because no clear index is set regarding the magnitude of force and the like.

【0015】これを具体的に述べると、図14に示した
ようにチャンネル12の両側に突設されたリブ25によ
って電解液の流路が画成されているが、ボルトの締付力
に及ぼすリブの面積の影響がどのようなものであるか不
明であり、該リブの最低面圧がどの程度であれば良いか
という基準は確定されていない。従って現在実施してい
る製造工程及び締付圧力等の条件が最良であるか否かが
はっきりしておらず、これらの条件を経験的に決定して
いるのが現状であり、例えば締付力過剰によるクラック
の発生とか、経時的な劣化に伴う電解液の漏れが生じる
ことがあるという問題点がある。
More specifically, as shown in FIG. 14, ribs 25 projecting from both sides of the channel 12 define the flow path of the electrolytic solution, which affects the tightening force of the bolt. It is not clear what the effect of the rib area is, and the criteria for what the minimum surface pressure of the rib should be have not been established. Therefore, it is not clear whether the conditions such as the manufacturing process and tightening pressure that are currently being implemented are the best, and it is the current situation that these conditions are empirically determined. There are problems that cracks may occur due to excess and electrolyte may leak due to deterioration over time.

【0016】更に電池本体のモジュールを製造する際
に、各構成材を積層した後にプレス工程を実施している
が、このプレス工程はプレス機1機で1台の電池本体を
処理しなければならないため、全工程にかかる日数が長
くなり、生産効率を上げることが困難であるという難点
をも有している。
Further, when manufacturing the module of the battery main body, the pressing step is carried out after laminating the respective constituent materials. In this pressing step, one battery main body must be processed by one pressing machine. Therefore, the number of days required for all the processes is long, and it is difficult to improve the production efficiency.

【0017】本発明は上記の点に鑑みてなされたもので
あり、最良の製造工程及び条件を決定して、製造時にお
ける明確な指標を提供することを目的とするものであ
る。
The present invention has been made in view of the above points, and an object thereof is to determine the best manufacturing process and conditions and to provide a clear index at the time of manufacturing.

【0018】[0018]

【課題を解決するための手段】本発明は上記目的を達成
するために、リブが突設されたセパレータ板と中間電極
とを重ねて単セルとし、この単セルを複数個積層して電
池本体を構成するとともに、該電池本体の両端部に集電
メッシュを有する集電電極と、押え用の積層端板及び一
対の締付端板とを配置して、両締付端板間を皿ばねの介
在下でボルト締めすることによって一体的に積層固定す
るようにした亜鉛−臭素電池において、電池本体の構成
部材である前記セパレータ板と中間電極を積層して、予
め前記セパレータ板及び中間電極と同一の構成材を用い
た実験片によってボルトの最低締付力を求めて、この最
低締付力に、周囲の熱変化によって生じる構成材のクリ
ープ量と、該クリープを短時間で飽和させるに必要な面
圧と、セパレータ板に突設されたリブの面積と、皿ばね
定数と締付用のボルトの本数を因子として加えて演算に
より最終締付力を決定し、対角で各複数本のボルトを均
等に締め付けることを基本手段とする亜鉛−臭素電池の
製造方法を提供する。
In order to achieve the above object, the present invention provides a battery main body in which a separator plate having ribs and an intermediate electrode are stacked to form a single cell, and a plurality of the single cells are stacked. And a stacking end plate for holding and a pair of tightening end plates are arranged, and a disc spring is provided between both tightening end plates. In a zinc-bromine battery that is integrally laminated and fixed by bolting under the interposition of, the separator plate and the intermediate electrode, which are constituent members of the battery main body, are stacked, and the separator plate and the intermediate electrode are previously formed. The minimum tightening force of the bolt is obtained by the test piece using the same constituent material, and this minimum tightening force is necessary to saturate the creep amount of the constituent material caused by the ambient heat change and the creep in a short time. Surface pressure and separator The final tightening force can be determined by adding the area of the ribs protruding from the plate, the disc spring constant and the number of tightening bolts as factors, and tightening the bolts evenly diagonally. A method for manufacturing a zinc-bromine battery as a basic means is provided.

【0019】前記最低締付力Uは U=(1気圧のエア圧力)×(電極面積+流路面積) +(リブ面積)×(最低面圧)・・・・・・・・・・・・・・・・・・・・・・・(1) 式によって算出し、前記最終締付力Wは W=(構成材のクリープを飽和させるために必要な面圧) ×(リブ面積)+(クリープ量)×(皿ばね定数) ×(ばねの本数)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2) 式によって算出する。The minimum tightening force U is U = (air pressure of 1 atm) × (electrode area + flow channel area) + (rib area) × (minimum surface pressure) ... ........................ Calculated by the formula (1), and the final tightening force W is W = (surface pressure required to saturate the creep of the constituent material) x (rib area) + (Creep amount) × (Disc spring constant) × (Number of springs) ... .. Calculated by the formula (2).

【0020】又、1本のボルトの締付力を、(最終締付
力/ボルト本数)を越えないようにして締め付け、最後
にすべてのボルトの張力が上記(最終締付力/ボルト本
数)になるように皿ばねの縮み量を調整するようにして
いる。
Further, the tightening force of one bolt is tightened so as not to exceed (final tightening force / number of bolts), and finally the tension of all bolts is the above (final tightening force / number of bolts). The amount of contraction of the disc spring is adjusted so that

【0021】更に本発明では、複数本のボルトを均等に
締め付けた後、すべてのボルトの張力が上記(最終締付
力/ボルト本数)になるように皿ばねの縮み量を調整
し、電池本体内に温水を循環した後に冷却し、水を抜い
てから低下しているボルトを再度締め付けてすべてのボ
ルトの締付力を調整するようにした製造方法を提供す
る。この温水循環後の水を抜いてからのボルトの締付力
W′は W′=(最低締付力)+(皿ばね定数)×(熱膨張収縮量) ×(ボルト本数)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(3) 式によって算出する。
Further, in the present invention, after uniformly tightening a plurality of bolts, the contraction amount of the disc spring is adjusted so that the tension of all the bolts becomes the above (final tightening force / the number of bolts), and the battery main body is adjusted. (EN) Provided is a manufacturing method in which hot water is circulated therein, followed by cooling, draining water, and then re-tightening lowered bolts to adjust the tightening force of all the bolts. The tightening force W'of the bolt after draining water after this hot water circulation is W '= (minimum tightening force) + (disc spring constant) x (thermal expansion and contraction amount) x (number of bolts) ...・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (3) Calculate using the formula.

【0022】[0022]

【作用】かかる亜鉛−臭素電池の製造方法によれば、ボ
ルトの最低締付力Uが明確な指標として与えられるとと
もに温度変化に伴って生じるクリープ量とかリブ面積,
皿ばね定数を因子として演算によって得られた最終締付
力Wを用いて、最良に近い条件下でボルトの締付作業を
実施することが可能となる。そして得られた電池本体の
シール性が経時的に劣化せず、電解液の漏れをなくすと
ともにボルトの過剰な締付力に起因する構成材のクラッ
クとか歪みの発生が防止される。
According to such a method for manufacturing a zinc-bromine battery, the minimum tightening force U of the bolt is given as a clear index, and the amount of creep or rib area generated with temperature change,
By using the final tightening force W obtained by calculation using the disc spring constant as a factor, it becomes possible to carry out the tightening work of the bolt under the conditions close to the best. Then, the sealing property of the obtained battery body does not deteriorate with time, leakage of the electrolytic solution is eliminated, and cracks or strains of the constituent materials due to excessive tightening force of the bolts are prevented.

【0023】更にボルトの締付に伴う負担が軽減された
ことにより、中間電極とかセパレータ板等の構成材の厚
みを減少することが可能となり、電池特性の向上とコス
トの低廉化がはかれるという作用をもたらす。
Since the burden of tightening the bolts is further reduced, the thickness of the components such as the intermediate electrode and the separator plate can be reduced, and the battery characteristics can be improved and the cost can be reduced. Bring

【0024】[0024]

【実施例】以下図面を参照しながら本発明にかかる亜鉛
−臭素電池の製造方法の一実施例を、前記従来の構成部
分と同一の構成部分に同一の符号を付して詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for manufacturing a zinc-bromine battery according to the present invention will be described below in detail with reference to the accompanying drawings, in which the same components as those of the conventional components are designated by the same reference numerals.

【0025】図7,図8は本発明の予備実験を行うため
の装置例であって、前記各構成材をボルトを用いて締付
けた後のエアを用いたシールテストに耐えるための最低
面圧を測定するための装置構成を示している。即ち、前
記セパレータ板2と同一の材料で構成した試験片30
と、前記中間電極1と同一の材料で構成した試験片3
1,31を用意して、試験片30を試験片31,31の
間に配置してから複数本の締付用ボルト22,22によ
り各試験片を締め付け、試験片30の両面に突設したリ
ブ32,32を試験片31の面に対して押圧変形するま
で密着させて組み付けた後、図外の圧力源からバルブ2
7,圧力ゲージ28,接続治具29を介して1気圧のエ
アを試験片31の内方に導入し、100時間放置した後
の圧力変化をチェックした。
FIGS. 7 and 8 show an example of an apparatus for carrying out a preliminary experiment of the present invention, which is a minimum surface pressure for withstanding the seal test using air after tightening each of the constituent materials with bolts. 2 shows a device configuration for measuring That is, the test piece 30 made of the same material as the separator plate 2
And a test piece 3 made of the same material as the intermediate electrode 1.
1, 31 were prepared, the test piece 30 was arranged between the test pieces 31, 31, and then each test piece was tightened by a plurality of tightening bolts 22, 22 to project on both sides of the test piece 30. After assembling the ribs 32 and 32 so that they are pressed against the surface of the test piece 31 until they are deformed, the ribs 32 and 32 are attached from the pressure source (not shown) to the valve 2
Air of 1 atm was introduced into the inside of the test piece 31 through the pressure gauge 28, the connection jig 29, and the pressure change after leaving it for 100 hours was checked.

【0026】そして気圧の変化が見られない時のボルト
22の張力を歪ゲージを用いて測定し、この張力と同一
の張力をかけた場合のリブ32,32の面圧を感圧紙を
用いて測定した。
Then, the tension of the bolt 22 when no change in atmospheric pressure is observed is measured using a strain gauge, and the surface pressure of the ribs 32, 32 when the same tension as this tension is applied is measured using pressure sensitive paper. It was measured.

【0027】上記面圧測定の結果から、最低面圧は10
kgf/cm2であれば十分であることが判明した。こ
れよりボルト22,22による最低締付力Uは次式で計
算することが出来る。
From the above surface pressure measurement results, the minimum surface pressure is 10
It has been found that kgf / cm 2 is sufficient. From this, the minimum tightening force U by the bolts 22 and 22 can be calculated by the following formula.

【0028】 U=1kgf/cm2(1気圧のエア圧力)×(電極面積+流路面積) +リブ面積×10kgf/cm2(最低面圧)・・・・・・・・・・・・・・・(1) 実際の電池における電極面積は1700cm2,リブ面
積は120cm2,流路面積は400cm2である。これ
を(1)式に代入して演算すると、最低締付力Uは3.
3tonとなる。これを実現するためには、リブ全体で
面圧が均一であることが必要である。
U = 1 kgf / cm 2 (1 atm air pressure) × (electrode area + flow path area) + rib area × 10 kgf / cm 2 (minimum surface pressure) ... (1) the electrode area 1700 cm 2 in the actual battery, the rib area of 120 cm 2, the flow channel area is 400 cm 2. Substituting this into equation (1) and calculating, the minimum tightening force U is 3.
It will be 3 tons. In order to realize this, it is necessary that the surface pressure is uniform over the ribs.

【0029】次に図1に示すように、電池本体の組付け
に際して、図外の中間電極とセパレータ板2とをA〜
H,K〜Qに示した部位での各ボルトの張力が同一であ
るように複数本のボルトを用いて締め付け、感圧紙を用
いて同部位の面圧(kgf/cm2)を測定したとこ
ろ、図2に示すようにセパレータ板2のA〜H,K〜Q
までの部位での面圧は略均一であることが判明した。
Next, as shown in FIG. 1, when assembling the battery main body, the intermediate electrode (not shown) and the separator plate 2 are separated by A to A.
When tightening with multiple bolts so that the tension of each bolt at the parts shown in H, K to Q is the same, and measuring the surface pressure (kgf / cm 2 ) of the same part using pressure sensitive paper , A to H, K to Q of the separator plate 2 as shown in FIG.
It was found that the surface pressure at the parts up to was almost uniform.

【0030】図3は上記の組付けが終了した電池本体の
シール試験を実施した結果を示すものであって、スター
ト時に1気圧のエアが100時間経過後に保持している
圧力(気圧)を、締付力(ton)との相関でプロット
したグラフであり、図中のラインSは最低締付力を示し
ている。このラインSによる最低締付力は、前記の式
(1)により演算した最低締付力U(3.3ton)と
良く一致している。尚、実験時にはこの最低締付力Uを
2.9tonにしても電解液の漏れは生じなかった。
FIG. 3 shows the results of the seal test of the battery body after the above-mentioned assembly is completed. The pressure (atmospheric pressure) of 1 atm of air held at the start after 100 hours has passed, It is a graph plotted in correlation with the tightening force (ton), and a line S in the drawing shows the minimum tightening force. The minimum tightening force by this line S is in good agreement with the minimum tightening force U (3.3 ton) calculated by the above equation (1). In the experiment, even if the minimum tightening force U was 2.9 ton, no electrolyte leakage occurred.

【0031】他方において、亜鉛−臭素電池の温度は外
気温度とか充放電時の発熱によって30℃〜40℃にま
で上昇し、この温度の影響によってプラスチックを主体
とする構成材の積層部分がクリープ現象によって縮小
し、前記皿ばね23が伸びてボルト22の締付力が弱く
なり、電解液のシール性が低下する惧れが生じる。
On the other hand, the temperature of the zinc-bromine battery rises to 30 to 40 ° C. due to the outside air temperature or the heat generated during charging / discharging, and due to the influence of this temperature, the laminated portion of the constituent material mainly made of plastic creeps. As a result, the disc spring 23 expands, the tightening force of the bolt 22 weakens, and the sealing performance of the electrolytic solution may deteriorate.

【0032】このような使用時におけるクリープ現象を
なくすため、製造時の温度と面圧を上げて、逆に製造過
程で構成材のクリープ現象を完全に行わせてしまえば、
この後のクリープに起因する経時的なシール性の低下を
防止することができる。
In order to eliminate the creep phenomenon at the time of use, if the temperature and the surface pressure at the time of manufacturing are raised, and conversely, the creep phenomenon of the constituent materials is completely performed in the manufacturing process,
It is possible to prevent the deterioration of the sealing property with time due to the subsequent creep.

【0033】そこで前記セパレータ板2のクリープ特性
を測定したところ、図4に示したように40℃で面圧3
0kgf/cm2以上であれば略15時間でクリープ量
が飽和することが判明した。この時のクリープ量は30
セル当たりで約3mmであった。又、中間電極1の枠材
は、初期の小さな変化が生じるのみで経時的な変化が見
られなかった。
Then, the creep characteristics of the separator plate 2 were measured, and as shown in FIG.
It was found that the creep amount was saturated in about 15 hours if the pressure was 0 kgf / cm 2 or more. The creep amount at this time is 30
It was about 3 mm per cell. Further, the frame material of the intermediate electrode 1 showed only a small initial change and no change with time.

【0034】図5は温水循環後の中間電極1とセパレー
タ板2の界面部分の拡大断面図であり、リブ25の形状
が大きく変化して中間電極1とのシール面積が約3倍に
増加していることが確認された。このリブ25のシール
面積の増加による効果は大きく、締付力が温水循環の前
後で同一である場合に面圧が1/3になってもシール性
は良好であり、図6に示すように初期放置時間を除いて
エアの保持圧力は略直線状であることが分かった。
FIG. 5 is an enlarged cross-sectional view of the interface portion between the intermediate electrode 1 and the separator plate 2 after circulating hot water. The shape of the rib 25 is greatly changed and the sealing area with the intermediate electrode 1 is increased about three times. Was confirmed. The effect of increasing the sealing area of the rib 25 is great, and when the tightening force is the same before and after the hot water circulation, the sealing property is good even if the surface pressure becomes 1/3, as shown in FIG. It was found that the air holding pressure was substantially linear except for the initial standing time.

【0035】又、温度変化に対するセパレータ板2の熱
膨張に関して述べると、20℃の温度変化で90セル当
たり約5mmであり、これは製造時には0〜40℃の変
化で20℃の時よりも±5mm変位するのに比べて変位
量は少なくなっている。
Further, regarding the thermal expansion of the separator plate 2 with respect to the temperature change, about 90 mm is about 5 mm at a temperature change of 20 ° C., and this is a change of 0 to 40 ° C. at the time of manufacturing, which is ±±. The displacement amount is smaller than the displacement of 5 mm.

【0036】以上の結果から最も適当と思われる製造方
法を以下に述べる。尚、電池本体のセル数とか皿ばね定
数等が変わっても基本的な条件は同一である。
The most suitable manufacturing method based on the above results will be described below. The basic conditions are the same even if the number of cells in the battery body, the disc spring constant, and the like change.

【0037】(1)電池本体は90セルとし、各構成材
を積層して皿ばねをセットする。
(1) The battery body has 90 cells, and the respective constituent materials are laminated to set a disc spring.

【0038】(2)前記ボルト22を用いて締付端板間
の最終締付力をWを W=30(kgf/cm2)×120(cm2,リブ面積) +9mm(クリープ量)×12.8(kgf/mm,皿ばね定数) ×18(ばねの本数)=5.7ton・・・・・・・・・・・・・・・・・・(2) とする。ここで30(kgf/cm2)はクリープを短
時間で飽和させるために必要とする面圧である。
(2) The final tightening force between the tightening end plates using the bolt 22 is W = 30 (kgf / cm 2 ) × 120 (cm 2 , rib area) +9 mm (creep amount) × 12 .8 (kgf / mm, disc spring constant) × 18 (number of springs) = 5.7 ton ... (2) Here, 30 (kgf / cm 2 ) is the surface pressure required to saturate the creep in a short time.

【0039】(3)次に1本のボルトの締付力が5.7
ton/18の力を越えないようにして対角で各ボルト
22を締め付け、最後にすべてのボルト22の張力が上
記5.7ton/18になるように皿ばね23の縮み量
を調整する。
(3) Next, the tightening force of one bolt is 5.7.
The bolts 22 are diagonally tightened so as not to exceed the force of ton / 18, and finally the contraction amount of the disc spring 23 is adjusted so that the tension of all the bolts 22 becomes the above-mentioned 5.7 ton / 18.

【0040】(4)40℃の温水を電池本体内に20時
間循環させ、その後冷却する。
(4) Hot water at 40 ° C. is circulated in the battery body for 20 hours and then cooled.

【0041】(5)水を抜いてから低下しているボルト
22の再度の締付力W′を次式に基づいて調整する。
(5) The re-tightening force W'of the bolt 22 which has decreased after draining water is adjusted based on the following equation.

【0042】 W′=3.3(ton)+12.8(kgf/mm,皿ばね定数) ×5(mm)×18=4.5ton・・・・・・・・・・・・・・・・・・・(3) ここで3.3(ton)は前記(1)式で求めた最低締
付力、5(mm)は温度20℃での変位量である。尚、
使用する皿ばね23は、(3)式による4.5tonで
締め付けられた所から熱膨張分の5mmのストロークだ
け余裕を持たせることが必要である。
W ′ = 3.3 (ton) +12.8 (kgf / mm, disc spring constant) × 5 (mm) × 18 = 4.5 ton ··· (3) Here, 3.3 (ton) is the minimum tightening force obtained by the above equation (1), and 5 (mm) is the displacement amount at a temperature of 20 ° C. still,
The disc spring 23 to be used needs to have a margin of 5 mm for the thermal expansion from the place where it is tightened at 4.5 ton according to the formula (3).

【0043】(6)エアを用いたシール試験(1気圧,
10時間)を実施する。
(6) Seal test using air (1 atm,
10 hours).

【0044】以上説明した(1)〜(6)までの工程を
実施することにより、得られた電池本体に図6に示すシ
ール特性を持たせることが可能となる。そしてその後の
温水循環によってもユニット厚みのクリープによる変化
がほとんど見られず、電池の連続運転後もシール特性を
良好な状態に維持することが可能となる。
By carrying out the steps (1) to (6) described above, it becomes possible to give the obtained battery body the sealing characteristics shown in FIG. Then, even after the hot water circulation thereafter, there is almost no change in the unit thickness due to the creep, and it becomes possible to maintain the good sealing property even after the continuous operation of the battery.

【0045】[0045]

【発明の効果】以上詳細に説明した本発明にかかる亜鉛
−臭素電池の製造方法によれば、以下に記す作用効果が
得られる。即ち、締付用のボルトの最低締付力が明確な
指標として与えられ、更に温度変化に伴って生じるクリ
ープ量を飽和させるのに必要な面圧とかリブ面積,皿ば
ね定数を因子として加えたことにより、演算によって得
られた最終締付力を用いてボルトの締付作業を実施する
ことが可能となり、最良に近い条件下で電池本体の組み
付けを行うことができる。
According to the method for manufacturing a zinc-bromine battery according to the present invention described in detail above, the following operational effects can be obtained. That is, the minimum tightening force of the tightening bolt was given as a clear index, and the surface pressure, rib area, and disc spring constant necessary to saturate the amount of creep generated with temperature change were added as factors. As a result, the bolt tightening work can be performed using the final tightening force obtained by the calculation, and the battery main body can be assembled under the conditions close to the best.

【0046】本発明を適用して得られた電池本体のシー
ル性は経時的に劣化することがなく、電解液の漏れ等を
なくすとともに、締付力が過剰になることがないので、
電極の界面とか積層端板への負担が最小となり、構成材
におけるクラックとか歪み等の発生を防止して、製品寿
命を延ばすことが可能となる。
The sealability of the battery body obtained by applying the present invention does not deteriorate with time, the leakage of the electrolytic solution is eliminated, and the tightening force does not become excessive.
The load on the interface between the electrodes and the laminated end plate is minimized, and the occurrence of cracks or distortions in the constituent materials can be prevented and the product life can be extended.

【0047】又、上記した負担の軽減に伴って中間電極
とかセパレータ板等の構成材の厚みを減少することがで
きるので、電池特性の向上とともにコストの低廉化にも
寄与する効果が得られる。
Further, since the thickness of the components such as the intermediate electrode and the separator plate can be reduced along with the reduction of the above-mentioned burden, the effect of improving the battery characteristics and reducing the cost can be obtained.

【0048】更に電池本体のモジュールを製造する際に
プレス工程を実施する必要がないので、全工程にかかる
日数を短縮して生産効率を上げることが出来る。
Furthermore, since it is not necessary to carry out the pressing process when manufacturing the module of the battery main body, the number of days required for all the processes can be shortened and the production efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる亜鉛−臭素電池の製造方法を適
用したセパレータ板の構成及びボルトの締付箇所を示す
平面図。
FIG. 1 is a plan view showing a configuration of a separator plate and a bolt tightening portion to which a method for manufacturing a zinc-bromine battery according to the present invention is applied.

【図2】図1のセパレータ板のA〜H,K〜Qまでの部
位での面圧測定結果を示すグラフ。
FIG. 2 is a graph showing the results of surface pressure measurement at the portions A to H and K to Q of the separator plate of FIG.

【図3】電池本体のシール試験を実施した結果を示す。FIG. 3 shows the results of conducting a seal test on a battery body.

【図4】セパレータのクリープ量と時間との相関を示す
グラフ。
FIG. 4 is a graph showing the correlation between the creep amount of a separator and time.

【図5】温水循環後の中間電極とセパレータ板の界面部
分の拡大断面図。
FIG. 5 is an enlarged cross-sectional view of an interface portion between an intermediate electrode and a separator plate after circulating hot water.

【図6】電池本体に対するエアの保持圧力と放置時間と
の相関を示すグラフ。
FIG. 6 is a graph showing the correlation between the holding pressure of air on the battery body and the standing time.

【図7】本発明の予備実験を行うための装置例を示す平
面図。
FIG. 7 is a plan view showing an example of an apparatus for conducting a preliminary experiment of the present invention.

【図8】図7の側断面図。8 is a side sectional view of FIG.

【図9】亜鉛−臭素電池本体の構成を示す分解斜視図。FIG. 9 is an exploded perspective view showing the structure of a zinc-bromine battery body.

【図10】亜鉛−臭素電池の動作原理を示す概要図。FIG. 10 is a schematic diagram showing the operating principle of a zinc-bromine battery.

【図11】各構成部品を組み付けた電池本体のモジュー
ル構造を示す概要図。
FIG. 11 is a schematic diagram showing a module structure of a battery main body in which each component is assembled.

【図12】図11の左側面図。FIG. 12 is a left side view of FIG.

【図13】セパレータ板の構成を示す平面図。FIG. 13 is a plan view showing the configuration of a separator plate.

【図14】図13のA−A線に沿う断面図。14 is a sectional view taken along the line AA of FIG.

【符号の説明】[Explanation of symbols]

1…中間電極 2…セパレータ板 3…セパレータ 8…締付端板 9…積層端板 10…正極マニホールド 11…負極マニホールド 12…チャンネル 13…マイクロチャンネル 14…正極側貯蔵槽 17…負極側貯蔵槽 19…正極側ポンプ 21…負極側ポンプ 22…ボルト 23…皿ばね 25…リブ 27…バルブ 28…圧力ゲージ 29…接続治具 30,31…試験片 DESCRIPTION OF SYMBOLS 1 ... Intermediate electrode 2 ... Separator plate 3 ... Separator 8 ... Clamping end plate 9 ... Laminated end plate 10 ... Positive electrode manifold 11 ... Negative electrode manifold 12 ... Channel 13 ... Micro channel 14 ... Positive electrode side storage tank 17 ... Negative side storage tank 19 ... Positive side pump 21 ... Negative side pump 22 ... Bolt 23 ... Disc spring 25 ... Rib 27 ... Valve 28 ... Pressure gauge 29 ... Connection jig 30, 31 ... Test piece

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リブが突設されたセパレータ板と中間電
極とを重ねて単セルとし、この単セルを複数個積層して
電池本体を構成するとともに、該電池本体の両端部に集
電メッシュを有する集電電極と、押え用の積層端板及び
一対の締付端板とを配置して、両締付端板間を皿ばねの
介在下でボルト締めすることによって一体的に積層固定
するようにした亜鉛−臭素電池において、 電池本体の構成部材である前記セパレータ板と中間電極
を積層して、予め前記セパレータ板及び中間電極と同一
の構成材を用いた実験片によってボルトの最低締付力を
求めて、この最低締付力に、周囲の熱変化によって生じ
る構成材のクリープ量と、該クリープを短時間で飽和さ
せるに必要な面圧と、セパレータ板に突設されたリブの
面積と、皿ばね定数と締付用のボルトの本数を因子とし
て加えて演算により最終締付力を決定し、対角で各複数
本のボルトを均等に締め付けるようにしたことを特徴と
する亜鉛−臭素電池の製造方法。
1. A separator plate having ribs provided thereon and an intermediate electrode are stacked to form a single cell, and a plurality of the single cells are laminated to form a battery main body, and a current collecting mesh is provided at both ends of the battery main body. A current collecting electrode having the above, a laminated end plate for pressing and a pair of clamping end plates are arranged, and the clamping end plates are integrally laminated and fixed by bolting with a disc spring interposed. In such a zinc-bromine battery, the separator plate, which is a constituent member of the battery main body, and the intermediate electrode are laminated, and the minimum tightening of the bolt is preliminarily performed by an experimental piece using the same constituent material as the separator plate and the intermediate electrode. The force is calculated, and to this minimum tightening force, the creep amount of the constituent material caused by the ambient heat change, the surface pressure required to saturate the creep in a short time, and the area of the rib projecting on the separator plate And the disc spring constant and tightening In addition the number of belt as a factor to determine the final fastening force by calculation, zinc, characterized in that as tightening the bolts of each plurality of evenly diagonally - method for producing bromine battery.
【請求項2】 前記最低締付力Uは U=(1気圧のエア圧力)×(電極面積+流路面積) +(リブ面積)×(最低面圧)・・・・・・・・・・・・・・・・・・・・・・・(1) 式によって算出することを特徴とする、請求項1記載の
亜鉛−臭素電池の製造方法。
2. The minimum tightening force U is U = (air pressure of 1 atm) × (electrode area + flow channel area) + (rib area) × (minimum surface pressure) ... The method for manufacturing a zinc-bromine battery according to claim 1, wherein the method is calculated by the formula (1).
【請求項3】 前記最終締付力Wは W=(構成材のクリープを飽和させるために必要な面圧) ×(リブ面積)+(クリープ量)×(皿ばね定数) ×(ばねの本数)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2) 式によって算出することを特徴とする、請求項1記載の
亜鉛−臭素電池の製造方法。
3. The final tightening force W is W = (surface pressure required to saturate the creep of constituent materials) × (rib area) + (creep amount) × (disc spring constant) × (number of springs) ) .................... characterized by being calculated by the equation (2), The method for producing a zinc-bromine battery according to claim 1.
【請求項4】 1本のボルトの締付力を、(最終締付力
/ボルト本数)を越えないようにして締め付け、最後に
すべてのボルトの張力が上記(最終締付力/ボルト本
数)になるように皿ばねの縮み量を調整するようにした
ことを特徴とする、請求項1,2,3記載の亜鉛−臭素
電池の製造方法。
4. The tightening force of one bolt is tightened so as not to exceed (final tightening force / number of bolts), and finally the tension of all bolts is the above (final tightening force / number of bolts). The method for manufacturing a zinc-bromine battery according to claim 1, 2, or 3, wherein the amount of contraction of the disc spring is adjusted so that
【請求項5】 電池本体の構成部材であるセパレータ板
と中間電極を積層して、予め前記セパレータ板及び中間
電極と同一の構成材を用いた実験片によってボルトの最
低締付力を求めて、この最低締付力に、周囲の熱変化に
よって生じる構成材のクリープ量と、該クリープを短時
間で飽和させるに必要な面圧と、セパレータ板に突設さ
れたリブの面積と、皿ばね定数と締付用のボルトの本数
を因子として加えて演算により最終締付力を決定し、対
角で各複数本のボルトを均等に締め付けた後、すべての
ボルトの張力が上記(最終締付力/ボルト本数)になる
ように皿ばねの縮み量を調整し、電池本体内に温水を循
環した後に冷却し、水を抜いてから低下しているボルト
を再度締め付けてすべてのボルトの締付力を調整するよ
うにしたことを特徴とする亜鉛−臭素電池の製造方法。
5. A separator plate, which is a constituent member of a battery main body, and an intermediate electrode are laminated, and a minimum tightening force of a bolt is obtained in advance by an experimental piece using the same constituent material as the separator plate and the intermediate electrode. In addition to this minimum tightening force, the amount of creep of the constituent materials caused by ambient heat change, the surface pressure required to saturate the creep in a short time, the area of ribs protruding on the separator plate, and the disc spring constant. And the number of bolts for tightening are added as factors to determine the final tightening force by calculation, and after tightening each bolt evenly diagonally, the tension of all bolts is the above (final tightening force / Volume of bolts), adjust the amount of contraction of the disc spring, circulate hot water in the battery body, then cool it. After draining the water, re-tighten the lowered bolts and tighten all bolts. Is characterized by adjusting And a method for manufacturing a zinc-bromine battery.
【請求項6】 上記温水循環後の水を抜いてからのボル
トの締付力W′を W′=(最低締付力)+(皿ばね定数)×(熱膨張収縮量) ×(ボルト本数)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(3) 式によって算出することを特徴とする、請求項5記載の
亜鉛−臭素電池の製造方法。
6. The tightening force W ′ of the bolt after draining water after the hot water circulation is W ′ = (minimum tightening force) + (disc spring constant) × (thermal expansion / contraction amount) × (number of bolts ) ··············· (3) formula, characterized in that A method for producing the zinc-bromine battery described.
JP5036255A 1993-02-25 1993-02-25 Manufacture of zinc-bromine battery Pending JPH06251808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5036255A JPH06251808A (en) 1993-02-25 1993-02-25 Manufacture of zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5036255A JPH06251808A (en) 1993-02-25 1993-02-25 Manufacture of zinc-bromine battery

Publications (1)

Publication Number Publication Date
JPH06251808A true JPH06251808A (en) 1994-09-09

Family

ID=12464668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5036255A Pending JPH06251808A (en) 1993-02-25 1993-02-25 Manufacture of zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPH06251808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524949A (en) * 2002-05-08 2005-08-18 ユーティーシー フューエル セルズ,エルエルシー Fuel cell stack with improved pressure plate and current collector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524949A (en) * 2002-05-08 2005-08-18 ユーティーシー フューエル セルズ,エルエルシー Fuel cell stack with improved pressure plate and current collector

Similar Documents

Publication Publication Date Title
JP4147773B2 (en) Fuel cell
US20040241544A1 (en) Cell stack for flow cell
EP3637540B1 (en) Battery pack
US6893767B2 (en) Methods for producing fuel cell units and fuel cell stacks
CN115395068B (en) Production and processing method of flow battery galvanic pile
JP2748379B2 (en) Electrolyte circulation type laminated secondary battery
US20230017153A1 (en) Temperature controlled bipolar battery assembly
JPH06251808A (en) Manufacture of zinc-bromine battery
JPH0714617A (en) Current collecting electrode of zinc-bromine battery
JPS6380485A (en) Sealed laminated cell
JP3161149B2 (en) Peripheral sealing method of zinc-bromine battery
JP3141540B2 (en) Method of manufacturing current collector electrode for zinc-bromine battery
JP3141599B2 (en) Current collecting electrode of zinc-bromine battery and method of manufacturing the same
US20100279206A1 (en) Sealing structure of fuel cell separator
CN220796810U (en) Separator for flow battery stack and single battery
JP3008682B2 (en) Method of manufacturing current-collecting electrode for zinc-bromine battery
JP3225664B2 (en) Current-collecting electrodes for zinc-bromine batteries
JPH0672162U (en) Laminated structure of zinc-bromine battery
JPH0415990B2 (en)
JPH06302340A (en) Zinc-bromine battery and installation structure thereof
JPH06243875A (en) Current collecting electrode for zinc-bromine cell and manufacture thereof
JPH02148580A (en) Electrolyte circulation layer-built cell
JP2522029B2 (en) Method for manufacturing end plate electrode in liquid circulation type laminated battery
JPH067156U (en) Current collecting electrode structure for zinc-bromine battery
JPH0680262U (en) Current collector for zinc-bromine battery