JP2522029B2 - Method for manufacturing end plate electrode in liquid circulation type laminated battery - Google Patents

Method for manufacturing end plate electrode in liquid circulation type laminated battery

Info

Publication number
JP2522029B2
JP2522029B2 JP63290741A JP29074188A JP2522029B2 JP 2522029 B2 JP2522029 B2 JP 2522029B2 JP 63290741 A JP63290741 A JP 63290741A JP 29074188 A JP29074188 A JP 29074188A JP 2522029 B2 JP2522029 B2 JP 2522029B2
Authority
JP
Japan
Prior art keywords
electrode
end plate
plate electrode
battery
circulation type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63290741A
Other languages
Japanese (ja)
Other versions
JPH02135672A (en
Inventor
康晴 並木
智行 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP63290741A priority Critical patent/JP2522029B2/en
Publication of JPH02135672A publication Critical patent/JPH02135672A/en
Application granted granted Critical
Publication of JP2522029B2 publication Critical patent/JP2522029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 A.産業上の利用分野 この発明は液循環型積層電池における端板電極の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for manufacturing an end plate electrode in a liquid circulation type laminated battery.

B.発明の概要 この発明は液循環型電池に使用される端板電極の製造
方法において、 端板電極本体の一方の面に、枠体と接着し易い接合樹
脂体を設けて端板電極本体を枠体に保持させるようにし
たことにより、 端板電極本体と枠体との接合強度を向上させるととも
に、その本体と枠体との間にシール性をも向上させ、し
かも耐久性を向上させることができるようにしたもので
ある。
B. Summary of the Invention The present invention is a method for manufacturing an end plate electrode used in a liquid circulation type battery, in which one end surface of the end plate electrode main body is provided with a bonding resin body that is easily bonded to a frame body. Since it is held by the frame body, the joint strength between the end plate electrode body and the frame body is improved, the sealing property between the body and the frame body is also improved, and the durability is improved. It was made possible.

C.従来の技術 近時、電池電力貯蔵システムの開発が促進されてお
り、その一環として第4図に例示する如き電解液循環型
亜鉛−臭素積層二次電池が開発されている。
C. Conventional Technology Recently, the development of a battery power storage system has been promoted, and as a part thereof, an electrolyte circulating zinc-bromine laminated secondary battery as illustrated in FIG. 4 has been developed.

これは、第4図の構成原理図に示すように、電池本体
1をイオン交換膜または多孔質膜からなるセパレータ2
で陽極室3と陰極室4とに区画する。この両極室にはそ
れぞれ電解液を循環させるための送液管5,6と返液管7,8
により接続された陽極用と陰極用との各々の電解液タン
ク9,10が設けられる。陽極用と陰極用との各臭化亜鉛
(ZnBr2)の電解液はそれぞれ送液ポンプ13,14によって
各々の電極室3,4に循環させるように構成されている。
As shown in the structural principle diagram of FIG. 4, this means that the battery main body 1 is made up of a separator 2 made of an ion exchange membrane or a porous membrane.
It is divided into an anode chamber 3 and a cathode chamber 4. Liquid supply pipes 5 and 6 and liquid return pipes 7 and 8 for circulating the electrolytic solution are respectively provided in these bipolar chambers.
The respective electrolytic solution tanks 9 and 10 for the anode and the cathode connected by the above are provided. The electrolytic solutions of zinc bromide (ZnBr 2 ) for the anode and the cathode are configured to be circulated to the electrode chambers 3 and 4 by the liquid feed pumps 13 and 14, respectively.

尚、11は陽極、12は陰極、15は弁である。 In addition, 11 is an anode, 12 is a cathode, and 15 is a valve.

上記のように構成された電池において、充電時には、
電解液が図の矢印の方向に循環し、陰極12ではZn+++2e
-→Zn、陽極11では2Br-→Br2+2eの反応を生じ、陽極11
で生成された臭素は分子となり、電解液中に混じり、一
部溶解し、大部分は陽極液中の錯化剤によって錯化合物
となり、陽極室側の電解液タンク10内に沈澱して蓄積さ
れる。又、放電時には、電解液が循環した状態で各電極
11,12ではそれぞれ前記反応式と逆の反応を生じ、析出
物(Zn,Br2)が各電極11,12上で消費(酸化,還元)さ
れ、電気エネルギーが放出される。
In the battery configured as above, when charging,
The electrolyte circulates in the direction of the arrow in the figure, and Zn ++ + 2e at the cathode 12.
- → Zn, the anode 11 2Br - → resulting reaction Br 2 + 2e, an anode 11
The bromine produced in 1. becomes a molecule, mixes in the electrolytic solution, partially dissolves, and most of it becomes a complex compound by the complexing agent in the anolyte, and it precipitates and accumulates in the electrolytic solution tank 10 on the anode chamber side. It When discharging, each electrode should be
In 11 and 12, a reaction opposite to the above reaction formula occurs, and the precipitate (Zn, Br 2 ) is consumed (oxidized, reduced) on each electrode 11 and 12, and electric energy is released.

上述のような構成原理を用いた亜鉛−臭素電池には、
第5図に示すような積層電池と要素として多数の電極板
を縦(略鉛直方向)に設置するいわゆる縦形のセル積層
構造のスタック方式が用いられている。この縦形スタッ
ク全体は両側端からボルト,ナット等を用いて挟むよう
に押さえるための一対の締付端板16,16と、そのそれぞ
れの内側に配置する押さえ部材である積層端板17,17と
の間に、例えば30セル積層して縦形に構成されている。
すなわち、上記スタックは集電メッシュ19を有するカー
ボンプラスチックの端板電極18の次にパッキン20を介し
てセパレータ板21を重ねた後、所定間隔保持用のスペー
サメッシュ22を重ね、さらに、カーボンプラスチック製
の平板中間電極23を重ねてからパッキン20を重ねるとい
った順序で積層し、最後に他方のカーボンプラスチック
の端板電極18を重ねて、全体で30セル縦形に積層する如
く構成する。
The zinc-bromine battery using the above-described configuration principle,
A stacking system having a so-called vertical cell stacking structure in which a large number of electrode plates are installed vertically (substantially in the vertical direction) as elements and a stacked battery as shown in FIG. The entire vertical stack is composed of a pair of tightening end plates 16 and 16 that are pressed from both ends so as to be sandwiched with bolts and nuts, and laminated end plates 17 and 17 that are pressing members disposed inside each of them. Between them, for example, 30 cells are stacked to form a vertical shape.
That is, the stack is composed of a carbon plastic end plate electrode 18 having a collecting mesh 19, a separator plate 21 over the packing 20 and then a spacer mesh 22 for holding a predetermined interval, and a carbon plastic The flat plate intermediate electrodes 23 are stacked in this order, and then the packing 20 is stacked, and finally the other end plate electrode 18 made of carbon plastic is stacked so that a total of 30 cells are stacked vertically.

上記のように縦形に積層構成したスタックには、流液
孔である正極マニホールド21と負極マニホールド25とが
穿設されている。
The positive electrode manifold 21 and the negative electrode manifold 25, which are the liquid flow holes, are formed in the vertically stacked stack as described above.

また、各セパレータ板21は、第5図に示すように微多
孔質膜より成るセパレータ2の周囲に枠板21aをプラス
チックの射出成形で一体成形して構成したもので、その
両平面部上下にはそれぞれ表裏対象形状にマイクロチャ
ンネル26が設けられている。図示実線で示すマイクロチ
ャンネル26は、それぞれ対角線上の正極マニホールド24
から導入した電解液を均一に広げてセパレータ2の全面
に流し、又はこれより液を回収する。また、図示破線で
示すマイクロチャンネル26は、負極マニホールド25から
の電解液を導入,回収するものである。
Further, as shown in FIG. 5, each separator plate 21 is formed by integrally molding a frame plate 21a around a separator 2 made of a microporous membrane by injection molding of plastic. Each has a micro channel 26 in a front and back symmetrical shape. The micro-channels 26 shown by solid lines in the drawing are the positive electrode manifolds 24 on diagonal lines, respectively.
The electrolyte introduced from above is evenly spread and flowed over the entire surface of the separator 2, or the electrolyte is recovered from this. The microchannel 26 shown by a broken line in the drawing is for introducing and collecting the electrolytic solution from the negative electrode manifold 25.

このようにして、各セパレータ板21の両側面部にそれ
ぞれ配置された電極との間において、第4図に例示した
単位電池を構成するようになっている。
In this way, the unit battery illustrated in FIG. 4 is configured between the electrodes arranged on both side surfaces of each separator plate 21.

このような電池では、その運転使用に際し、スタック
の各陽極室3と陰極室4との内部にそれぞれ電解液を充
填し、この後、これを循環させる必要がある。
In such a battery, it is necessary to fill the inside of each of the anode chamber 3 and the cathode chamber 4 of the stack with the electrolytic solution and then circulate the electrolytic solution when the battery is used for operation.

まず、この縦形スタックに電解液を充填することにつ
いてみると、各陽極室3と陰極室4とに、それぞれ下側
のマニホールドから電解液を注入し、上側のマニホール
ドから空気を追い出して、各室内に電解液を充満させる
ようにするのが望ましい。
First, regarding the filling of the vertical stack with the electrolytic solution, the electrolytic solution is injected into each of the anode chamber 3 and the cathode chamber 4 from the lower manifold, and the air is expelled from the upper manifold to remove the air from each chamber. It is desirable that the electrolyte be filled with the electrolyte.

なお、上側のマニホールドから電解液を注入すると、
下側のマニホールドから空気ではなく電解液が出てしま
うことになり、室内部に空気が残留してしまうおそれが
ある。
If you inject the electrolyte from the upper manifold,
The electrolytic solution is discharged from the lower manifold instead of the air, and the air may remain in the room.

D.発明が解決しようとする課題 第5図のように構成された積層電池において、端板電
極18は第6図に示すように端板電極本体18aと、この電
極本体18aを保持する枠体18bから形成される。電極本体
18aはポリエチレン/カーボンブラック/グラファイト
の均一混練物から、また枠体18bはポリエチレンとグラ
スファイバーの均一混練物からなる材料を用いて射出成
形によって端板電極18は一体成形する手段がとられてい
る。
D. Problems to be Solved by the Invention In the laminated battery configured as shown in FIG. 5, the end plate electrode 18 has an end plate electrode body 18a and a frame body for holding the electrode body 18a as shown in FIG. Formed from 18b. Electrode body
The end plate electrode 18 is integrally formed by injection molding using a material composed of a homogeneous kneaded material of polyethylene / carbon black / graphite 18a and a material of a homogeneous kneaded material of polyethylene and glass fiber for the frame 18b. .

端板電極18は中間電極23に比べて約4倍のインサート
の厚みを以ているため、電極本体18aと枠体18bとの接合
面において互いの樹脂の溶融度合が中間電極23のように
薄いものと比較すると悪い。この結果、電極本体18aと
枠体18bとの接合面との接着がほとんどなく、構造的に
枠体18bが電極本体18aを支持しているにすぎない。この
ため、第7図に示すように、電極本体18aを下方に引張
ると、電極本体18aが枠体18bからすぐに抜けてしまう。
このような接着状態であると、液体をシールさせること
が不可能に近く、電池として運転させる場合、電極本体
18aと枠体18bとの接合面から液漏れを起こすおそれがあ
る。
Since the end plate electrode 18 has an insert thickness that is about four times that of the intermediate electrode 23, it is assumed that the degree of melting of the resin between the electrode body 18a and the frame body 18b is as thin as that of the intermediate electrode 23. Bad when compared. As a result, there is almost no adhesion between the electrode body 18a and the joint surface between the frame body 18b, and the frame body 18b structurally merely supports the electrode body 18a. For this reason, as shown in FIG. 7, when the electrode body 18a is pulled downward, the electrode body 18a immediately comes out of the frame 18b.
In such an adhesive state, it is almost impossible to seal the liquid, and when operating as a battery, the electrode body
Liquid may leak from the joint surface between the frame 18a and the frame 18b.

この結果、電池として長時間の使用による耐水圧,耐
電圧,耐震性が低く、電池の性能,信頼性を著しく低下
させてしまう問題がある。
As a result, there is a problem that the water pressure, withstand voltage, and seismic resistance are low due to long-term use as a battery, and the performance and reliability of the battery are significantly reduced.

この発明の目的は電極本体と枠体との接合面が強固に
接着されるようにして、液漏れ等を生じないようにした
液循環型積層電池における端板電極の製造方法を提供す
るにある。
An object of the present invention is to provide a method for manufacturing an end plate electrode in a liquid circulation type laminated battery in which a joint surface between an electrode body and a frame is firmly adhered to prevent liquid leakage or the like. .

E.課題を解決するための手段 この発明は正極端子を備えた端板電極と、負極端子を
備えた端板電極との間にセパレータ、中間電極を介挿し
並設してなる電池本体に、正極および負極用電極液を循
環させてなる液循環型電池において、前記端板電極の電
極本体の一方の面に接合樹脂体を密接して設け、この結
合樹脂体と電極本体との周囲を枠体で一体接合成形した
ものである。
E. Means for Solving the Problems The present invention provides a battery main body in which an end plate electrode having a positive electrode terminal and a separator between the end plate electrode having a negative electrode terminal and an intermediate electrode are provided in parallel, In a liquid circulation type battery in which an electrode liquid for a positive electrode and a negative electrode is circulated, a bonding resin body is provided in close contact with one surface of the electrode body of the end plate electrode, and the periphery of the bonding resin body and the electrode body is framed. It is integrally joined and molded by the body.

F.作用 電極本体の一方の面に接合樹脂体を圧縮成形機により
成形して設けたので、枠体と一体成形する際、接合樹脂
体と枠体とが強固に接着される。これにより、枠体と電
極本体とのシール性,耐電圧,耐震性は向上する。
F. Working Since the joint resin body is formed on one surface of the electrode body by the compression molding machine, the joint resin body and the frame body are firmly adhered when integrally molded with the frame body. As a result, the sealing property between the frame body and the electrode body, the withstand voltage, and the earthquake resistance are improved.

G.実施例 以下、この発明の一実施例を図面に基づいて説明す
る。
G. Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図において、31は端板電極の枠体で、この枠体31
はポリエチレンとグラスファイバーの均一混練物から形
成される。32は端板電極の電極本体で、この本体32はポ
リエチレン/カーボンブラック/グラファイトの均一混
練物から成形される。33は電極本体32の一方の面に密接
して形成されるポリエチレンからなる接合樹脂体であ
る。
In FIG. 1, 31 is a frame body for the end plate electrodes.
Is formed from a homogeneous mixture of polyethylene and glass fibers. 32 is an electrode body of the end plate electrode, and this body 32 is formed from a homogeneously kneaded product of polyethylene / carbon black / graphite. Reference numeral 33 is a bonding resin body made of polyethylene and formed in close contact with one surface of the electrode body 32.

まず、電極本体32と接合樹脂体33を圧縮成形機(ヒー
トプレス機)により成形して、電極本体32の一方の面に
接合樹脂体33を密着させる。次に図示しない射出成形機
を用いて枠体31と、前記密着された電極本体32と接合樹
脂体33とを接合成形する。このようにして枠体31と電極
本体32とを接合させると、枠体31と接合樹脂体33が溶融
して接着されるためその接着が強固になる。
First, the electrode body 32 and the bonding resin body 33 are molded by a compression molding machine (heat press machine), and the bonding resin body 33 is brought into close contact with one surface of the electrode body 32. Next, the frame body 31, the electrode body 32 and the bonding resin body 33, which are in close contact with each other, are bonded and molded using an injection molding machine (not shown). When the frame body 31 and the electrode main body 32 are bonded in this manner, the frame body 31 and the bonding resin body 33 are melted and bonded, so that the bonding becomes strong.

次に上記実施例により形成した端板電極と従来例に示
す端板電極との引張り試験を行った結果について示す。
この試験においては、第2図及び第3図A,Bに示すよう
な形状の枠体と電極本体のものを、それぞれ8個づつ合
計16個製作して引張り試験を行った。なお、第3図Aが
この発明の実施例によるもの、第3図Bが従来例による
ものである。
Next, the results of a tensile test performed on the end plate electrode formed in the above-mentioned example and the end plate electrode shown in the conventional example will be shown.
In this test, a frame and an electrode body each having a shape as shown in FIGS. 2 and 3A and B were manufactured in total of 16 pieces, 8 pieces each, and a tensile test was conducted. It should be noted that FIG. 3A is according to the embodiment of the present invention, and FIG. 3B is according to the conventional example.

上記試験の結果、従来例のものは20kg〜30kgの引張り
強度であったが、この発明のものは80kg〜90kgの引張り
強度にもなった。また、耐水性の試験も行った所、従来
例のものは0.45kg/cm2までが限界であったが、この発明
のものは2.35kg/cm2までも耐水性が向上した。
As a result of the above-mentioned test, the conventional example had a tensile strength of 20 kg to 30 kg, but the present invention also had a tensile strength of 80 kg to 90 kg. Further, when a water resistance test was conducted, the conventional example had a limit of up to 0.45 kg / cm 2 , but the present invention improved the water resistance up to 2.35 kg / cm 2 .

H.発明の効果 以上述べたように、この発明によれば、枠体と電極本
体との接着強度が著しく向上させることができ、これに
伴ってシール性も向上して電池の信頼性と耐水性の向上
を図ることができる利点がある。
H. Effects of the Invention As described above, according to the present invention, the adhesive strength between the frame body and the electrode body can be remarkably improved, and along with this, the sealing property is also improved to improve the reliability and water resistance of the battery. There is an advantage that the property can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す要部の拡大断面図、
第2図は引張り試験に使用する端板電極のサンプルの形
状を示す正面図、第3図A,Bは同じく引張り試験に使用
するこの発明によるサンプルと、従来例によるサンプル
の形状を示す断面図、第4図は亜鉛−臭素電池の原理を
示す概略構成図、第5図はその電池のスタック部分の要
部分解斜視図、第6図は端板電極の正面図、第7図は端
板電極の部分断面図である。 31……枠体、32……電極本体、33……接合樹脂体。
FIG. 1 is an enlarged sectional view of an essential part showing an embodiment of the present invention,
FIG. 2 is a front view showing the shape of an end plate electrode sample used in a tensile test, and FIGS. 3A and 3B are sectional views showing the shapes of a sample according to the present invention similarly used in a tensile test and a sample according to a conventional example. FIG. 4 is a schematic configuration diagram showing the principle of a zinc-bromine battery, FIG. 5 is an exploded perspective view of a main part of a stack portion of the battery, FIG. 6 is a front view of an end plate electrode, and FIG. 7 is an end plate. It is a fragmentary sectional view of an electrode. 31 …… frame body, 32 …… electrode body, 33 …… bonding resin body.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極端子を備えた端板電極と、負極端子を
備えた端板電極との間にセパレータ、中間電極を介挿し
並設してなる電池本体に、正極および負極用電極液を循
環させてなる液循環型積層電池における端板電極の製造
方法において、 電極本体と接合樹脂体を圧縮成形機により成形させた
後、前記電極本体の一方の面全域に接合樹脂体を密着成
形させた後、射出成形機を用いて枠体と、前記密着成形
された電極本体と接合樹脂体とを一体接合成形すること
を特徴とする液循環型積層電池における端板電極の製造
方法。
1. An electrode solution for a positive electrode and a negative electrode is placed in a battery main body, which is arranged in parallel with a separator and an intermediate electrode interposed between an end plate electrode having a positive electrode terminal and an end plate electrode having a negative electrode terminal. In a method of manufacturing an end plate electrode in a liquid circulation type laminated battery that is circulated, after molding an electrode body and a bonding resin body by a compression molding machine, the bonding resin body is closely molded on one entire surface of the electrode body. After that, the frame body, and the contact-molded electrode body and the bonding resin body are integrally bonded and molded using an injection molding machine, and a method for manufacturing an end plate electrode in a liquid circulation type laminated battery.
JP63290741A 1988-11-17 1988-11-17 Method for manufacturing end plate electrode in liquid circulation type laminated battery Expired - Fee Related JP2522029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63290741A JP2522029B2 (en) 1988-11-17 1988-11-17 Method for manufacturing end plate electrode in liquid circulation type laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63290741A JP2522029B2 (en) 1988-11-17 1988-11-17 Method for manufacturing end plate electrode in liquid circulation type laminated battery

Publications (2)

Publication Number Publication Date
JPH02135672A JPH02135672A (en) 1990-05-24
JP2522029B2 true JP2522029B2 (en) 1996-08-07

Family

ID=17759925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63290741A Expired - Fee Related JP2522029B2 (en) 1988-11-17 1988-11-17 Method for manufacturing end plate electrode in liquid circulation type laminated battery

Country Status (1)

Country Link
JP (1) JP2522029B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197669A (en) * 1982-05-11 1983-11-17 Meidensha Electric Mfg Co Ltd Electrode for layer-built cell
JPS63226878A (en) * 1987-03-16 1988-09-21 Meidensha Electric Mfg Co Ltd Manufacture of electrode

Also Published As

Publication number Publication date
JPH02135672A (en) 1990-05-24

Similar Documents

Publication Publication Date Title
KR100876262B1 (en) Solid Polymer Electrolyte Fuel Cell
US10141594B2 (en) Systems and methods for assembling redox flow battery reactor cells
WO2002101862A1 (en) Cell frame for redox-flow cell and redox-flow cell
WO2006105188A1 (en) Modular bipolar battery
JP2004534350A (en) Electrochemical polymer electrolyte membrane battery stack
CN101548419B (en) Electrode-film-frame joint for polymer electrolyte type fuel cell, its manufacturing method, and polymer electrolyte type fuel cell
CN106328969B (en) A kind of flow battery and its monocell frame, integrated monocell, pile
CN107123824B (en) A kind of electric pile structure of flow battery
CN115395068B (en) Production and processing method of flow battery galvanic pile
CN102456905A (en) Liquid flow battery unit, battery stack and manufacturing method thereof
JP2748379B2 (en) Electrolyte circulation type laminated secondary battery
US20040131918A1 (en) Separator plate for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
JP2522029B2 (en) Method for manufacturing end plate electrode in liquid circulation type laminated battery
CN113540495B (en) Flow frame structure of flow battery and side surface packaging method thereof
US20210013552A1 (en) Bipolar aqueous intercalation battery stack and associated system and methods
JPS6380485A (en) Sealed laminated cell
CN210744084U (en) Composite separator for horizontal lead acid battery
KR101056623B1 (en) Membrane electrochemical generator
JPH02148580A (en) Electrolyte circulation layer-built cell
CN113823806B (en) Integrated electrode frame structure for all-vanadium redox flow battery, preparation method and application
CN218975535U (en) Compartment-free lead-acid module battery and battery pack thereof
CN115939441B (en) Bipolar plate and fuel cell
JPH0367461A (en) Manufacture of electrode for laminated battery
JP3141599B2 (en) Current collecting electrode of zinc-bromine battery and method of manufacturing the same
JPH0648760Y2 (en) Electrode circulation type laminated battery electrode plate

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees