JPS58197669A - Electrode for layer-built cell - Google Patents

Electrode for layer-built cell

Info

Publication number
JPS58197669A
JPS58197669A JP57077443A JP7744382A JPS58197669A JP S58197669 A JPS58197669 A JP S58197669A JP 57077443 A JP57077443 A JP 57077443A JP 7744382 A JP7744382 A JP 7744382A JP S58197669 A JPS58197669 A JP S58197669A
Authority
JP
Japan
Prior art keywords
electrode
sheet
phlorocarbon
plastic material
carbon plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57077443A
Other languages
Japanese (ja)
Other versions
JPH0139635B2 (en
Inventor
Akira Yamamoto
山本 曉
Toshinori Fujii
藤井 利宣
Akihiko Hirota
広田 明彦
Eiichi Fujii
藤井 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP57077443A priority Critical patent/JPS58197669A/en
Publication of JPS58197669A publication Critical patent/JPS58197669A/en
Publication of JPH0139635B2 publication Critical patent/JPH0139635B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/365Zinc-halogen accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To increase the tightness of electrodeposited Zn, reaction surface area of anode and cell efficiency by laminating a phlorocarbon sheet containing specific ethylene fluoride as base polymer and molding them integrally. CONSTITUTION:A phlorocarbon sheet 101 is laminated tightly on the surface of carbon plastic material 10, then held between micro-channel molding frames 10a, 10b and further held between frame materials 10c, 10d. Here the phlorocarbon sheet 101 is a porous sheet having the thickness of 0.3mm. which is applied tightly through thermal press onto the surface of carbon plastic material 10 to increase the apparent surface area of the electrode section (several to scores times). Consequently when layer building such electrodes to produce a cell, Zn electrodeposition will improve at the cathode side while Br2 will react sufficiently at the anode side.

Description

【発明の詳細な説明】 本発明は、金属(例えばZn)−・・ロゲン(例えばB
r)11%!il液循積型積層二次電池に用いられる電
極に関するものでおる。更に詳しくは、本発明は、導電
性樹脂素材を用いて形成されるwLJrIIA部分と、
この電極部分を保持する電極枠とを一体に成型して構成
される積層電池の電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides metal (e.g. Zn)...rogen (e.g. B
r) 11%! This invention relates to an electrode used in an IL liquid circulation type stacked secondary battery. More specifically, the present invention includes a wLJrIIA portion formed using a conductive resin material,
This invention relates to an electrode for a laminated battery constructed by integrally molding an electrode frame that holds this electrode portion.

第1図は、本発明に係る電極が使用される電池のひとつ
である電解液循壜型積・層二次電池の基本構成図である
。この電池は、陰極1と陽極6とをセパレータ5を挾ん
で両IIに設置し、陰極1とセパレータ5との間の陰極
室2に、陰極液貯蔵槽6から陰極液を供給、循環させる
とともに、陽極6とセパレータ5との間の陽極室4に、
陽極液貯蔵槽7から陽極液を供給、循環させるように構
成されている。なお、9m、9bは液傭壌用のポンプ、
10m、10bは充放電時に開くバルブである。
FIG. 1 is a basic configuration diagram of an electrolyte circulating bottle type multilayer secondary battery, which is one of the batteries in which the electrode according to the present invention is used. In this battery, a cathode 1 and an anode 6 are placed in both IIs with a separator 5 in between, and catholyte is supplied and circulated from a catholyte storage tank 6 to a cathode chamber 2 between the cathode 1 and separator 5. , in the anode chamber 4 between the anode 6 and the separator 5,
It is configured to supply and circulate the anolyte from the anolyte storage tank 7. In addition, 9m and 9b are liquid pumps,
10m and 10b are valves that open during charging and discharging.

第2図は、このような電池を積層構成とした場合の一例
を示す分解斜視図である。この図におい′τ、11はア
ルミ締付端板、12は樹脂締付端板、16はパツキン、
14は電極端板、15は金網尋で構成された端子、であ
る。各電極1及びセパレータ5は、図示するように積層
され、アルミ締付端板11によって両側から挾まれ、締
付ボルト16、締付ナツト17で全体が一体に構成され
る。電解液ハ、マニホールド18からチャンネル19及
びマイクロチャンネル20を通って、電極部の表向に供
給され、また循環するようになっているところで、この
ような積層電池に用いられる電極1は、インジェクショ
ンモールド方式6るいeよヒートプレスモールド方式婢
によって成形して構成される。一方、成型して構成され
る電極に要求される主な性能は、化学的には耐薬品性、
電%s敵の不浸透性等であり、また電気的には低抵抗で
ある事等である。それ故に、従来より電極材料として、
ポリオレフイ/(例えばボリエナレ/)系樹脂で、特に
高分子量かつ高@嵐であるものtペース・ポリマーとし
、これに、わる割合でカーボンブラックを混練させた、
所稍カーボン・プラスチックが使用されている。
FIG. 2 is an exploded perspective view showing an example of such a battery having a stacked structure. In this figure, ′τ, 11 is an aluminum clamping end plate, 12 is a resin clamping end plate, 16 is a packing,
14 is an electrode end plate, and 15 is a terminal made of wire mesh. Each electrode 1 and separator 5 are stacked as shown in the figure, sandwiched from both sides by aluminum fastening end plates 11, and are integrally formed with a fastening bolt 16 and a fastening nut 17. The electrolyte C is supplied from the manifold 18 to the surface of the electrode section through the channels 19 and the microchannels 20, and is circulated therein. It is constructed by molding using the heat press mold method. On the other hand, the main properties required for molded electrodes are chemical resistance,
It is impervious to electricity and has low electrical resistance. Therefore, as an electrode material,
A polyolefin/(for example, Boliennale/) based resin with a particularly high molecular weight and high @arashi t-pace polymer is kneaded with carbon black in a different proportion.
Some carbon plastic is used.

しかしながら、実際の検層電池を運転する場合、カーボ
ンプラスチック表面は、成型の段階で金型面が。転写さ
れておし、外観は艷のある元沢圓となり、陽極表面では
Znの電着、陽極表面ではBrl二Br−イオンの反応
が生ずるが、カーボンプラスチックを成型して構成され
る電極は、電着したZnの密着性が不足したり、特に陽
極における反応表面積が不足するために、電池効率が低
下するという問題点があった。
However, when actually operating a logging battery, the carbon plastic surface is exposed to the mold surface during the molding stage. It has been transferred, and the appearance is Motozawa round with a barb. Zn is electrodeposited on the anode surface, and a reaction of Br12Br- ions occurs on the anode surface, but the electrode is made by molding carbon plastic. There has been a problem in that battery efficiency is lowered due to insufficient adhesion of electrodeposited Zn and especially insufficient reaction surface area at the anode.

ここにおいて、本発明は、このような問題点を解決する
ことを目的としてなされたものである。
Here, the present invention has been made for the purpose of solving such problems.

本発明に係る電極は、四フッ化(又は三7ツ化、ニフツ
化)エチレンをペースボリマートシタフロロカーボンシ
ートをカーボンプラスチック表面に重ね合わせ、両者を
一体成型し七構成した点に特徴がある。
The electrode according to the present invention is characterized in that a tetrafluorinated (or trifluorinated, or niffused) ethylene-paced polyfluorocarbon sheet is superimposed on a carbon plastic surface, and both are integrally molded.

第6図は本発明に係る電極の一例を示す分解斜視図でお
る。図において、10は電極部を構成するカーボンプラ
スチック材、101はカーボンプラス?:、/り材10
の表面を榎う70ロカーボンシー)、10m、10bは
マイクロチャンネル成型枠、10c、iQ4は外枠素材
である。カーボンプラスチック材10は、その表thl
(この例では一方の表向)にフロロカーボンシート10
1が重ね合すれて密着し、これをマイクロチャンネル成
型枠10a110bが両側から挾み、更にこれらを枠素
材10e、10dが両側から挾むようにして一体に成型
される。
FIG. 6 is an exploded perspective view showing an example of an electrode according to the present invention. In the figure, 10 is the carbon plastic material that constitutes the electrode part, and 101 is carbon plus? :, / material 10
10m and 10b are microchannel molding frames, and 10c and iQ4 are outer frame materials. The carbon plastic material 10 has a surface thl
Fluorocarbon sheet 10 (one side in this example)
1 are superimposed and in close contact with each other, microchannel molding frames 10a110b sandwich this from both sides, and these are further sandwiched by frame materials 10e and 10d from both sides, so that they are integrally molded.

ここで、フロロカーボンシート101は、例えば厚さが
0.3−以下の多孔質の7−トであって、カーボンプラ
スチック材100表面に熱圧着によって密着させると、
見掛は上電極部の表面積が増加(数倍〜数十倍に増加)
したことと−じになる。
Here, the fluorocarbon sheet 101 is, for example, a porous sheet with a thickness of 0.3 mm or less, and when it is closely attached to the surface of the carbon plastic material 100 by thermocompression bonding,
The apparent surface area of the upper electrode increases (several to tens of times more)
It's the same as what I did.

このため、このように構成される電極を積層して電池を
構成した場合、陰極側では、Zn電着性が向上し、陽極
側ではBrlの反応が十分に行なわれるようになる。ま
た、7Ijロカーボノ/−ト101は、その電気伝導性
がカーボンプラスチックの倍近く高いという特性を備え
ていること等から、全体として電池効率を上げることが
できる。
Therefore, when a battery is constructed by stacking electrodes configured in this manner, the Zn electrodeposition property is improved on the cathode side, and the Brl reaction is sufficiently carried out on the anode side. In addition, the 7Ij locarbonate 101 has a characteristic that its electrical conductivity is nearly twice as high as that of carbon plastic, and therefore the battery efficiency can be improved as a whole.

なお、電極の成型は、カーボンプラスチック材10に重
ね合せる70ロカーボンプ−トの厚みが薄いため、体積
的に試料の増加は少なく、従って、カーボンプラスチッ
ク材10と同一形状に切断したフロロカーボンシートラ
単に追加、重ね合せて行なえばよく、成型温度等の成型
条件は、フロロ力−ボンシートのないときとはソ同じで
あるっ第4図は、本発明に係る電極と、従来の電極(フ
ロロカーボンシートを密着しないで構成した電極)の電
極特性を比較して示した線図である。この実験では、電
解液に5M/−13ZnBr1 +Brl溶液を用い、
40mA/dで放電したときの種々の電解液臭素#度に
おける電極電位を、銀−塩化銀参照基準でプロットした
もので、実線は7本発明に係る電極、破線は従来の電極
の特性をそれぞれ示している。
In addition, when molding the electrode, since the thickness of the fluorocarbon plate overlaid on the carbon plastic material 10 is thin, the increase in the volume of the sample is small. The molding conditions, such as molding temperature, are the same as those without the fluorocarbon sheet. FIG. In this experiment, a 5M/-13ZnBr1 +Brl solution was used as the electrolyte,
The electrode potential at various electrolyte bromine degrees when discharged at 40 mA/d is plotted using a silver-silver chloride reference standard, where the solid line shows the characteristics of the electrode according to the present invention, and the broken line shows the characteristics of the conventional electrode. It shows.

この実験結果から明らかなように、本発明に係る電極は
、従来の電極に比べ、各電解液臭素濃度において放電時
の分極が小さく、全体的に高い電位を維持しており、電
圧効率及びクーロン効率が高くなっていることが認めら
れる。
As is clear from the experimental results, the electrode according to the present invention has smaller polarization during discharge at each electrolyte bromine concentration than conventional electrodes, maintains a high overall potential, and has improved voltage efficiency and coulomb It is recognized that the efficiency is high.

なお、上記の実施例では、カーボンプラスチック材の一
方の表面に70ロカーボンシートを密着させた場合につ
いて説明したが、両方の表面に密層させてもよい。また
、このフロロカーボンシートに代えて、テフロン(商標
)中にカーボンブランクを分散したテフロン多孔膜シー
トを用い、これを熱圧着によってカーボンツーラスチッ
ク材の表面に密着させるようにしてもよい。
In the above embodiment, the case where the 70 carbon sheet was closely attached to one surface of the carbon plastic material was explained, but it may be closely layered on both surfaces. Moreover, instead of this fluorocarbon sheet, a Teflon porous membrane sheet in which carbon blanks are dispersed in Teflon (trademark) may be used, and this may be adhered to the surface of the carbon toolastic material by thermocompression bonding.

第1表は、テフロン多孔膜シートを用いた場合、その多
孔度と、電着亜鉛の密着性について調べた結果である。
Table 1 shows the results of investigating the porosity and adhesion of electrodeposited zinc when a Teflon porous membrane sheet was used.

第  1  表 (成型温度 1251:”  1分、加圧 100k)
7cm )この実験結果から、テフロン多孔膜7−トの
多孔度としては・50〜70%、望ましくは、60チが
良いことがわかった。また、加熱温度としては125C
前後、加圧は80〜100に、7m、保持時間は1分が
適当であつ友。
Table 1 (Molding temperature 1251: 1 minute, pressure 100k)
7 cm) From the results of this experiment, it was found that the porosity of the Teflon porous membrane 7 is preferably 50 to 70%, preferably 60 cm. In addition, the heating temperature is 125C.
Appropriate pressure is 80 to 100, 7 m, and holding time is 1 minute.

以上説明したように、本発明によれば、次に列挙するよ
うな楕々の特長を令する電極が実現できる。
As explained above, according to the present invention, it is possible to realize an electrode having various features as listed below.

(1)  反応有効面積が増大し、陽極側ではBrlの
反応性が良くなり、また陰極側では電着Znの密着性が
良くなる。
(1) The effective reaction area increases, the reactivity of Brl improves on the anode side, and the adhesion of electrodeposited Zn improves on the cathode side.

(II)  電極表面の電気抵抗が改善され、電流密度
分布状態が良くなり、内部ロスを減少できる。この結果
、電池効率を大巾に増加できる。
(II) The electrical resistance of the electrode surface is improved, the current density distribution is improved, and internal loss can be reduced. As a result, battery efficiency can be greatly increased.

(lit)  臭素極として放電時の分極特性が良くな
り、その結果、電圧効率及びクーロン効率を増加できる
(lit) As a bromine electrode, the polarization characteristics during discharge are improved, and as a result, voltage efficiency and Coulombic efficiency can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電極が使用される電池の一例を示
す積層二次電池の基本構成図、第2図は第1図に示す電
池を積層構成とした場合の一例を示す分解斜視図、第6
図は本発明に係る電極の一例を示す分解斜視図、第4図
は本発明に係る電極と従来の電極の電極特性を比較して
示す特性線図である。 10・・・カーボンプラスチック材、101・・・フロ
ロカーボ/シート、10m 、 10b・・・マイクロ
チャンネル成型枠、10@、 10d・・・外枠素材代
理人弁理士 木 村 三 朗
FIG. 1 is a basic configuration diagram of a laminated secondary battery showing an example of a battery in which the electrode according to the present invention is used, and FIG. 2 is an exploded perspective view showing an example of a laminated structure of the battery shown in FIG. 1. , 6th
The figure is an exploded perspective view showing an example of the electrode according to the present invention, and FIG. 4 is a characteristic diagram showing a comparison of the electrode characteristics of the electrode according to the present invention and a conventional electrode. 10...Carbon plastic material, 101...Fluorocarbo/sheet, 10m, 10b...Micro channel molding frame, 10@, 10d...Outer frame material agent Mitsuro Kimura

Claims (1)

【特許請求の範囲】 (11電極部を構成するカーボップラスチック材の少な
くとも一方の表面に、四フッ化(父は三7ツ化、二ツノ
化)エチレン全ベースポリマーとしたフロロカーボンシ
ート又ハチフロン多孔膜ンーーを重ね合せて密着し、一
体成型して構成したことを特徴とする積層電池の電極。 (2)  テフシン多孔膜シートの多孔度を50〜70
優、望ましくは60チとした特許請求の範囲第1JJ記
載の積層電池のlt極。
[Claims] (11) On at least one surface of the carbon plastic material constituting the electrode section, there is a fluorocarbon sheet or Hachifluorocarbon porous polymer made entirely of tetrafluoride (or trifluoride or difluoride) ethylene. An electrode for a laminated battery, characterized in that it is constructed by overlapping and adhering membranes and integrally molding them. (2) The porosity of the Tefcin porous membrane sheet is 50 to 70.
The lt pole of the laminated battery according to claim 1 JJ, which is excellent, preferably 60 inches.
JP57077443A 1982-05-11 1982-05-11 Electrode for layer-built cell Granted JPS58197669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077443A JPS58197669A (en) 1982-05-11 1982-05-11 Electrode for layer-built cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077443A JPS58197669A (en) 1982-05-11 1982-05-11 Electrode for layer-built cell

Publications (2)

Publication Number Publication Date
JPS58197669A true JPS58197669A (en) 1983-11-17
JPH0139635B2 JPH0139635B2 (en) 1989-08-22

Family

ID=13634159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077443A Granted JPS58197669A (en) 1982-05-11 1982-05-11 Electrode for layer-built cell

Country Status (1)

Country Link
JP (1) JPS58197669A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154585A (en) * 1985-12-27 1987-07-09 Tanaka Kikinzoku Kogyo Kk Halogen battery
JPS62184775A (en) * 1986-02-06 1987-08-13 Tanaka Kikinzoku Kogyo Kk Halogen battery
JPH01134879A (en) * 1987-11-19 1989-05-26 Meidensha Corp Electrode for secondary battery
JPH02135672A (en) * 1988-11-17 1990-05-24 Meidensha Corp End plate electrode of liquid circulation type stacked cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154585A (en) * 1985-12-27 1987-07-09 Tanaka Kikinzoku Kogyo Kk Halogen battery
JPS62184775A (en) * 1986-02-06 1987-08-13 Tanaka Kikinzoku Kogyo Kk Halogen battery
JPH01134879A (en) * 1987-11-19 1989-05-26 Meidensha Corp Electrode for secondary battery
JPH02135672A (en) * 1988-11-17 1990-05-24 Meidensha Corp End plate electrode of liquid circulation type stacked cell

Also Published As

Publication number Publication date
JPH0139635B2 (en) 1989-08-22

Similar Documents

Publication Publication Date Title
US11942654B2 (en) Dual electrolyte electrochemical cells, systems, and methods of manufacturing the same
US5916709A (en) Bipolar lead-acid battery
US20090317717A1 (en) Electrode Assembly Having Tab-Lead Joint Portion of Minimized Resistance Difference Between Electrodes and Electrochemical Cell Containing The Same
US20090053601A1 (en) Modular Bipolar Battery
EP1411575A1 (en) Cell stack for redox flow cell
US20090081541A1 (en) Bipolar Battery Having Carbon Foam Current Collectors
JPS60175376A (en) Conductive plate for lead storage battery and method of producing same
US9812728B2 (en) Fuel-cell single cell
US20160093919A1 (en) Vanadium Solid-Salt Battery
US9330855B2 (en) Aqueous-based electric double-layer capacitor
KR20090037620A (en) Electrochemical cell having quasi-bipolar structure
JPH10106604A (en) Fuel cell
JPS58197669A (en) Electrode for layer-built cell
KR20220113754A (en) Temperature Controlled Bipolar Battery Assembly
KR20210071240A (en) Folding type lithium air battery and method for manufacturing the same
JPH10289722A (en) Solid macromolecular type fuel cell and manufacture therefor
JPH0845793A (en) Electric double layered capacitor
US20210013552A1 (en) Bipolar aqueous intercalation battery stack and associated system and methods
Stalnaker et al. Design and assembly considerations for redox cells and stacks
US10403920B2 (en) Fuel battery cell
KR20200073569A (en) Folding type lithium air battery and method for manufacturing the same
JPS61279069A (en) Constitution of fuel cell
JPH07235454A (en) Electric double layer capacitor
JPS58157063A (en) Sealing of layer-built fuel cell
US11081717B2 (en) Storage module of distributed flow battery