JPS58157063A - Sealing of layer-built fuel cell - Google Patents
Sealing of layer-built fuel cellInfo
- Publication number
- JPS58157063A JPS58157063A JP57039912A JP3991282A JPS58157063A JP S58157063 A JPS58157063 A JP S58157063A JP 57039912 A JP57039912 A JP 57039912A JP 3991282 A JP3991282 A JP 3991282A JP S58157063 A JPS58157063 A JP S58157063A
- Authority
- JP
- Japan
- Prior art keywords
- sealing
- gas
- fuel cell
- sealing members
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、積層形燃料電池において、ガス分離板と単
電池とのシール法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of sealing a gas separation plate and a unit cell in a stacked fuel cell.
従来この種の燃料電池として第1図に示すものがあった
1図において、([1)’はガス分離板、(匂は酸化剤
電極のシール用ガスケット、(3)は酸化剤電極、(4
)は電解質マトリックス、C6)は燃料電極で、酸化剤
vt極(3)、電解質マトリックス14)、燃料電極(
6)で単電池を構成する、(6)は燃料電極のシール用
ガスケットである。第1図の(1)〜(6)の単位体を
積層したものが第2図であシ、(11は絶縁板、(8)
は集電板、191は羊位体を複数個積層した積層体、(
101は酸化剤としての空気、(川は燃料である。Conventionally, this type of fuel cell was shown in Figure 1. In Figure 1, ([1)' is a gas separation plate, (Odor is a gasket for sealing the oxidizer electrode, (3) is an oxidizer electrode, ( 4
) is the electrolyte matrix, C6) is the fuel electrode, oxidizer vt electrode (3), electrolyte matrix 14), fuel electrode (
6) constitutes a single cell, and (6) is a gasket for sealing the fuel electrode. Figure 2 shows a stack of units (1) to (6) in Figure 1, (11 is an insulating plate, (8)
191 is a current collector plate, 191 is a laminate of multiple laminated bodies, (
101 is air as an oxidizing agent (the river is a fuel).
次に動作について説明する。ガス分離板(1)、(1γ
の1−に電極、ガスケットおよび電解質マトリックスを
第1図の順で積層する。即ち、酸化剤電極(鯵の悠枠状
ガスケツ)(乃の内側に酸化剤電極(3)をはめこみ、
これに電解質マトリックス(4)を重ね、さらに燃料v
t極(6)の窓枠状ガスケット(6)の内側に燃料電極
(6)t−はめこんだものを蝋ねる。この要領を?Ij
kv返し、衿数個の単位体を第2図のように積層し、積
層形燃料電池を組み立てる。Mみ立て後、空% 110
1および燃料(11)を供給し集電板(8)から出力を
畝り出し積/#電池を運転する。Next, the operation will be explained. Gas separation plate (1), (1γ
1-, electrodes, gaskets, and electrolyte matrix are laminated in the order shown in FIG. That is, the oxidizing agent electrode (3) is fitted inside the oxidizing agent electrode (a gasket with a wide frame shape of horse mackerel).
The electrolyte matrix (4) is superimposed on this, and the fuel v
The fuel electrode (6) fitted inside the window frame-shaped gasket (6) of the t-pole (6) is soldered. This point? Ij
kv, and stack several unit bodies as shown in Figure 2 to assemble a stacked fuel cell. M After making, empty% 110
1 and fuel (11) are supplied and output is output from the current collector plate (8) to operate the battery.
従来の積−形燃料電池は以上のように構成されているの
で、ガス分離板と単電池間のガスおよび液のシールを行
なうために杜1両電極とそれぞれのガスケットの厚みを
積層した状態で等しい厚さにしなければならず、電極と
ガスケットの材料定数をもとに厚みの設計を行なわなけ
ればならなかった。、また、ガスケットとして、かなり
弾性を求められるため、フッ素ゴム系の材料を用いてい
るが、高温下のリン酸電解質を用いる電池などでは劣化
が激しく長期のシール性を保つことはむずかしいなどの
欠点があった。Conventional stacked fuel cells are constructed as described above, so in order to seal the gas and liquid between the gas separation plate and the single cell, the thickness of both electrodes and their respective gaskets are laminated. The thickness had to be the same, and the thickness had to be designed based on the material constants of the electrode and gasket. In addition, fluororubber-based materials are used as gaskets because they require considerable elasticity, but they have drawbacks such as severe deterioration in batteries that use phosphoric acid electrolytes at high temperatures, making it difficult to maintain long-term sealing properties. was there.
この発明は上記のような従来のものの欠点を除去するた
めになされたもので、それぞれのガスケットに尚たるも
のを、FEP(4フッ化エチレン−6フツ化プロピレン
共重合体)あるいはPFA(パーフロロアルキμビニ〃
エーテμ共菖合俸)のような高温リン酸に耐えかつ溶融
成型可能な材料を用い、ガス分離板と単電池間のV −
A/を行なう積層形燃料電池のシール性を提供すること
を目的としている。This invention was made to eliminate the drawbacks of the conventional gaskets as described above, and each gasket is made of FEP (tetrafluoroethylene-hexafluoropropylene copolymer) or PFA (perfluoropropylene copolymer). Alki μ vinyl
By using a material that can withstand high-temperature phosphoric acid and can be melted and molded, such as ATEμ material, the V − between the gas separation plate and the cell is
The purpose is to provide sealing performance for stacked fuel cells that perform A/.
以下、この発明の一実施例を図について説明す01Gお
よび(11’は、燃料電極(141に対するガス分離板
(υおよび(1)′におけるシーμ面、aηおよび0π
はリン酸供給隣、−およびげはリン酸供給孔であり、リ
ン酸供給海Oηおよびffと結がっている。(■)は酸
化剤* ;= 021とガス分離板(1)間のシール材
であC,021はM化剤電偵である。錦は電解質マトリ
ックス、O荀は燃料電極、輛は燃料電極Iとガス分離板
(1)1間のシール材で中空かつ帯状のもので翰はこの
中空部である。Hereinafter, an embodiment of the present invention will be explained with reference to the drawings. 01G and (11' are sea μ planes, aη and
is next to the phosphoric acid supply hole, and - and ridge are the phosphoric acid supply holes, which are connected to the phosphoric acid supply seas Oη and ff. (■) is a sealing material between the oxidizing agent *;=021 and the gas separation plate (1), and C,021 is an M-forming agent. The brocade is the electrolyte matrix, the O-shape is the fuel electrode, and the shank is the sealing material between the fuel electrode I and the gas separation plate (1) 1, which is hollow and strip-shaped, and the shank is this hollow part.
次に動作について説明する。まず、ガス分離板(lIの
シー/I/面Qo)’に燃料側シール材(15+を載せ
、シール材−とO@の内側間に燃料電極+141を配置
し、ガス分離板(17上に載せる。このとき、燃料電極
Iはガス分−謳板の燃料流路用溝の凸部に接するように
すると同時にガス分離板(1)′のリン酸供給go7y
とシール材Oυの中空部(lIが一致するようにする0
次(て電解質マトリックス(131を載せさらに酸化剤
電極θ2と、それに沿わせたシー〃材田)を積層し、上
からガス分離板(1)を躯せ単位体を構成する。この後
、さらに上記の操作をくり返し第2図のごとく複数個の
単位体からなる積層形燃料電池を組み立てる。上記のシ
ー4/L/材社PFAあるいはFEPのような高温下、
でのリン酸に耐え、PTFE(4フツ化エチレン重合体
)と違がって溶融成型できる材料から構成する必要があ
る。またこのときのシール材としては厚さが各電極の厚
みよりも幾分厚くなるように粉末を成型したのものであ
る。Next, the operation will be explained. First, put the fuel side sealing material (15+) on the gas separation plate (I/I/plane Qo)', place the fuel electrode +141 between the sealing material - and the inside of O@, and place the fuel electrode +141 on the gas separation plate (17). At this time, the fuel electrode I should be brought into contact with the convex part of the fuel flow channel groove of the gas separation plate (1)', and at the same time, the phosphoric acid supply go7y of the gas separation plate (1)' should be
and the hollow part of the sealing material Oυ (lI should match 0
Next, the electrolyte matrix (131 is placed on top of the oxidizer electrode θ2 and the sheet material along it) are laminated, and the gas separation plate (1) is placed on top to form a unit. The above operations are repeated to assemble a stacked fuel cell consisting of multiple units as shown in Figure 2.
It must be made of a material that can withstand phosphoric acid at high temperatures and, unlike PTFE (tetrafluoroethylene polymer), can be melt-molded. Further, the sealing material at this time is made of powder molded so that its thickness is somewhat thicker than the thickness of each electrode.
さて、組立てられた積層形燃料電池を押圧板等で積層方
向に圧力を加える。このときの圧力として紘電池動作時
同様1〜5 kg/l:dの範囲が望ましい。Now, pressure is applied to the assembled stacked fuel cell using a pressing plate or the like in the stacking direction. The pressure at this time is preferably in the range of 1 to 5 kg/l:d, similar to when the electrolyte battery is operated.
この後ち、電池自身を不活性ガス雰囲気の中へ入れるか
、燃料(川および空気(121の代わりに不活性ガスを
流すかいずれにしろ″成極を不活性ガス雰囲気にした上
で、シール材を融層すべ、く熱処理する。After this, either you put the cell itself into an inert gas atmosphere, or you flow an inert gas instead of the fuel (river or air (121), either way, make the polarization into an inert gas atmosphere and then seal it. The material is thoroughly heat treated.
熱処理はPFA、FEPの場合ともにそれぞれの融点付
近(融、焼土50℃)で行なうのがよい、これは融点よ
り温度が高くなればなるほどシール材が一部分解し、シ
ール性t−発揮できず、融点よりかなり低い温度で熱処
理した場合F諷着が完全に進まず、シール材としての機
械的強度も弱く、かつV−ル性も劣ったものになるから
である。For both PFA and FEP, heat treatment should be carried out near their respective melting points (50°C for melting and baked clay).This is because the higher the temperature is than the melting point, the more the sealing material partially decomposes and the sealing properties cannot be achieved. This is because, if heat treated at a temperature considerably lower than the melting point, F-seaming will not proceed completely, the mechanical strength as a sealing material will be weak, and the V-ru properties will be poor.
熱処理の際、同時に積層方向に圧力がかかつているため
y −y材は初め電極より厚みが幾分大であったものが
、電極と等しい厚みになる。この状態から電池の動作温
度まで積層電池の温度を下げ、リン敞桶給孔囮からリン
酸を補給する。補給されたリン酸はりンー補給孔から燃
料電極のV−〜材中空部Qll t″油って電解質マト
リックスα5Ilc到達し電解質全体を湿潤状頓にする
。During the heat treatment, pressure is simultaneously applied in the stacking direction, so that the y-y material, which was initially somewhat thicker than the electrode, becomes equal in thickness to the electrode. From this state, the temperature of the stacked battery is lowered to the operating temperature of the battery, and phosphoric acid is replenished from the phosphoric acid supply hole decoy. The supplied phosphoric acid reaches the electrolyte matrix α5Ilc from the fuel electrode V-~material hollow part Qllt'' oil through the phosphor supply hole and keeps the entire electrolyte in a wet state.
以上の操作ののちに積層形燃料電池を運転し、出力を取
り出す。After the above operations, operate the stacked fuel cell and extract the output.
なお、上記実施例ではシール材(!l)および(1〜に
粉末成壓したものについて説明したが%溶融成型したV
−μ材であってもよく上記実施例と同様の効果を委する
。In the above example, the sealing material (!l) and (1~) were explained as a powder, but the melt-molded V
-μ material may also be used, and the same effect as in the above embodiment can be obtained.
また、上記実施例では燃料電極および酸化剤電極のシー
ル材の形状を第3図のようにしたが電極およびガス分離
板の形状に応じた他の形状であってもよく、上記実施例
と同様の効果を奏する。Further, in the above embodiment, the shape of the sealing material of the fuel electrode and the oxidizer electrode was as shown in FIG. It has the effect of
以上のように、この発明によれば、高温下のリン酸に耐
え、かつ、溶融可能なV−A/材七単電池とガス分離板
間に配置しシーμ材が融着するよう熱処理するようにじ
たので、単電池とガス分離板に一体化し、かつ高い信頼
性をもつV−μが得られる効果がある。As described above, according to the present invention, the V-A/material, which can withstand phosphoric acid under high temperature and can be melted, is placed between the cell and the gas separation plate, and is heat-treated so that the sea material is fused. Since the structure is twisted in a similar manner, it is possible to integrate the cell and the gas separation plate, and to obtain a highly reliable V-μ.
第1図位従来の燃料電池の単位体の構成を分解して示す
斜視図、第2図は従来の積層形燃料電池の斜視図、第3
図はこの発明の一実施例による単位体の構成を分解して
示す斜視図である。
図中(川、 aFAはy −A/材である。
なお、図中、同一符号は同一、又は相当部分を示す。
代理人 葛野信−
第1図
第2図
第3図
手続補正書(自発)
21発明の名称
積層形燃料電池のシール方法
3、補正をする者
代表者片山仁へ部
4、代理人
6、補正の対象
明細書の発明の詳細な説明−欄
6、補正の内容
明細書の@2頁第4行の「構成する、(6)は」を「構
成する。(6)は」と訂正する。
以上Figure 1 is an exploded perspective view showing the structure of a conventional fuel cell unit; Figure 2 is a perspective view of a conventional stacked fuel cell;
The figure is an exploded perspective view showing the structure of a unit according to an embodiment of the present invention. In the diagram, aFA is y-A/wood. In the diagram, the same reference numerals indicate the same or equivalent parts. Agent Makoto Kuzuno - Figure 1 Figure 2 Figure 3 Procedural amendment (voluntary ) 21 Name of the invention Sealing method for stacked fuel cells 3, Person making the amendment Representative Hitoshi Katayama Department 4, Agent 6, Detailed explanation of the invention in the specification to be amended - Column 6, Description of the contents of the amendment @Page 2, line 4, "comprise, (6) is" is corrected to "comprise, (6) is".
Claims (1)
燃料電池において、上記単電池とガス分離板との曲に、
高温下のリン酸に耐え、溶−可能なシール材を配置し、
熱処理してシール材が単電池とガス分離板に融着するよ
うにした積層形燃料電池のシーV法。 (のV−μ材として4フッ化エチレン−6フツ力プロピ
レン共重合体及びバーフロロアμキルビニμ工−テμ共
重合体のいずれか一方な使用すること船特徴とする特許
請求の範囲第1項記載の積層形燃料電池のシーμ法。(1) Cells and gas separation plates? J! In a stacked fuel cell in which several cells are stacked, the above-mentioned unit cell and gas separation plate have the following characteristics:
A sealing material that can withstand and melt phosphoric acid under high temperatures is installed.
The C-V method for stacked fuel cells uses heat treatment to fuse the sealing material to the cell and gas separation plate. Claim 1 (claim 1) characterized in that either one of a tetrafluoroethylene-hexafluoropropylene copolymer and a barfluoro-kilviny-tech copolymer is used as the V-μ material. The Cμ method for stacked fuel cells described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57039912A JPS58157063A (en) | 1982-03-12 | 1982-03-12 | Sealing of layer-built fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57039912A JPS58157063A (en) | 1982-03-12 | 1982-03-12 | Sealing of layer-built fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58157063A true JPS58157063A (en) | 1983-09-19 |
JPS6322422B2 JPS6322422B2 (en) | 1988-05-11 |
Family
ID=12566152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57039912A Granted JPS58157063A (en) | 1982-03-12 | 1982-03-12 | Sealing of layer-built fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58157063A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59207563A (en) * | 1983-05-11 | 1984-11-24 | Hitachi Ltd | Fuel cell |
JPS60220571A (en) * | 1984-03-30 | 1985-11-05 | アメリカ合衆国 | Fuel battery separator |
US4588661A (en) * | 1984-08-27 | 1986-05-13 | Engelhard Corporation | Fabrication of gas impervious edge seal for a bipolar gas distribution assembly for use in a fuel cell |
JPH01151161A (en) * | 1987-12-08 | 1989-06-13 | Mitsubishi Electric Corp | Fuel cell |
EP0330124A2 (en) * | 1988-02-24 | 1989-08-30 | Toray Industries, Inc. | Electroconductive integrated substrate and process for producing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5465338A (en) * | 1977-10-14 | 1979-05-25 | Electrochem Energieconversie | Preparation of electrochemical battery |
-
1982
- 1982-03-12 JP JP57039912A patent/JPS58157063A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5465338A (en) * | 1977-10-14 | 1979-05-25 | Electrochem Energieconversie | Preparation of electrochemical battery |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59207563A (en) * | 1983-05-11 | 1984-11-24 | Hitachi Ltd | Fuel cell |
JPS60220571A (en) * | 1984-03-30 | 1985-11-05 | アメリカ合衆国 | Fuel battery separator |
US4588661A (en) * | 1984-08-27 | 1986-05-13 | Engelhard Corporation | Fabrication of gas impervious edge seal for a bipolar gas distribution assembly for use in a fuel cell |
JPH01151161A (en) * | 1987-12-08 | 1989-06-13 | Mitsubishi Electric Corp | Fuel cell |
EP0330124A2 (en) * | 1988-02-24 | 1989-08-30 | Toray Industries, Inc. | Electroconductive integrated substrate and process for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPS6322422B2 (en) | 1988-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4505992A (en) | Integral gas seal for fuel cell gas distribution assemblies and method of fabrication | |
US5587253A (en) | Low resistance rechargeable lithium-ion battery | |
US4732637A (en) | Method of fabricating an integral gas seal for fuel cell gas distribution assemblies | |
US5470679A (en) | Method of assembling a bipolar lead-acid battery and the resulting bipolar battery | |
US5571634A (en) | Hybrid lithium-ion battery polymer matrix compositions | |
ATE510317T1 (en) | BIPOLAR BATTERY AND METHOD FOR PRODUCING A BIPOLAR BATTERY AND BIPOLAR BOARD ASSEMBLY | |
US5682671A (en) | Method of assembling a bipolar battery and bipolar battery | |
US5468569A (en) | Use of standard uniform electrode components in cells of either high or low surface area design | |
US5264305A (en) | Zinc secondary battery having bipolar plate construction with horizontally disposed battery components | |
JPH0362447A (en) | Electrochemical cell module | |
JPS58157063A (en) | Sealing of layer-built fuel cell | |
US3772089A (en) | Primary metal-air batteries | |
US20020090542A1 (en) | Composite basic element and its seal for fuel cell and manufacturing process for the assembly | |
JPH10289722A (en) | Solid macromolecular type fuel cell and manufacture therefor | |
KR20080005631A (en) | Stack and folding-typed electrode assembly capable of preventing internal short to be caused by thermal shrinkage and electrochemical cell containing the same | |
JPH02281567A (en) | Methanol fuel cell | |
JP6174503B2 (en) | Cell, cell stack device, module, and module housing device | |
JPS5998473A (en) | Molten carbonate type fuel cell | |
JP2980921B2 (en) | Flat solid electrolyte fuel cell | |
JPS63307670A (en) | Laminated fuel cell | |
JP2015159027A5 (en) | ||
JPS58197669A (en) | Electrode for layer-built cell | |
JP3339720B2 (en) | Molten carbonate fuel cell | |
JPS59154771A (en) | Fuel cell | |
JPH0395865A (en) | Solid electrolyte fuel cell |