JPH0672042B2 - High strength magnesia sintered body and its manufacturing method - Google Patents

High strength magnesia sintered body and its manufacturing method

Info

Publication number
JPH0672042B2
JPH0672042B2 JP62291681A JP29168187A JPH0672042B2 JP H0672042 B2 JPH0672042 B2 JP H0672042B2 JP 62291681 A JP62291681 A JP 62291681A JP 29168187 A JP29168187 A JP 29168187A JP H0672042 B2 JPH0672042 B2 JP H0672042B2
Authority
JP
Japan
Prior art keywords
magnesia
sintered body
powder
zirconia
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62291681A
Other languages
Japanese (ja)
Other versions
JPH01201065A (en
Inventor
明生 西田
常夫 島村
洋司 窪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62291681A priority Critical patent/JPH0672042B2/en
Publication of JPH01201065A publication Critical patent/JPH01201065A/en
Publication of JPH0672042B2 publication Critical patent/JPH0672042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は緻密で機械的特性の優れたマグネシア質焼結体
及びその製造法に関する。さらに詳しくは、本発明は、
緻密であり、機械的強度、破壊靱性、耐熱性、耐熱衝撃
性に優れ、電子セラミックス焼成用磁器、β−アルミナ
焼成用ルツボ、金属溶解用ルツボなどの耐熱材料として
好適に使用することのできるマグネシア質焼結体及びそ
の製造法に関する。
TECHNICAL FIELD The present invention relates to a dense magnesia sintered body having excellent mechanical properties and a method for producing the same. More specifically, the present invention provides
Magnesia that is dense and has excellent mechanical strength, fracture toughness, heat resistance, and thermal shock resistance, and can be suitably used as a heat-resistant material such as porcelain for electronic ceramics firing, β-alumina firing crucible, and metal melting crucible. Quality sintered body and its manufacturing method.

(従来の技術及びその問題点) マグネシアは融点が2800℃と高く、アルカリ金属や塩基
性スラグに対する耐蝕性に優れているため、ルツボや耐
火レンガなどに使用されている。一方、マグネシアは機
械的強度、破壊靭性、耐熱衝撃性に劣るため、昇温、降
温の繰り返しにより、クラックが発生したり、スポーリ
ングを起こしたりする問題があり、さらに荷重のかかる
場所での使用も限定されている。
(Prior art and its problems) Magnesia has a high melting point of 2800 ° C and is excellent in corrosion resistance against alkali metals and basic slag, and is therefore used in crucibles and refractory bricks. On the other hand, since magnesia is inferior in mechanical strength, fracture toughness, and thermal shock resistance, there is a problem that cracks and spalling occur due to repeated heating and cooling, and it is used in places where a load is applied. Is also limited.

特開昭59-182268号公報及び“GYPSUM & LIME"No.209、
219-224(1987)には、マグネシアにジルコニアを添加
して焼結させて、マグネシアの機械的性質を向上させる
方法が開示されている。この方法に従って得られるマグ
ネシア質焼結体の機械的性質は実用上充分とは言いがた
い。
JP-A-59-182268 and "GYPSUM &LIME" No.209,
219-224 (1987) discloses a method of adding zirconia to magnesia and sintering it to improve the mechanical properties of magnesia. The mechanical properties of the magnesia sintered body obtained according to this method cannot be said to be practically sufficient.

(問題点を解決するための技術的手段) 本発明の目的は、機械的性質が著しく改善されたマグネ
シア質焼結体及びその製造法を提供することにある。
(Technical Means for Solving Problems) An object of the present invention is to provide a magnesia sintered body having significantly improved mechanical properties and a method for producing the same.

本発明の上記目的は、粒径3μm以下のマグネシア粒子
70〜99.9重量%と粒径3μm以下の立方晶ジルコニア粒
子0.1〜30重量%とからなる気孔率1%以下のマグネシ
ア質焼結体によって達成される。
The above object of the present invention is to provide magnesia particles having a particle size of 3 μm or less.
This is achieved by a magnesia sintered body having 70% to 99.9% by weight and 0.1 to 30% by weight of cubic zirconia particles having a particle size of 3 μm or less and having a porosity of 1% or less.

本発明のマグネシア質焼結体は、純度99.9%以上、比表
面積5m2/g以上で等軸形の一次粒子からなるマグネシア
粉末70〜99.9重量%と、純度99.9%以上、比表面積5m2
/g以上の粒状ジルコニア粉末0.1〜30重量%との混合粉
末を成形し、成形体を1400℃以上で焼結することによっ
て得られる。
The magnesia sintered body of the present invention has a purity of 99.9% or more, a specific surface area of 5 m 2 / g or more, and magnesia powder 70-99.9% by weight composed of equiaxed primary particles, and a purity of 99.9% or more and a specific surface area of 5 m 2.
It is obtained by molding a mixed powder of 0.1 to 30% by weight of granular zirconia powder of / g or more and sintering the compact at 1400 ° C or higher.

上記マグネシア粉末は、特開昭61-122106号公報に記載
の方法に従って調製することが好ましい。この方法はマ
グネシウム蒸気と酸素含有気体との気相反応によってマ
グネシア粉末を製造する方法である。この方法で得られ
るマグネシア粉末は等軸形の一次粒子で構成されてお
り、凝集が非常に少ないという特徴を有している。この
ため、上記マグネシア粉末はジルコニア粉末と一次粒子
レベルでの混合が可能となる。
The magnesia powder is preferably prepared according to the method described in JP-A No. 61-122106. This method is a method for producing magnesia powder by a gas phase reaction between magnesium vapor and an oxygen-containing gas. The magnesia powder obtained by this method is composed of equiaxed primary particles and is characterized by having very little aggregation. Therefore, the magnesia powder can be mixed with the zirconia powder at the primary particle level.

一般に、マグネシア粉末は水酸化マグネシウム、塩基性
炭酸マグネシウムなどのマグネシウム塩を熱分解して製
造される。しかし、この熱分解法で得られるマグネシア
粉末は、残留する母塩の形骸のため凝集粒子を形成す
る。そしてこの凝集粒子はジルコニア粉末と混合した後
も残存するので、得られるマグネシア質焼結体は組織が
不均一になり、機械的性質の劣ったものとなる。
Generally, magnesia powder is produced by thermally decomposing magnesium salts such as magnesium hydroxide and basic magnesium carbonate. However, the magnesia powder obtained by this pyrolysis method forms agglomerated particles due to the residual mother salt skeleton. Since the agglomerated particles remain even after mixing with the zirconia powder, the resulting magnesia sintered body has a non-uniform structure and poor mechanical properties.

本発明で使用されるジルコニア粉末は、例えばアルコキ
シド法によって調製することができる。この方法で得ら
れるジルコニア粉末は分散性が良好であり、マグネシア
粉末と均一に混合することができる。
The zirconia powder used in the present invention can be prepared, for example, by the alkoxide method. The zirconia powder obtained by this method has good dispersibility and can be uniformly mixed with the magnesia powder.

本発明で使用されるマグネシア粉末及びジルコニア粉末
は、共に、純度が99.9%以上であり、比表面積が5m2/g
以上であることが必要である。一般に焼結体中の粒子径
が小さいほど焼結体の機械的性質が優れるが、両粉末の
純度が上記下限より低いと、混合粉末の焼結時に粒成長
が進み、得られる焼結体の機械的性質が低下する。ま
た、一般に焼結の駆動力は表面エネルギーであり、比表
面積が大きい粉末ほど焼結性が良好であるが、両粉末の
比表面積が前記下限より小さいと、焼結性が低下し気孔
率1%以下の焼結体が得られなくなる。
The magnesia powder and the zirconia powder used in the present invention both have a purity of 99.9% or more and a specific surface area of 5 m 2 / g.
It is necessary to be above. Generally, the smaller the particle size in the sintered body, the better the mechanical properties of the sintered body, but if the purity of both powders is lower than the above lower limit, grain growth proceeds during the sintering of the mixed powders, Mechanical properties deteriorate. Generally, the driving force for sintering is surface energy, and the powder having a larger specific surface area has a better sinterability. However, if the specific surface area of both powders is smaller than the lower limit, the sinterability is lowered and the porosity is 1 % Or less sintered body cannot be obtained.

マグネシア粉末とジルコニア粉末との合計量に対するジ
ルコニア粉末の割合は0.1〜30重量%である。本発明に
おいて、ジルコニアは、マグネシアの焼結促進効果と焼
結体の強化効果とを有する。ジルコニア粉末の配合割合
が0.1重量%未満であると、マグネシアの焼結促進効果
が小さく気孔率1%以下の緻密な焼結体が得られない。
ジルコニア粉末の配合割合が4重量%以上になるとジル
コニアによる強化効果が発現されるようになるが、その
割合が30重量%を超えるともはや焼結促進効果及び焼結
体の強化効果に変化が認められなくなる。
The ratio of the zirconia powder to the total amount of the magnesia powder and the zirconia powder is 0.1 to 30% by weight. In the present invention, zirconia has the effect of promoting the sintering of magnesia and the effect of strengthening the sintered body. When the blending ratio of the zirconia powder is less than 0.1% by weight, the magnesia sintering promoting effect is small and a dense sintered body having a porosity of 1% or less cannot be obtained.
When the blending ratio of zirconia powder is 4% by weight or more, the strengthening effect of zirconia begins to be expressed, but when the ratio exceeds 30% by weight, changes in the sintering promoting effect and the strengthening effect of the sintered body are observed. I will not be able to.

マグネシア粉末とジルコニア粉末との混合方法について
は特に制限なく、それ自体公知の方法、例えば両者を乾
式混合する方法、両者をメタノール、エタノールなどの
有機溶媒中で湿式混合した後に有機溶媒を除去する方法
を採用することができる。
There is no particular limitation on the mixing method of the magnesia powder and the zirconia powder, a method known per se, for example, a method of dry-mixing them, a method of removing the organic solvent after wet mixing them in an organic solvent such as methanol or ethanol. Can be adopted.

マグネシア粉末及びジルコニア粉末との混合粉末から成
形体を調製する方法についても特に制限はなく、バイン
ダ類を用いて押出成形又は射出成形する方法、ラバープ
レス成形する方法などを適宜採用することができる。
There is also no particular limitation on the method for preparing a molded body from a mixed powder of magnesia powder and zirconia powder, and a method of extrusion molding or injection molding using a binder, a method of rubber press molding, or the like can be appropriately adopted.

つぎに、成形体を1400℃以上の温度で焼結することによ
って、本発明のマグネシア質焼結体が得られる。
Next, the molded body is sintered at a temperature of 1400 ° C. or higher to obtain the magnesia sintered body of the present invention.

焼結温度が1400℃未満であると焼結体中のジルコニアは
正方晶となる。この正方晶ジルコニアは200℃付近で単
斜晶に転移して膨張するため、マグネシア質焼結体に微
細な亀裂を生成させ、焼結体の機械的強度低下の原因と
なる。上記混合粉末を1400℃以上で焼結すると、生成す
るジルコニアはマグネシアによって安定化された立方晶
となり、相転移しにくくなる。この結果、熱的に安定で
機械的性質の優れたマグネシア質焼結体が得られる。焼
結の最高温度については特に制限はないが、過度に高い
温度で焼結すると、マグネシアの蒸発が起こるようにな
るので、一般に焼結の最高温度は1900℃である。
When the sintering temperature is lower than 1400 ° C, the zirconia in the sintered body becomes tetragonal. This tetragonal zirconia is transformed into a monoclinic crystal at about 200 ° C. and expands, so that minute cracks are generated in the magnesia sintered body, which causes a decrease in mechanical strength of the sintered body. When the mixed powder is sintered at 1400 ° C. or higher, the zirconia produced becomes a cubic crystal stabilized by magnesia, which makes it difficult for phase transition. As a result, a magnesia sintered body that is thermally stable and has excellent mechanical properties can be obtained. There is no particular limitation on the maximum temperature for sintering, but if sintering is performed at an excessively high temperature, evaporation of magnesia will occur, so the maximum temperature for sintering is generally 1900 ° C.

本発明で特定した純度及び比表面積を有するマグネシア
粉末とジルコニア粉末との混合粉末を焼結することによ
って、粒径3μm以下のマグネシア粒子70〜99.9重量%
と粒径3μm以下の立方晶ジルコニア粒子0.1〜30重量
%とからなる気孔率1%以下のマグネシア質焼結体が得
られる。
By sintering a mixed powder of magnesia powder and zirconia powder having the purity and specific surface area specified in the present invention, 70 to 99.9% by weight of magnesia particles having a particle diameter of 3 μm or less
And a cubic zirconia particle having a particle size of 3 μm or less and 0.1 to 30% by weight, a magnesia sintered body having a porosity of 1% or less can be obtained.

(実施例) 以下に本発明の実施例及び比較例を示す。以下におい
て、焼結体の嵩密度はアルキメデス法によって測定し、
理論密度に対する百分率で示した。焼結体の曲げ強度は
JIS R 1601に従い、焼結体から3×4×40mmの棒状
試験片を切り出し、表面をダイヤモンド砥石で研磨した
後、スパン30mm、クロスヘッドスピード0.5mm/分の条件
で室温及び1200℃で3点曲げ試験を行い測定した。ま
た、焼結体の破壊靭性(KIC)はビッカース圧痕法によっ
て求めた。
(Example) Below, the Example and comparative example of this invention are shown. In the following, the bulk density of the sintered body is measured by the Archimedes method,
It is shown as a percentage of the theoretical density. The bending strength of the sintered body is
In accordance with JIS R 1601, a rod-shaped test piece of 3 x 4 x 40 mm was cut out from the sintered body, the surface was polished with a diamond grindstone, and a span of 30 mm and a crosshead speed of 0.5 mm / min. A bending test was performed and measured. The fracture toughness (K IC ) of the sintered body was determined by the Vickers indentation method.

実施例1〜5 純度99.98%、比表面積8.4m2/gの等軸形の一次粒子から
なるマグネシア粉末と、純度99.95%、比表面積8.6m2/g
の粒状ジルコニア粉末とを、第1表に記載の割合で配合
し、エタノール溶媒を用いて37時間ボールミルにより混
合した後、エタノールを除去して、粉末混合物を得た。
Examples 1 to 5 Magnesia powder composed of equiaxed primary particles having a purity of 99.98% and a specific surface area of 8.4 m 2 / g and a purity of 99.95% and a specific surface area of 8.6 m 2 / g
The granular zirconia powder of No. 1 was blended in the proportions shown in Table 1, mixed by a ball mill for 37 hours using an ethanol solvent, and then ethanol was removed to obtain a powder mixture.

粉末混合物50gを80×54mmの金型に充填し、100kg/cm2
一軸加圧成形した後に、1.5ton/cm2の圧力でラバープレ
スして成形体を得た。つぎにこの成形体を電気炉に入
れ、1650℃で4時間焼結して、マグネシア質焼結体を製
造した。
50 g of the powder mixture was filled in a mold of 80 × 54 mm, uniaxially pressure molded at 100 kg / cm 2 , and then rubber pressed at a pressure of 1.5 ton / cm 2 to obtain a molded body. Next, this molded body was put into an electric furnace and sintered at 1650 ° C. for 4 hours to produce a magnesia sintered body.

得られたマグネシア質焼結体の特徴を第1表に示す。各
実施例で得られた焼結体中のジルコニア粉末の結晶系は
立方晶であった。
The characteristics of the obtained magnesia sintered body are shown in Table 1. The crystal system of the zirconia powder in the sintered body obtained in each example was cubic.

実施例6 純度99.98%、比表面積15.0m2/gの等軸形の一次粒子か
らなるマグネシア粉末と、純度99.95%、比表面積13.7m
2/gの粒状ジルコニア粉末とを99.9:0.1の割合で配合し
た以外は実施例1を繰り返した。結果を第1表に示す。
Example 6 Magnesia powder composed of equiaxed primary particles having a purity of 99.98% and a specific surface area of 15.0 m 2 / g, and a purity of 99.95% and a specific surface area of 13.7 m
Example 1 was repeated except that 2 / g of granular zirconia powder was blended in a ratio of 99.9: 0.1. The results are shown in Table 1.

比較例1 マグネシア粉末として比表面積2m2/gのものを使用した
以外は実施例3を繰り返した。結果を第1表に示す。
Comparative Example 1 Example 3 was repeated except that magnesia powder having a specific surface area of 2 m 2 / g was used. The results are shown in Table 1.

比較例2 ジルコニア粉末として比表面積2m2/gのものを使用した
以外は実施例3を繰り返した。結果を第1表に示す。
尚、比較例1〜2で得られた焼結体中のジルコニアの結
晶系は立方晶であった。
Comparative Example 2 Example 3 was repeated except that zirconia powder having a specific surface area of 2 m 2 / g was used. The results are shown in Table 1.
The crystal system of zirconia in the sintered bodies obtained in Comparative Examples 1 and 2 was cubic.

比較例3 焼結条件を1350℃、4時間に変えた以外は実施例1を繰
り返した。結果を第1表に示す。得られた焼結体中のジ
ルコニアの結晶系は正方晶であった。
Comparative Example 3 Example 1 was repeated except that the sintering conditions were changed to 1350 ° C. and 4 hours. The results are shown in Table 1. The crystal system of zirconia in the obtained sintered body was tetragonal.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】粒径3μm以下のマグネシア粒子70〜99.9
重量%と粒径3μm以下の立方晶ジルコニア粒子0.1〜3
0重量%とからなる気孔率1%以下の高強度マグネシア
質焼結体。
1. Magnesia particles 70-99.9 having a particle size of 3 μm or less
Cubic zirconia particles with weight% and particle size of 3 μm or less 0.1 to 3
A high-strength magnesia sintered body having a porosity of 1% or less consisting of 0% by weight.
【請求項2】純度99.9%以上、比表面積5m2/g以上で等
軸形の一次粒子からなるマグネシア粉末70〜99.9重量%
と、純度99.9%以上、比表面積5m2/g以上の粒状ジルコ
ニア粉末0.1〜30重量%との混合粉末を成形し、成形体
を1400℃以上で焼結することを特徴とする高強度マグネ
シア質焼結体の製造法。
2. 70 to 99.9% by weight of magnesia powder having a purity of 99.9% or more and a specific surface area of 5 m 2 / g or more and equiaxed primary particles.
And a mixture of 0.1 to 30% by weight of granular zirconia powder having a purity of 99.9% or more and a specific surface area of 5 m 2 / g or more, and the formed body is sintered at 1400 ° C. or more. Manufacturing method of sintered body.
JP62291681A 1987-09-29 1987-11-20 High strength magnesia sintered body and its manufacturing method Expired - Lifetime JPH0672042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291681A JPH0672042B2 (en) 1987-09-29 1987-11-20 High strength magnesia sintered body and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-242773 1987-09-29
JP24277387 1987-09-29
JP62291681A JPH0672042B2 (en) 1987-09-29 1987-11-20 High strength magnesia sintered body and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01201065A JPH01201065A (en) 1989-08-14
JPH0672042B2 true JPH0672042B2 (en) 1994-09-14

Family

ID=26535917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291681A Expired - Lifetime JPH0672042B2 (en) 1987-09-29 1987-11-20 High strength magnesia sintered body and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0672042B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182268A (en) * 1983-03-30 1984-10-17 黒崎窯業株式会社 Magnesia-zirconia sliding nozzle plate
JPS60215572A (en) * 1984-04-11 1985-10-28 東芝セラミツクス株式会社 Manufacture of magnesia partially stabilized zirconia

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182268A (en) * 1983-03-30 1984-10-17 黒崎窯業株式会社 Magnesia-zirconia sliding nozzle plate
JPS60215572A (en) * 1984-04-11 1985-10-28 東芝セラミツクス株式会社 Manufacture of magnesia partially stabilized zirconia

Also Published As

Publication number Publication date
JPH01201065A (en) 1989-08-14

Similar Documents

Publication Publication Date Title
JP3600933B2 (en) Method for producing aluminum titanate-based sintered body
CN114538921B (en) Glass-combined large-size zirconia compact sintered product
CN107417271A (en) A kind of preparation method of the bar-shaped brilliant enhancing dimension stone of magnesia alumina spinel of rare earth aluminium (silicon) hydrochlorate
JP2766445B2 (en) Sialon composite sintered body and method for producing the same
JPH0672042B2 (en) High strength magnesia sintered body and its manufacturing method
JPH02500267A (en) ceramic material
WO1999032417A1 (en) Dense refractories with improved thermal shock resistance
JPH01188459A (en) High purity magnesia sintered body and production thereof
EP0232095A2 (en) Ceramic composites from chemically derived magnesium-aluminate and zirconium oxide
JP2004315293A (en) Zirconia member for heat treatment and method for manufacturing the same
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JPH09301766A (en) Porous spinel clinker and its production
JPS6374978A (en) Ceramic composite body
JP2961389B2 (en) High strength magnesia sintered body and method for producing the same
JPH0794343B2 (en) Magnesia clinker and method for producing the same
JP2611405B2 (en) Method for producing zirconia refractories
JP2508511B2 (en) Alumina composite
JPS6337069B2 (en)
JPH0532454A (en) Sintered magnesia containing dispersed cubic zirconia particle and its production
JPH02233560A (en) High-strength calcined sialon-based compact
JP2001080960A (en) Production of zirconia refractory and zirconia refractory manufactured by the same
JP2001261431A (en) Chromia-zirconia sintered compact and its manufacturing method
JPH05279115A (en) Dense sintered compact of chromium oxide and its production
JPH02124764A (en) Manufacture of zirconia refractory
JPH01290554A (en) Sintered body of calcia obtained by casting and its production