JPH067152A - High temperature-sensitive strain of yeast for practical brewing and breeding method therefor or production of liquors and other brewed foods with the same - Google Patents
High temperature-sensitive strain of yeast for practical brewing and breeding method therefor or production of liquors and other brewed foods with the sameInfo
- Publication number
- JPH067152A JPH067152A JP36134291A JP36134291A JPH067152A JP H067152 A JPH067152 A JP H067152A JP 36134291 A JP36134291 A JP 36134291A JP 36134291 A JP36134291 A JP 36134291A JP H067152 A JPH067152 A JP H067152A
- Authority
- JP
- Japan
- Prior art keywords
- yeast
- strain
- galactose
- high temperature
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Alcoholic Beverages (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、実際の飲食品の醸造に
用いられている酵母(実用醸造酵母と呼ぶ)の2−デオ
キシ−ガラクトース(以下2−DGと呼ぶ)耐性株より
高温感受性となった実用醸造酵母とその育種法及びその
利用に関するものである。TECHNICAL FIELD The present invention has a higher temperature sensitivity than a 2-deoxy-galactose (hereinafter referred to as 2-DG) resistant strain of yeast (referred to as practical brewing yeast) used for brewing foods and drinks actually. The present invention relates to a practical brewing yeast, breeding method thereof and use thereof.
【0002】本発明の造成株はガラクトースの類似物で
ある2−DG耐性の性質を示すと同時にガラクトースを
炭素源として利用することができない。The engineered strain of the present invention exhibits the property of resistance to 2-DG, which is an analogue of galactose, and cannot utilize galactose as a carbon source.
【0003】実用醸造酵母に2−DG耐性という極く緩
やかな変異処理を行うことにより、実用特性を損なうこ
となく、高温感受性等の新たな性質を付加することがで
きる。取得株は、細胞融合や形質転換操作等の標識付き
株として、使用することができる。従って、本発明は高
温感受性等を利用した、これまでにない性質を持った実
用醸造酵母の育種に利用できるので、酒類及びその他醸
造食品の製造に大きく貢献するものである。By subjecting a practically brewed yeast to a very mild mutation treatment of 2-DG resistance, new properties such as high temperature sensitivity can be added without impairing practical characteristics. The acquired strain can be used as a labeled strain for cell fusion, transformation, etc. Therefore, the present invention can be used for breeding a practical brewer's yeast having unprecedented properties by utilizing high temperature sensitivity and the like, and greatly contributes to the production of alcoholic beverages and other brewed foods.
【0004】[0004]
【従来の技術】清酒醸造の副産物である酒粕の熟成に対
する高温感受性株が有効であることが、実用醸造酵母か
ら分離した1倍体の高温感受性株を用いて示されてい
る。(北村ら(醸協,86,605(1991))2. Description of the Related Art It has been shown that a high temperature sensitive strain for aging sake lees, which is a by-product of sake brewing, is effective by using a haploid high temperature sensitive strain isolated from a commercial brewer's yeast. (Kitamura et al. (Jyokyo, 86, 605 (1991))
【0005】しかし、通常、清酒、焼酎、果実酒、ビー
ル、ウイスキー等の製造に用いられている実用醸造酵母
(サッカロミセス セレビジエ)は倍数性が2倍体もし
くはそれ以上の高次倍数体であるので、その醸造特性を
損なうことなく劣性変異である高温感受性株を取得する
ことはできなかった。However, the practical brewer's yeast (Saccharomyces cerevisiae) usually used for the production of sake, shochu, fruit wine, beer, whiskey, etc. is a polyploid with diploid or higher polyploidy. , It was not possible to obtain a thermosensitive strain that is a recessive mutation without impairing its brewing characteristics.
【0006】一方、実験室株酵母において、ガラクトー
ス資化性の制御遺伝子であるgal4等の変異株はガラ
クトースの資化調節のみならず種々の表現形を示すこと
が知られていて、その一つに高温感受性になることが知
られていた。また、ガラクトースの類似物である2−D
Gに対して耐性を示す株は、主に遺伝学的にはgal1
及びgal4変異株であることが示されていた。
(T.Patt(Mol.Cell.Biol.,4,
994(1984)))[0006] On the other hand, in the laboratory strain yeast, it is known that mutant strains such as gal4 which is a galactose assimilation control gene show various phenotypes as well as regulation of galactose assimilation. Was known to be sensitive to high temperatures. In addition, 2-D, which is an analogue of galactose
Strains resistant to G are mainly genetically gal1
And gal4 mutant strains.
(T. Patt (Mol. Cell. Biol., 4,
994 (1984)))
【0007】[0007]
【発明が解決しようとする課題と解決するための手段】
本発明者らは、以上の観点から2−DG耐性というポジ
ティブ選択により実用醸造酵母からガラクトース資化能
を欠失した株を取得した。これらの変異株から高温感受
性株を選択した。この高温感受性株の性質について検討
を加え、高温時に自己消化を引き起こすことを見いだし
た。このようにして取得した実用醸造酵母を用いた温度
に対する増殖試験、清酒醸造試験や酒粕の熟成試験の結
果、有用な性質を有するものであることを認め本発明を
完成するに至った。[Problems to be Solved by the Invention and Means for Solving the Problems]
From the above viewpoints, the present inventors obtained a strain in which galactose-assimilating ability was deleted from a practical brewer's yeast by positive selection of 2-DG resistance. A high temperature sensitive strain was selected from these mutants. The characteristics of this high temperature sensitive strain were examined and it was found that it causes autodigestion at high temperature. As a result of the growth test against temperature, the sake brewing test, and the aging test of sake lees using the thus obtained practically brewed yeast, it was confirmed that the yeast has useful properties, and the present invention has been completed.
【0008】[0008]
【実施例1 2−DG耐性によるガラクトース非資化性
及び高温感受性株の造成】 酵母(Saccahromyces cerevisa
e)はガラクトースのアナログである2−DGを用い、
その耐性株が高温感受性になることにより、高温感受性
株を選択した。YNBD培地(酵母窒素源培地0.67
%,ブドウ糖2%)で前培養した清酒酵母協会7号株を
滅菌水で洗浄後、2−DG平板培地(2−DG0.02
%,酵母窒素源培地0.67%,グリセロール3%,寒
天2%)に接種し25℃,5日間培養する。培養後、約
10−6の頻度で出現してきた大きいコロニーをガラク
トース培地(酵母窒素源培地0.67%,ガラクトース
2%,寒天2%)及びYNBD培地に接種し、約10
−2の頻度でガラクトース非資化性株を取得した。さら
に、取得株の中から、37℃のYNBD培地で増殖しな
いものが1/2の頻度で取得することができた。しか
し、ここで取得できた変異株は復帰変異率が数%と高い
ため、2−DG平板培地に接種し、25℃での培養をさ
らに8回繰り返し、復帰変異率0.1%以下の安定な高
温感受性株を4株取得した。取得された株の性質を第1
表に示した。このうち、gal31株を高温感受性自己
消化酵母(微工研菌寄第12605号)とした。 Example 1 Construction of galactose non-assimilating and high temperature sensitive strain by 2-DG resistance Yeast (Saccharomyces cerevisiae)
e) uses 2-DG, which is an analog of galactose,
A high temperature sensitive strain was selected because the resistant strain became high temperature sensitive. YNBD medium (yeast nitrogen source medium 0.67
%, Glucose 2%), the Sake Yeast Society No. 7 strain was pre-incubated with sterilized water, and then washed with 2-DG plate medium (2-DG0.02
%, Yeast nitrogen source medium 0.67%, glycerol 3%, agar 2%) and cultured at 25 ° C. for 5 days. After culturing, large colonies that appeared at a frequency of about 10 −6 were inoculated into a galactose medium (yeast nitrogen source medium 0.67%, galactose 2%, agar 2%) and YNBD medium, and about 10
The galactose non-assimilating strain was obtained at a frequency of -2 . Furthermore, from the acquired strains, those that did not grow in YNBD medium at 37 ° C could be acquired at a frequency of 1/2. However, since the mutant strain obtained here has a high reversion rate of several%, it was inoculated on a 2-DG plate medium and further cultivated at 25 ° C. 8 times to obtain a stable remutation rate of 0.1% or less. 4 high temperature sensitive strains were acquired. First, the nature of the acquired stock
Shown in the table. Of these, the gal31 strain was used as a high temperature sensitive autolyzed yeast (Microtechnology Research Institute No. 12605).
【0009】[0009]
【実施例2 高温感受性自己消化酵母の性質】 gal31をYNBD液体培地中おいて許容温度(35
℃以下)で前培養し、対数増殖期にある細胞を非許容温
度に移すことにより、直ちに自己消化作用を起こし始め
る。この自己消化作用の進行状況は細胞内に存在する液
胞に存在する酵素の一種であるアルカリフォスファター
ゼの培地中への漏出によって調べることができる。本酵
素の漏出パターン(第1図)から考えると、非許容温度
移行後10時間以内にほぼ自己消化が完了する。なお、
アルカリフォスファターゼ活性は、A.Schurs等
の方法(J.Gen.Microbiol.,65,2
91(1971))に基づき、p−ニトロフェニル燐酸
(以下pNPP)の分解活性により測定することができ
る。Example 2 Properties of High Temperature Sensitive Autolyzed Yeast Gal31 was placed in a YNBD liquid medium at an allowable temperature (35
By pre-culturing at a temperature not higher than 0 ° C.) and transferring the cells in the logarithmic growth phase to a non-permissive temperature, the auto-digestion action starts immediately. The progress of this autodigestion action can be examined by leakage of alkaline phosphatase, which is one of the enzymes existing in vacuoles existing in cells, into the medium. Considering the leakage pattern of this enzyme (Fig. 1), the autolysis is almost completed within 10 hours after shifting to the non-permissive temperature. In addition,
Alkaline phosphatase activity is determined by A. Schurs et al. (J. Gen. Microbiol., 65, 2
91 (1971)), and can be measured by the decomposition activity of p-nitrophenyl phosphoric acid (hereinafter, pNPP).
【0010】この自己消化にともない生菌数は対数的な
減少を示し、16時間後には10− 3以下に減少した。
(第2図)また、自己消化にはプロテアーゼの活性化が
必要であるが、J.H.Scottの方法(J.Bac
teriology,142,414(1980))従
い、アゾコールを基質として、その活性を測定した結
果,非許容温度下では細胞内のプロテアーゼ活性の上昇
が確認された。(第3図)[0010] Number of viable cells due to the autolysis represents a logarithmic decline, after 16 hours 10 - decreased to 3 or less.
(Fig. 2) Moreover, although protease activation is required for autolysis, J. H. Scott's method (J. Bac
Teriology, 142, 414 (1980)), and the activity was measured using azochol as a substrate. As a result, an increase in intracellular protease activity was confirmed under a non-permissive temperature. (Fig. 3)
【0011】このgal31の種々の温度における生育
試験を、バイオフォトレコーダ(TOYOKAGAKU
TN−112D)を用いて行った。その結果を第4図
に示した。これは、YPD液体培地における各温度の増
殖を660nmでの濁度変化測定したものであり、本菌
株は37℃以上の非許容温度における成育せず、至適増
殖温度は27℃であった。この温度は協会7号の32℃
に比べ低い温度であり、また20℃以下の低温域での増
殖は急速に低下する傾向が存在した。18℃ではK−7
に比べ、最大菌体密度に達するまでに40時間程成育が
遅れた。A growth test of this gal31 at various temperatures was carried out using a biophoto recorder (TOYOKAGAKU).
TN-112D). The results are shown in FIG. This is a measurement of turbidity change at 660 nm in YPD liquid medium at each temperature. The strain did not grow at a non-permissive temperature of 37 ° C or higher, and the optimum growth temperature was 27 ° C. This temperature is 32 ° C of Association No. 7
The temperature was lower than that of the above, and the growth in the low temperature range of 20 ° C. or lower tended to decrease rapidly. K-7 at 18 ℃
Compared with, the growth was delayed by about 40 hours before reaching the maximum cell density.
【0012】本菌株の発酵特性を第5図に示した。発酵
液は10%ブドウ糖、1%ペプトン、0.5%酵母エキ
スを使用し、初発接種菌数を106及び108/mlと
して、15℃一定で、炭酸ガスの減量により発酵性を測
定した。菌体増殖の影響をほとんど受けない初発菌数1
08/mlの試験区分では親株と同等の発酵性を示した
が、106/mlの区分では低温下で増殖の阻害の影響
が出て、やや遅れる傾向が認められた。The fermentation characteristics of this strain are shown in FIG. The fermentation liquid used was 10% glucose, 1% peptone, 0.5% yeast extract, the initial inoculum count was 10 6 and 10 8 / ml, and the fermentability was measured by reducing the amount of carbon dioxide at a constant 15 ° C. . Initial number of bacteria 1 that is hardly affected by bacterial growth
In 0 8 / ml of test category showed parent equivalent fermentable, but the classification in 10 6 / ml out effect of inhibition of growth at a low temperature, slightly delayed tended.
【0013】[0013]
【実施例3 gal31を用いた清酒小仕込醸造試験】 第2表の仕込配合に基づき、本菌株の清酒醸造における
性質を親株と比較し、70%精白の白米(品種日本晴)
総米150gを用いて、小仕込試験を行った。踊りは2
日間とし、添及水中に107/mlになるよう酵母を添
加した。ただし、増殖試験の結果本菌株が低温下で増殖
が抑えられる特性が存在したので、醪品温を15℃一定
の標準型及び醪前半20℃(留め後5日目まで)後半1
5℃の前急後暖型との2区分の発酵経過を第6図に示し
た。前急後暖型では本菌株は親株と変わらない発酵性を
示し、生成酒についてもその分析値はほとんど差異は認
められなかった。(第3表)しかし、標準経過では醪中
での本菌株の増殖低下によると考えられる、発酵遅延と
生成酒成分の変化が認められた。 [Example 3 Sake small-brewing brewing test using gal31] Based on the mixing formulation shown in Table 2, the characteristics of this strain in sake-brewing were compared with those of the parent strain, and 70% polished white rice (variety Nihonbare) was used.
A small batch test was conducted using 150 g of total rice. Dance is 2
Yeast was added to the addition water so as to be 10 7 / ml. However, as a result of the proliferation test, since the strain had the property of suppressing the proliferation at low temperature, the standard type with a constant temperature of 15 ° C and the first half of the fermentation was 20 ° C (up to the 5th day after the end of the second half).
FIG. 6 shows the fermentation process in two sections, that is, the warm type before and after 5 ° C. The strain showed the same fermentability as that of the parent strain in the pre-rapid and post-warm type, and there was almost no difference in the analytical values of the produced sake. (Table 3) However, in the standard course, the fermentation delay and the change in the produced liquor component, which are considered to be due to the reduced growth of the strain in the mash, were observed.
【0014】[0014]
【実施例4 清酒粕の熟成方法と成分変化】 実施例3の前急後暖型で得られた清酒粕約150gをビ
ーカーに移し、許容温度(25℃)と非許容温度(37
℃)で貯蔵し、経時的に10gずつサンプリングを行
い、酵母の自己消化の状態を調べた。サンプルを50m
lの蒸留水に懸濁し、4℃で清酒粕中の水溶性成分の抽
出を一晩行った。抽出後、遠心分離(8,000rpm
x20分)を行い、上清を0.45μmのフィルターで
ろ過し、ろ液を分析用サンプルとした。分析用カラムと
してChemo−copak Nucleosil 1
OSAを用いた高速液体クロマトグラフィーによりS−
アデノシルメチオニン量について定量した。酵母の液胞
に蓄積されるとされるS−アデノシルメチオニンは非許
容温度で貯蔵6時間後には多量に清酒粕中に放出され
た。(第7図) また、アルカリフォスファターゼの漏
出及びプロテアーゼ活性の上昇傾向が認められ、酒粕の
熟成が進行しているものと考えられた。[Example 4] Aging method of sake lees and changes in components About 150 g of the sake lees obtained in the warm type before and after the rapid heating of Example 3 were transferred to a beaker, and allowed temperature (25 ° C) and non-permissible temperature (37).
(° C), and 10 g of each sample was sampled over time to examine the state of autolysis of yeast. 50m sample
The suspension was suspended in 1 l of distilled water and the water-soluble components in the sake lees were extracted overnight at 4 ° C. After extraction, centrifuge (8,000 rpm
x 20 minutes), the supernatant was filtered through a 0.45 μm filter, and the filtrate was used as a sample for analysis. Chemo-copak Nucleosil 1 as an analytical column
S-by high performance liquid chromatography using OSA
The amount of adenosylmethionine was quantified. A large amount of S-adenosylmethionine, which is said to be accumulated in yeast vacuoles, was released in sake lees after 6 hours of storage at a non-permissive temperature. (FIG. 7) In addition, leakage of alkaline phosphatase and an increase tendency of protease activity were observed, and it was considered that aging of sake lees was in progress.
【0015】[0015]
【発明の効果】以上の結果から本菌株(gal31)は
低温条件において、やや増殖性が低下するものの、前急
後暖型醪経過を経ることにより親株と同等の発酵性を有
し、高温条件下において速やかに自己消化を完了する性
質を持つものであった。また、自己消化に要する時間は
最短で6時間程度と考えられ、本酵母を用いることによ
り短期に清酒粕の熟成が可能となった。EFFECTS OF THE INVENTION From the above results, the strain (gal31) of the present invention has a slightly reduced growth property under low temperature conditions, but has a fermentability equivalent to that of the parent strain due to the progress of warm type before and after the rapid heating, and has high temperature conditions. It had the property of completing self-digestion immediately below. Further, the time required for self-digestion is considered to be about 6 hours at the shortest, and the use of this yeast made it possible to ripen the sake lees in a short period of time.
【0016】また、発酵及び醸造物の香味に酵母の自己
消化による影響は大きく、高温感受性株により発酵を行
い、発酵末期に非許容温度処理を行うことにより、酵母
の自己消化による早期熟成・成分変化もしくは香味の変
化を与えることが可能である。Further, the effect of self-digestion of yeast on the fermentation and flavor of the brew is large, and fermentation is carried out by a high temperature sensitive strain, and non-permissive temperature treatment is carried out at the end of fermentation, whereby early ripening and components by self-digestion of yeast are carried out. It is possible to give a change or a change in flavor.
【0017】さらに、本菌株及び当選択法により取得さ
れる変異株はガラクトース要求性株及びガラクトース要
求性かつ高温感受性株を取得することができた。T.P
att等によれば前者はgal1変異株、後者がgal
4変異株である可能性が高い。この様に取得された株を
細胞融合時の標識付き株として分子育種の宿主として利
用することが可能である。Furthermore, it was possible to obtain a galactose-requiring strain and a galactose-requiring and high temperature-sensitive strain as the present strain and the mutant strain obtained by this selection method. T. P
According to att et al., the former is a gal1 mutant strain, the latter is
It is highly likely that it is a 4 mutant strain. The strain thus obtained can be used as a host for molecular breeding as a labeled strain at the time of cell fusion.
【0018】[0018]
第1図は菌体内及び菌体外に漏出するアルカリフォスフ
ァターゼ活性の経過図、第2図は許容・非許容温度下で
の正菌数の変化図、第3図は菌体内及び菌体外に漏出す
るプロテアーゼ活性の経過図、第4図は各種温度での増
殖図、第5図は発酵経過図、第6図は清酒仕込みによる
発酵経過図、第7図は清酒粕中の熟成度をS−アデノシ
ルメチオニン漏出経過から見た図である。Fig. 1 shows the progress of alkaline phosphatase activity that leaks into and out of the cells, Fig. 2 shows the change in the number of normal bacteria under permissive and non-permissive temperatures, and Fig. 3 shows both inside and outside the cells. Figure 4 shows the progress of leaking protease activity, Figure 4 shows the growth at various temperatures, Figure 5 shows the progress of fermentation, Figure 6 shows the progress of fermentation with sake, and Figure 7 shows the maturity in sake lees. -Figures seen from the course of adenosylmethionine leakage.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 星野 徹也 千葉県加曽利町889番 千葉県工業試験場 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuya Hoshino 889 Kasori-cho, Chiba Prefecture Chiba Prefectural Industrial Research Institute
Claims (2)
りガラクトース非資化性及び高温感受性実用醸造酵母の
造成法。1. A method for producing a galactose non-assimilating and high temperature-sensitive practical brewer's yeast from a 2-deoxy-galactose resistant strain.
母を用いることを特徴とする酒類及びその他醸造食品の
製造法。2. A method for producing alcoholic beverages and other brewed foods, which comprises using the high-temperature-sensitive practical brewer's yeast of claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36134291A JPH07114687B2 (en) | 1991-12-27 | 1991-12-27 | High temperature sensitive strain of yeast for practical use and breeding method thereof or method for producing alcoholic beverages and other brewed foods using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36134291A JPH07114687B2 (en) | 1991-12-27 | 1991-12-27 | High temperature sensitive strain of yeast for practical use and breeding method thereof or method for producing alcoholic beverages and other brewed foods using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH067152A true JPH067152A (en) | 1994-01-18 |
JPH07114687B2 JPH07114687B2 (en) | 1995-12-13 |
Family
ID=18473189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36134291A Expired - Lifetime JPH07114687B2 (en) | 1991-12-27 | 1991-12-27 | High temperature sensitive strain of yeast for practical use and breeding method thereof or method for producing alcoholic beverages and other brewed foods using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07114687B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07236465A (en) * | 1994-02-28 | 1995-09-12 | Tax Adm Agency | Sake having low alcohol concentration |
JP2002051765A (en) * | 2000-08-11 | 2002-02-19 | Takara Shuzo Co Ltd | New yeast and method for acquiring the yeast |
-
1991
- 1991-12-27 JP JP36134291A patent/JPH07114687B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07236465A (en) * | 1994-02-28 | 1995-09-12 | Tax Adm Agency | Sake having low alcohol concentration |
JP2002051765A (en) * | 2000-08-11 | 2002-02-19 | Takara Shuzo Co Ltd | New yeast and method for acquiring the yeast |
JP4565137B2 (en) * | 2000-08-11 | 2010-10-20 | 宝ホールディングス株式会社 | Novel yeast and method for obtaining the same |
Also Published As
Publication number | Publication date |
---|---|
JPH07114687B2 (en) | 1995-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dung et al. | Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters | |
Sefa-Dedeh et al. | Yeasts in the traditional brewing of pito in Ghana | |
JP2009153506A (en) | Method for production of distilled liquor | |
Van Der Walt | Kaffircorn malting and brewing studies. II.—Studies on the microbiology of Kaffir beer | |
KR102538502B1 (en) | Novel Hanseniaspora vineae G818 and use thereof | |
KR102361392B1 (en) | Aspergillus oryzae N2-2, koji comprising thereof and manufacturing method for traditonal alcoholic drink using the same | |
Kish et al. | A note on a selective medium for wine yeasts | |
JP3057557B2 (en) | New yeasts and their uses | |
JPH067152A (en) | High temperature-sensitive strain of yeast for practical brewing and breeding method therefor or production of liquors and other brewed foods with the same | |
JP5970196B2 (en) | Breeding method of high acid type yeast and method for producing alcoholic beverage using the high acid type yeast | |
JPH0746982B2 (en) | Mutant yeast culture method | |
JP2683058B2 (en) | Method for producing alcoholic beverage or fermented seasoning | |
KR100462279B1 (en) | An Ethanol-tolerant Strain, Saccharomyces cerevisiae SE211 and The Process For Manufacturing Rice Wine Using This Strain | |
KR102538506B1 (en) | Novel Pichia kudriavzevii N373 and use thereof | |
KR102538504B1 (en) | Novel Wickerhamomyces anomalus A159 and use thereof | |
CN113528361A (en) | Saccharomyces cerevisiae suitable for brewing rice wine by liquefaction method and application thereof | |
KR20220083164A (en) | Novel Saccharomyces cerevisiae W153 and use thereof | |
JP4402779B2 (en) | New yeast with high organic acid production and its use | |
JP4177655B2 (en) | Novel yeast and method for producing sake using the same | |
JP4402207B2 (en) | Alcohol-resistant yeast | |
JP4008539B2 (en) | New yeast with high organic acid production and its use | |
JP4130246B2 (en) | Sake production method using yeast isolated from seawater | |
JPH0889236A (en) | New low-or medium-temperature fermenting yeast and production of wine using the same yeast | |
JP5380650B2 (en) | New brewing yeast | |
Zhang et al. | Restoration of Choujiu Koji and evaluation of its brewing performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |