JPH0671521B2 - Molten salt treatment method - Google Patents

Molten salt treatment method

Info

Publication number
JPH0671521B2
JPH0671521B2 JP60020549A JP2054985A JPH0671521B2 JP H0671521 B2 JPH0671521 B2 JP H0671521B2 JP 60020549 A JP60020549 A JP 60020549A JP 2054985 A JP2054985 A JP 2054985A JP H0671521 B2 JPH0671521 B2 JP H0671521B2
Authority
JP
Japan
Prior art keywords
molten salt
adsorbent
ion exchange
glass
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60020549A
Other languages
Japanese (ja)
Other versions
JPS61178004A (en
Inventor
清澄 藤井
隆司 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP60020549A priority Critical patent/JPH0671521B2/en
Publication of JPS61178004A publication Critical patent/JPS61178004A/en
Publication of JPH0671521B2 publication Critical patent/JPH0671521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Surface Treatment Of Glass (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不純物イオンとしてリチウムイオンを含むを
含む溶融塩の精製処理に関する。
TECHNICAL FIELD The present invention relates to a refining treatment of a molten salt containing lithium ions as impurity ions.

〔従来技術の説明〕[Description of Prior Art]

ガラス、結晶化ガラスあるいはセラミックス等の無機質
素材を硫酸塩、硝酸塩等の溶融塩に接触させ、前記素材
中に含まれるイオンと溶融塩中に含まれるイオンとを交
換させることにより、上記素材の表面層に歪を与えて強
化したり、あるいは断面方向に所望の屈折率勾配を形成
するなど素材の物性に変化を与える溶融塩接触処理方法
が広く行なわれている。
By contacting an inorganic material such as glass, crystallized glass or ceramics with a molten salt such as a sulfate or a nitrate, and exchanging the ions contained in the material with the ions contained in the molten salt, the surface of the material A molten salt contact treatment method is widely used in which the physical properties of the material are changed, for example, by imparting strain to the layer to strengthen it or forming a desired refractive index gradient in the cross-sectional direction.

上記のような溶融塩接触処理において、溶融塩中に不純
物イオンが微量でも含まれているとイオン交換反応に大
きな影響を及ぼし、望ましい物性変化を得ることが不可
能になる場合が往々にして生じる。
In the molten salt contact treatment as described above, if a small amount of impurity ions are contained in the molten salt, the ion exchange reaction is greatly affected, and it is often impossible to obtain desired changes in physical properties. .

一例として、リチウムイオンを含む棒状のガラス素材を
溶融塩に浸漬してイオン交換処理を行ない、ガラス素材
の断面内に中心から周辺に向けて漸減する屈折率分布を
与えて屈折率分布型レンズを製造する工程において、イ
オン交換処理前に既に溶融塩中に不純物イオンとして約
100ppm以上のリチウムイオンが含まれる場合、屈折率分
布が許容範囲を越えて所期の性能を有するレンズが得ら
れないという問題が生じる。
As an example, a rod-shaped glass material containing lithium ions is immersed in a molten salt for ion exchange treatment, and a gradient index lens is formed by giving a gradually decreasing refractive index distribution from the center to the periphery in the cross section of the glass material. In the process of manufacturing, before the ion exchange treatment, about
When 100 ppm or more of lithium ions are contained, the refractive index distribution exceeds the allowable range, and there arises a problem that a lens having desired performance cannot be obtained.

上記のように、イオン交換処理の繰り返しによって溶融
塩中に蓄積される不純物イオンを除去する方法として、
水への溶解度の差を利用した晶析が行なわれている。
As described above, as a method of removing the impurity ions accumulated in the molten salt by repeating the ion exchange treatment,
Crystallization is performed by utilizing the difference in solubility in water.

〔従来技術の問題点〕[Problems of conventional technology]

晶析による溶融塩精製方法では、大量の高温状態にある
溶融塩を冷却した後水に溶かすことによる熱エネルギー
の損失、および飽和溶解度までの塩を廃棄することによ
る物質的損失など経済的損失が大きい。
In the molten salt refining method by crystallization, there is an economic loss such as a loss of heat energy by cooling a large amount of molten salt in a high temperature state and then dissolving it in water, and a material loss by discarding the salt up to the saturated solubility. large.

また数十ppmという微量の不純物イオンを取り除くこと
は、技術的並びに経済的に非常に困難である。
Also, it is technically and economically very difficult to remove a small amount of impurity ions of several tens of ppm.

〔問題点を解決する手段〕[Means for solving problems]

高温に保持された溶融塩を、耐熱性の良好な無機の吸着
材であるγ−アルミナに浸漬等により一定時間接触させ
る。上記の無機吸着材として備えていなければならない
条件として、溶融塩中の不純物イオンを吸着する能力が
大きいこと、溶融塩に対して化学的に安定であこと、溶
融塩の保持されている高温度域で安定であること、溶融
塩中に他の不純物イオンを放出しないことなどが挙げら
れる。
The molten salt kept at a high temperature is contacted with γ-alumina, which is an inorganic adsorbent having good heat resistance, for a certain period of time by dipping or the like. The conditions that the above inorganic adsorbent must have are that it has a large ability to adsorb impurity ions in the molten salt, that it is chemically stable to the molten salt, and that the molten salt is kept at a high temperature. It is stable in the range and does not release other impurity ions into the molten salt.

不純物イオンを吸着する能力が大きいことに関しては、
吸着材の比表面積が大きいこと、例えば多孔質であるこ
とが望ましい。加えて各不純物イオンに対する吸着の能
力の大きさ、つまり選択性に関しては、多孔質体の細孔
分布が大きく影響するため、不純物イオンの種類に応じ
て選択性の高い無機吸着材を適用することが望ましい。
Regarding the large ability to adsorb impurity ions,
It is desirable that the adsorbent have a large specific surface area, for example, be porous. In addition, the size of the adsorption capacity for each impurity ion, that is, the selectivity, is greatly affected by the pore distribution of the porous body.Therefore, apply an inorganic adsorbent with high selectivity according to the type of impurity ion. Is desirable.

以上のような条件を備えた無機吸着材として、カオリ
ン、活性白土、ゼオライト、クレーなどケイ酸塩質の粘
土鉱物、ケイ酸ナトリウム、アルミン酸ナトリウム、ホ
ウ酸ナトリウムなどの無水塩、シリカゲル、アルミナ、
あるいは各種ガラスの粉末、多孔質ガラス等の粉体ある
いは成形体を使用することができ、中でもγ−アルミナ
が好適である。また、アルミナは通常の工業的製造プロ
セスによるものの他にアルミナゾルを脱水・焼成したも
のを用いることもできる。
As the inorganic adsorbent having the above conditions, kaolin, activated clay, zeolite, silicate clay minerals such as clay, sodium silicate, sodium aluminate, anhydrous salts such as sodium borate, silica gel, alumina,
Alternatively, powders of various kinds of glass, powders of porous glass or the like or molded products can be used, and γ-alumina is preferable. In addition to alumina produced by a normal industrial manufacturing process, alumina obtained by dehydrating and firing alumina sol can also be used.

〔作用〕[Action]

本発明によれば、溶融塩に含まれる不純物イオンである
リチウムイオンが吸着材に吸着されて溶融塩中から除去
される。また上記の不純物イオン除去効果以外に、溶融
塩の高温保持に伴なう劣化が防止され、長期間にわたり
安定した性質のもとで使用することができる。
According to the present invention, lithium ions which are impurity ions contained in the molten salt are adsorbed by the adsorbent and removed from the molten salt. Further, in addition to the above-mentioned effect of removing impurity ions, deterioration caused by holding the molten salt at a high temperature is prevented, and the molten salt can be used with stable properties for a long period of time.

〔実施例〕 以下本発明を図面に示した実施例について詳細に説明す
る。
[Examples] Hereinafter, the present invention will be described in detail with reference to the examples shown in the drawings.

図示例は屈折率分布型レンズの製造工程を示し、長尺の
丸棒状ガラス素材1の多数本を高温に保持した硝酸ナト
リウム等の溶融塩2中に浸漬し、ガラス中に成分として
含まれるリチウム等のイオンと、溶融塩2中に含まれる
ナトリウム等のイオンを交換させることにより、上記素
材1の断面内にイオンの濃度分布による中心から周辺に
向けて漸減する屈折率分布を形成する。このイオン交換
処理の過程でガラス中から抜け出たイオンが塩中に残留
蓄積し、以後同一の溶融塩を用いてイオン交換処理を繰
り返す毎に溶融塩2中の上記不純物イオンの量が多くな
って、ガラス素材表面のイオン交換反応が阻害されるよ
うになり、所望の屈折率分布が得られなくなる。
The illustrated example shows a process for manufacturing a gradient index lens, in which a large number of long round rod-shaped glass materials 1 are immersed in a molten salt 2 such as sodium nitrate held at high temperature to obtain lithium contained as a component in the glass. By exchanging such ions with ions such as sodium contained in the molten salt 2, a refractive index distribution gradually decreasing from the center to the periphery due to the ion concentration distribution is formed in the cross section of the material 1. Ions that have come out of the glass in the course of this ion exchange treatment remain and accumulate in the salt, and each time the ion exchange treatment is repeated using the same molten salt, the amount of the impurity ions in the molten salt 2 increases. As a result, the ion exchange reaction on the surface of the glass material is hindered, and the desired refractive index distribution cannot be obtained.

そこで上記工程で、ガラス素材1のイオン交換処理を終
えた後、素材1を溶融塩から抜き出し、この溶融塩2中
に金網カゴ等の液流通自在な容器3内に収納した無機質
吸着材4を浸漬する。高温に保持された溶融塩2内には
自然対流5を生じているので、この対流5に沿った適宜
箇所に上記の吸着材4を浸漬配置すると、溶融塩2が吸
着材4に接触通過する際に溶融塩中に含まれる不純物イ
オンが吸着材4に吸着され、一定時間浸漬することによ
って溶融塩2内の不純物イオンが充分に除去される。
Therefore, in the above process, after the ion exchange treatment of the glass material 1 is completed, the material 1 is extracted from the molten salt, and the inorganic adsorbent 4 stored in the molten salt 2 in a container 3 such as a wire netting basket in which the liquid can flow. Soak. Since natural convection 5 is generated in the molten salt 2 held at a high temperature, when the adsorbent 4 is immersed and disposed at an appropriate position along the convection 5, the molten salt 2 passes through the adsorbent 4 in contact therewith. At this time, the impurity ions contained in the molten salt are adsorbed by the adsorbent 4 and immersed in the adsorbent 4 for a certain period of time to sufficiently remove the impurity ions in the molten salt 2.

上記の精製処理を終えた後、吸着材4を溶融塩2から取
り出し、この溶融塩2を再び素材1のイオン交換処理に
用いる。このように、イオン交換処理のサイクル毎に、
吸着材4を浸漬、抜き出しする精製処理を施すことによ
って常に安定した条件でイオン交換を行なうことがで
き、良好な品質のものが得られる。
After finishing the above-mentioned purification treatment, the adsorbent 4 is taken out from the molten salt 2 and this molten salt 2 is used again for the ion exchange treatment of the raw material 1. In this way, for each cycle of ion exchange treatment,
By subjecting the adsorbent 4 to a refining treatment in which it is immersed and withdrawn, it is possible to always carry out ion exchange under stable conditions and obtain a product of good quality.

本発明方法で吸着材4を溶融塩2に浸漬するに当って
は、吸着能率を上げるため溶融塩2を攪拌器を用いて強
制攪拌してもよい。あるいは吸着材4の方を溶融塩2中
で広範囲にわたり移動させてもよい。
When the adsorbent 4 is immersed in the molten salt 2 by the method of the present invention, the molten salt 2 may be forcibly stirred using a stirrer in order to increase the adsorption efficiency. Alternatively, the adsorbent 4 may be moved in the molten salt 2 over a wide range.

さらに、イオン交換処理する際の溶融塩は、これに浸漬
するガラスが変形しない範囲の温度に保持されるが、ガ
ラスを抜き出した後本発明に係る吸着処理を施すときに
溶融塩をイオン交換処理時よりも高めれば吸着処理能率
が向上するので好ましい。
Further, the molten salt during the ion exchange treatment is held at a temperature in the range in which the glass immersed therein is not deformed, but the molten salt is subjected to the ion exchange treatment when the adsorption treatment according to the present invention is performed after the glass is extracted. It is preferable to increase it higher than the time because the adsorption treatment efficiency is improved.

例えばガラスのイオン交換処理時は溶融塩を450℃と
し、吸着処理時は500℃とする。また第2図に示すよう
に、複数の溶融塩浴2A,2B………を用意し、これらのう
ち一部の塩浴2Aでガラス素材1のイオン交換処理を行な
っている間、残りの塩浴2Bに容器3に入れた吸着材4を
浸漬して精製処理を行ない、次いで吸着材3を抜き出し
た溶融塩浴2Bにイオン交換すべきガラス素材1を浸漬
し、素材1を抜き出した溶融塩2A側に吸着材4を浸漬す
るというように、ガラス素材のイオン交換と溶融塩の精
製処理とを複数の溶融塩浴間で交互に行なう方法をとる
ことができる。さらに、第3図に示すように、イオン交
換処理用塩浴2Aに連通させた精製槽5内に塩浴2Aから送
給される溶融塩2中に吸着材4を浸漬し、ここで不純物
イオンの除去を行なった溶融塩2をイオン交換処理用塩
浴2Aに再び戻すという連続循環処理を行なうこともでき
る。
For example, the molten salt is heated to 450 ° C. during the glass ion exchange treatment, and 500 ° C. during the adsorption treatment. Also, as shown in FIG. 2, a plurality of molten salt baths 2A, 2B, ... Are prepared, and while some of these salt baths 2A are performing the ion exchange treatment of the glass material 1, the remaining salt is used. The adsorbent 4 contained in the container 3 is immersed in the bath 2B for purification treatment, and then the molten salt from which the adsorbent 3 is extracted is immersed in the glass material 1 to be ion-exchanged, and the molten salt obtained by extracting the material 1 is melted. It is possible to adopt a method in which the ion exchange of the glass material and the refining treatment of the molten salt are alternately performed between a plurality of molten salt baths, such as immersing the adsorbent 4 on the 2A side. Further, as shown in FIG. 3, the adsorbent 4 is immersed in the molten salt 2 fed from the salt bath 2A in the refining tank 5 in communication with the salt bath 2A for ion exchange treatment. It is also possible to carry out a continuous circulation treatment in which the molten salt 2 from which the above has been removed is returned to the ion exchange treatment salt bath 2A again.

以下に具体的な数値実施例を示す。Specific numerical examples will be shown below.

硝酸ナトリウム200gに硝酸リチウム0.2gを混合して450
℃で溶融して微量不純物イオンとしてリチウムイオンを
約100ppm含む溶融塩を作成した。その溶融塩中にγ−ア
ルミナの5mm程度の粒状成型体を18g、ケイ酸ナトリウム
を2g、アンミン酸ナトリウム2gおよびSiO2−B2O3−ZnO
−CaO−MgO−Na2O−K2Oの組成を有するガラス粉末を2g
それぞれ個別に投入した。以上の無機吸着材は何れも市
販製品を用いた。そして5日後と10日後の溶融塩中のリ
チウムイオンの量を炎光分析によって測定したところ第
1表に示すような結果を得た。
450 g of 200 g of sodium nitrate mixed with 0.2 g of lithium nitrate
A molten salt containing about 100 ppm of lithium ions as trace impurity ions was prepared by melting at ℃. In the molten salt, γ-alumina granular shaped body of about 5 mm 18 g, sodium silicate 2 g, sodium ammine 2 g and SiO 2 -B 2 O 3 -ZnO
2g of glass powder having a composition of -CaO-MgO-Na 2 O- K 2 O
Each was put in individually. Commercial products were used for all of the above inorganic adsorbents. The amount of lithium ions in the molten salt after 5 days and 10 days was measured by flame photometry, and the results shown in Table 1 were obtained.

第1表からわかるように、リチウムイオンを吸着する能
力の最も高かったγ−アルミナ粒状成型体では10日後の
溶融塩中のリチウムイオン量が23ppmまで下がり、この
ことによりγ−アルミナ粒状成型体のリチウムイオン吸
着率は77%に達した。ここで吸着率は無機吸着材を投入
する前の溶融塩中リチウムイオン量、100ppmに対する同
投入後の無機吸着材によって除去されたリチウムイオン
量のパーセントで表わした。また同じく第1表よりわか
るように各無機吸着材の投入量を増すこと、あるいは投
入の時間を延ばすことでリチウムイオン吸着率をさらに
改善することが可能である。
As can be seen from Table 1, in the γ-alumina granular molded body, which had the highest ability to adsorb lithium ions, the amount of lithium ions in the molten salt after 10 days dropped to 23 ppm. The lithium ion adsorption rate reached 77%. Here, the adsorption rate is represented by the amount of lithium ions in the molten salt before the addition of the inorganic adsorbent, and the percentage of the amount of lithium ions removed by the inorganic adsorbent after the addition with respect to 100 ppm. Also, as can be seen from Table 1, it is possible to further improve the lithium ion adsorption rate by increasing the amount of each inorganic adsorbent added or by prolonging the time of the addition.

次に他の実施例について説明する。Next, another embodiment will be described.

SiO2 58mol%,MgO 12mol%,PbO 6mol%,TiO2 4mol%,
Na2O 8mol%および/Li2O 8mol%の組成より成るガラス
の直径1.1mmφのロッド状成型体、つまりガラスロッド
を450℃に保持した硝酸ナトリウム溶融塩中に7日間浸
漬しイオン交換して屈折率分布型のレンズを作成したと
ころ、溶融塩中には、イオン交換後163ppmのリチウムイ
オンが含まれることが炎光分析によりわかった。その後
前記溶融塩を未処理の状態で再度前記ガラス組成を有す
るガラスロッドのイオン交換に用いたところ、溶融塩中
の不純物リチウムイオンのため屈折率分布が所望の形状
からはずれたものとなりレンズ製造が不可能であった。
SiO 2 58mol%, MgO 12mol%, PbO 6mol%, TiO 2 4mol%,
A rod-shaped molded body of glass having a diameter of 1.1 mm and composed of Na 2 O 8 mol% and / Li 2 O 8 mol%, that is, a glass rod was immersed in a sodium nitrate molten salt kept at 450 ° C. for 7 days for ion exchange. When a gradient index lens was prepared, it was found by flame photometry that the molten salt contained 163 ppm of lithium ions after ion exchange. After that, when the molten salt was used again in an untreated state for ion exchange of the glass rod having the glass composition, the refractive index distribution was out of the desired shape due to the impurity lithium ions in the molten salt, and the lens was manufactured. It was impossible.

そこで、イオン交換後に163ppmの不純物リチウムイオン
を含む硝酸ナトリウム溶融塩200gを各々400℃,450℃,50
0℃および550℃に保持した塩浴中に、市販のアルミナゾ
ルを500℃で12時間焼成したγ−アルミナを10gずつ投入
した。第2表に各温度での1日、2日、3日、5日およ
び10日後の前記溶融塩中の炎光分析を用いて測定したリ
チウムイオンの量をあげた。また第4図に、そのリチウ
ムイオンの量から求めた各温度でのγ−アルミナ吸着材
のリチウムイオン吸着率の時間変化を表わした。
Therefore, after ion exchange, 200 g of sodium nitrate molten salt containing 163 ppm of impurity lithium ions was added at 400 ° C, 450 ° C, and 50 ° C, respectively.
Into a salt bath maintained at 0 ° C. and 550 ° C., 10 g each of γ-alumina obtained by firing commercially available alumina sol at 500 ° C. for 12 hours was added. Table 2 lists the amount of lithium ion measured by flame photometry in the molten salt after 1, 2, 3, 5 and 10 days at each temperature. In addition, FIG. 4 shows the time change of the lithium ion adsorption rate of the γ-alumina adsorbent at each temperature obtained from the amount of lithium ions.

第2表からわかるように、550℃で10日間吸着処理した
溶融塩中の不純物リチウムイオン量は わずか1ppmに下がり、ほぼ100%のリチウムイオン除去
が可能となった。
As can be seen from Table 2, the amount of impurity lithium ions in the molten salt adsorbed at 550 ° C for 10 days is Only 1ppm, almost 100% of lithium ion can be removed.

以上の実施例からわかるようにγ−アルミナ吸着材の量
は10gと同じにしてもその投入投入時の溶融塩の温度お
よび接触時間を選択することで望みの不純物リチウムイ
オンの量まで除去することも可能である。従来の晶析に
よって精製された硝酸ナトリウム中に含まれる不純物リ
チウムイオンの量は10ppm前後であり、その場合、イオ
ン交換に使用可能であることがわかっているので、それ
に相当する不純物リチウムイオンの量まで除去された溶
融塩、つまり第2表における500℃で10日間γ−アルミ
ナ吸着材に接触処理され、不純物リチウムイオンの量が
9ppmまで下げられた溶融塩を再び450℃に保持して後、
前記ガラス組成を有するガラスロッドをイオン交換した
ところ、再び所望の屈折率分布を有するレンズが製造さ
れた。
As can be seen from the above examples, even if the amount of γ-alumina adsorbent is the same as 10 g, the desired amount of impurity lithium ions can be removed by selecting the temperature and contact time of the molten salt at the time of charging. Is also possible. The amount of impurity lithium ions contained in sodium nitrate purified by conventional crystallization is around 10 ppm, and in this case, it is known that it can be used for ion exchange. The molten salt removed up to, that is, the contact treatment with the γ-alumina adsorbent at 500 ° C. in Table 2 for 10 days,
After holding the molten salt lowered to 9ppm again at 450 ° C,
When the glass rod having the above glass composition was subjected to ion exchange, a lens having a desired refractive index distribution was manufactured again.

以上本発明を、屈折率分布型レンズの製造工程に適用し
た例について述べたが、実施例に限定されることなく、
本発明は一般に、溶融塩と素材との繰り返し接触処理で
溶融塩中に素材から不純物イオンが混入し、この不純物
イオンが以後の処理反応に悪影響を及ぼすような工程に
広く適用することができる。
Although the present invention has been described with respect to an example in which it is applied to a manufacturing process of a gradient index lens, it is not limited to the examples.
INDUSTRIAL APPLICABILITY In general, the present invention can be widely applied to a process in which impurity ions are mixed from the material into the molten salt by the repeated contact treatment of the molten salt and the material, and the impurity ion adversely affects the subsequent processing reaction.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明によれば、高温に保持された溶融
塩を利用する工業において、その溶融塩に含まれる微量
不純物イオンが問題となる際、前記溶融塩を無機吸着材
に接触させて処理することで前期微量不純物イオンを問
題が起こらない程度まで除去することができる。
As described above, according to the present invention, in the industry utilizing molten salt held at a high temperature, when trace impurity ions contained in the molten salt become a problem, the molten salt is brought into contact with the inorganic adsorbent. By the treatment, the trace amount of impurity ions in the previous period can be removed to the extent that a problem does not occur.

また本発明方法は、従来の晶析による精製方法に比べ
て、高温の溶融塩状態で処理でき、かつ溶融塩を水に溶
かしその飽和溶解度までの塩を廃棄する必要もなく、加
えて装置的にも単純化できるため経済的に有利である。
Further, the method of the present invention can be processed in a molten salt state at a high temperature as compared with the conventional purification method by crystallization, and it is not necessary to dissolve the molten salt in water and to discard the salt up to its saturated solubility. It is economically advantageous because it can be simplified.

また、溶融塩を長時間高温で保持すると溶融塩が分解し
例えばアルカリ金属の硫酸塩硝酸塩などでは溶融塩中に
R2O(R:アルカリ金属)が生成しイオン交換処理の対象
となるガラスなどの表面を著しく浸蝕させる、あるいは
レンズ製作工程では、レンズ性能を劣化させるなどの問
題を引き起こすが、本発明の方法によれば無機吸着材は
塩中のR2O成分の増加を抑制させるという実用上、好都
合な効果をもつことも確かめられている。
Also, if the molten salt is kept at a high temperature for a long time, the molten salt decomposes and, for example, alkali metal sulfate, nitrate, etc.
R 2 O (R: alkali metal) is generated to significantly corrode the surface of glass or the like that is the target of ion exchange treatment, or causes problems such as deterioration of lens performance in the lens manufacturing process. According to the above, it was also confirmed that the inorganic adsorbent has a practically advantageous effect of suppressing the increase of the R 2 O component in the salt.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す断面図、第2図は本発
明の他の実施例を示す断面図、第3図は本発明を連続工
程で行なう例を示す断面図、第4図は溶融塩に含まれる
リチウムイオンをγ−アルミナで吸着除去したときの吸
着率の時間変化を示すグラフである。 1……イオン交換処理ガラス素材 2……溶融塩、3……吸着材収容容器 4……無機吸着材 2A,2B……溶融塩浴
1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view showing another embodiment of the present invention, FIG. 3 is a sectional view showing an example of carrying out the present invention in a continuous process, and FIG. The figure is a graph showing the time change of the adsorption rate when lithium ions contained in the molten salt are adsorbed and removed by γ-alumina. 1 …… Ion exchange treated glass material 2 …… Molten salt, 3 …… Adsorbent container 4 …… Inorganic adsorbent 2A, 2B …… Molten salt bath

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガラス素材を浸漬してガラス中のイオンと
溶融塩中のイオンとの交換処理を行なった後の、高温で
保持された溶融塩を耐熱性の良好な無機吸着材に接触さ
せる溶融塩の処理方法において、 前記溶融塩はアルカリ硝酸塩であり、前記ガラス素材は
成分としてリチウム(Li)イオンを含むガラスであり、
前記吸着材はγ−アルミナであり、前記イオン交換処理
後の前記溶融塩中に存在するリチウムイオンを前記吸着
材で除去し、溶融塩を精製することを特徴とする溶融塩
の処理方法。
1. A molten salt held at a high temperature is contacted with an inorganic adsorbent having good heat resistance after the glass material is immersed to exchange ions in the glass with ions in the molten salt. In the method for treating molten salt, the molten salt is an alkali nitrate, the glass material is a glass containing lithium (Li) ions as a component,
The adsorbent is γ-alumina, and a lithium salt existing in the molten salt after the ion exchange treatment is removed by the adsorbent to purify the molten salt.
【請求項2】特許請求の範囲第1項において、吸着材の
接触は、前記イオン交換処理を終えたガラス素材を取り
出した後、溶融塩を前記イオン交換処理温度よりも高温
に保持して行う溶融塩の処理方法。
2. The adsorbent according to claim 1, wherein the adsorbent is brought into contact with the molten salt at a temperature higher than the ion exchange treatment temperature after taking out the glass material after the ion exchange treatment. Molten salt treatment method.
JP60020549A 1985-02-05 1985-02-05 Molten salt treatment method Expired - Lifetime JPH0671521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020549A JPH0671521B2 (en) 1985-02-05 1985-02-05 Molten salt treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020549A JPH0671521B2 (en) 1985-02-05 1985-02-05 Molten salt treatment method

Publications (2)

Publication Number Publication Date
JPS61178004A JPS61178004A (en) 1986-08-09
JPH0671521B2 true JPH0671521B2 (en) 1994-09-14

Family

ID=12030228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020549A Expired - Lifetime JPH0671521B2 (en) 1985-02-05 1985-02-05 Molten salt treatment method

Country Status (1)

Country Link
JP (1) JPH0671521B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424053A (en) * 1987-07-20 1989-01-26 Canon Kk Production of refractive index distribution-type optical element
US7197897B2 (en) * 2002-04-04 2007-04-03 Hitachi Global Storage Technologies Netherlands B.V. Chemical strengthening process for disks used in disk drive data storage devices
FR2948126B1 (en) * 2009-07-17 2011-09-16 Commissariat Energie Atomique PROCESS FOR EXTRACTING AT LEAST ONE CHEMICAL ELEMENT FROM A MELT SALT MEDIUM
CN103848444A (en) * 2012-11-28 2014-06-11 艾力创新有限公司 Purifying agent for molten salt and in-situ purification method
JP6273816B2 (en) * 2013-12-12 2018-02-07 旭硝子株式会社 Method for adjusting Na ion concentration in molten salt and method for producing tempered glass
CN104788013B (en) * 2015-04-13 2017-07-04 北京航玻新材料技术有限公司 The method of impurity in chemical tempering and removal chemical tempering potassium nitrate fused salt
CN110304839A (en) * 2018-03-27 2019-10-08 蓝思科技股份有限公司 A kind of intensifying method and fortified compositions of the glass of whiteware containing lithium
CN110304840A (en) * 2018-03-27 2019-10-08 蓝思科技股份有限公司 A kind of intensifying method and fortified compositions containing lithium glass
CN109011696B (en) * 2018-07-25 2020-12-08 中国科学院上海应用物理研究所 Method for purifying insoluble impurities in molten salt
CN114206798A (en) * 2019-07-31 2022-03-18 康宁股份有限公司 Salt bath composition for strengthening glass articles, method for strengthening glass articles using the same, and glass articles strengthened thereby
CN112390539B (en) * 2019-08-16 2024-01-02 重庆鑫景特种玻璃有限公司 Salt bath purification additive material and method of use thereof
JP7395939B2 (en) * 2019-10-09 2023-12-12 Agc株式会社 Manufacturing method of chemically strengthened glass
CN116354619B (en) * 2019-10-16 2024-01-30 重庆鑫景特种玻璃有限公司 Silicon-free salt bath purification additive material and application method thereof
JP7283380B2 (en) * 2019-12-26 2023-05-30 Agc株式会社 Chemically strengthened glass manufacturing method and lithium ion adsorbent
CN113716880A (en) * 2020-05-25 2021-11-30 日本电气硝子株式会社 Method for producing ion-exchanged glass, mixture for ion exchange, and apparatus for producing ion-exchanged glass
CN112645610A (en) * 2020-09-12 2021-04-13 重庆鑫景特种玻璃有限公司 Boron-free and phosphorus-free high-stability ionic sieve and application thereof
CN117916209A (en) * 2021-09-09 2024-04-19 肖特玻璃科技(苏州)有限公司 Method for regenerating a salt bath for a tempered glass or glass ceramic substrate and method for tempering a glass or glass ceramic substrate comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510541A (en) * 1978-07-11 1980-01-25 Tokyo Shibaura Electric Co Method of arranging natural frequency of fuel assembly * and spacer
JPS5826007A (en) * 1981-08-10 1983-02-16 Yoshida Nobuo Manufacture of lithium recovering agent

Also Published As

Publication number Publication date
JPS61178004A (en) 1986-08-09

Similar Documents

Publication Publication Date Title
JPH0671521B2 (en) Molten salt treatment method
US3441398A (en) Method of removing ion from salt bath by ion exchange regeneration
JP6814181B2 (en) Method of removing residue containing lithium phosphate compound from the surface
US3485687A (en) Porous high silica glass
JP5229966B2 (en) Manufacturing method of polarizing glass
JPS6366777B2 (en)
JP6455441B2 (en) Method for regenerating molten salt for strengthening glass
JP5964370B2 (en) Glass having excellent resistance to surface damage and method for producing the same
CS221940B2 (en) Method of polishing the glass objects in the polishing bath containing the sulphuric acid and hydrofluoric acid
EP0094810B1 (en) Process for producing glass product having gradient of refractive index
US3317297A (en) Method of chemically strengthening glass
US20230312410A1 (en) Regeneration material for regeneration of a salt melt used for a glass toughening and/or glass strengthening process
JPH0329455B2 (en)
US3116991A (en) Desalkalinisation of glass
US4126476A (en) Aluminous quartz ceramics and method
JPH01131038A (en) Production of refractive index distribution-type optical element
JPS6317218A (en) Regeneration of molten salt
JPS60215553A (en) Production of refractive index distribution type lens
JP4649677B2 (en) Method for producing high-purity silica particles, high-purity silica particles obtained thereby, and method for producing high-purity quartz glass particles using the same
KR0134879B1 (en) Regeneration treatment method of molten salt for ion exchange and apparatus
JP6961416B2 (en) Silica manufacturing method
CN112079559B (en) Method for controlling lithium ion concentration in molten salt and molten salt treating agent
US3585053A (en) Glass-ceramic article and method
JPS61187939A (en) Adsorption of barium in aqueous solution, ion-exchange material and method for fixing barium
TW202321176A (en) Method for regenerating a salt melt for a glass hardening and/or glass solidification process