JPS6317218A - Regeneration of molten salt - Google Patents

Regeneration of molten salt

Info

Publication number
JPS6317218A
JPS6317218A JP15938786A JP15938786A JPS6317218A JP S6317218 A JPS6317218 A JP S6317218A JP 15938786 A JP15938786 A JP 15938786A JP 15938786 A JP15938786 A JP 15938786A JP S6317218 A JPS6317218 A JP S6317218A
Authority
JP
Japan
Prior art keywords
molten salt
glass
porous material
salt
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15938786A
Other languages
Japanese (ja)
Inventor
Kiyosumi Fujii
藤井 清澄
Akira Akazawa
赤沢 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP15938786A priority Critical patent/JPS6317218A/en
Publication of JPS6317218A publication Critical patent/JPS6317218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To easily regenerate used and degraded molten salt in a short time keeping the molten salt at a high temperature, in the ion exchange treatment of a glass material with molten salt, by contacting the degraded molten salt with an inorganic porous material. CONSTITUTION:A glass rod 1 to be subjected to ion exchange treatment is immersed in a molten salt 2 (e.g. sodium nitrate) maintained at a high temperature. The ions in the glass rod 1 are exchanged with the ion sin the molten salt 2 to form a refractive index distribution gradually varying from the core to the circumference in the cross-section of the glass rod 1. When the molten salt is degraded by the repeated operation, a metallic wire basket 3 containing an inorganic porous material 4 (e.g. activated alumina) is immersed in the degraded molten salt 2 and vertically or horizontally reciprocated. The alkali metal oxide, nitrite ion, etc., produced in the molten salt 2 by decomposition is capture in the porous material 4 by this treatment to enable the regeneration of the molten salt.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラス材のイオン交換処理等において、繰り返
し使用される溶融塩の劣化を防ぎ再生する技術に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a technique for preventing deterioration and regenerating molten salt that is repeatedly used in ion exchange treatment of glass materials and the like.

〔従来技術〕[Prior art]

ガラス材料を高温に保持した硝酸塩、硫酸塩等の溶融塩
に接触させて、ガラス中のイオンと塩中のイオンとの交
換により塩中のイオンをガラス材表面から内部に拡散さ
せてガラスの改質を行なう処理方法が一般に知られてい
る。
The glass material is brought into contact with molten salts such as nitrates and sulfates kept at high temperature, and the ions in the salt are exchanged with the ions in the glass, causing the ions in the salt to diffuse from the surface of the glass material into the interior, thereby modifying the glass. Processing methods for quality are generally known.

例えば、相対的に高屈折率の組成から成るガラス棒な低
屈折率イオンを含む溶融塩と接触させ、ガラス中の高屈
折率イオンと塩中の低屈折率イオンとを交換させること
により、中心軸から外周に向けて屈折率が漸減している
屈折率分布型レンズを製造する方法、あるいはイオン拡
散によってガラス材表面近くに圧縮歪層を設けてガラス
材の破壊強度を高める化学強化法などである。
For example, a glass rod with a relatively high refractive index composition is brought into contact with a molten salt containing low refractive index ions, and the high refractive index ions in the glass are exchanged with the low refractive index ions in the salt. There are methods to manufacture gradient index lenses in which the refractive index gradually decreases from the axis toward the outer periphery, or chemical strengthening methods that increase the breaking strength of the glass material by creating a compressive strain layer near the surface of the glass material using ion diffusion. be.

上記のように、ガラス等の被処理物を溶融塩に接触させ
る処理工程においては、一般に経済性及び生産性の面か
ら、同一の溶融塩を高温に保持したまま繰り返し使用し
ており、この過程で溶融塩が徐々に高温分解(劣化)シ
、ついKはガラス表面を浸食させたりレンズ性能を劣化
させるなどの問題を引き起す。そこで適宜回数の接触処
理を終えた溶融塩は再生処理を施す必要があり、従来は
高温にある溶融塩を室温の水に溶かして過飽和分の塩を
析出させ(分解生成物は多量の水中に溶は込む)、析出
物を遠心分離した後再溶融して所期の処理温度をでする
方法がとられている。
As mentioned above, in the process of bringing objects to be treated such as glass into contact with molten salt, the same molten salt is generally used repeatedly while being kept at a high temperature for reasons of economy and productivity. The molten salt gradually decomposes (degrades) at high temperatures, and then K causes problems such as erosion of the glass surface and deterioration of lens performance. Therefore, it is necessary to regenerate the molten salt after an appropriate number of contact treatments. Conventionally, the molten salt at high temperature is dissolved in water at room temperature to precipitate the supersaturated salt (decomposition products are dissolved in a large amount of water). The method used is to centrifuge the precipitate and then re-melt it to reach the desired processing temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の塩再生方法では、ttoo−soo°C
付近の高温度にある溶融塩を水に溶かし室温まで降温し
、再生後再び上記温度まで加熱するため熱エネルギーの
損失が非常シて大きく、また塩の水に対する飽和溶解量
分の塩が上記再生処理時に失われるので新規塩の多量の
追加が必要となり、このため処理費用が非常に高くつく
という問題がある。
In the conventional salt regeneration method described above, ttoo-soo°C
The molten salt at a high temperature nearby is dissolved in water, cooled to room temperature, and then heated again to the above temperature after regeneration, resulting in a very large loss of thermal energy. The problem is that since it is lost during processing, a large amount of new salt needs to be added, which makes the processing cost very high.

また設備面でも晶析炉、遠心分@機、ブリメルト炉など
大型の設備を必要とし、さらに再生に長時間を要すると
いう問題もある。
In terms of equipment, it also requires large equipment such as a crystallization furnace, a centrifugal separator, and a Brimelt furnace, and there is also the problem that regeneration takes a long time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決し極めて簡単且つ安価な溶
融塩再生方法を提供することを目的とするものであり、
本発明の方法では被処理物との接触処理を終えた溶融塩
を無機多孔質材に接触させる。
The present invention aims to solve the above problems and provide an extremely simple and inexpensive molten salt regeneration method,
In the method of the present invention, the molten salt that has been brought into contact with the object to be treated is brought into contact with the inorganic porous material.

上記の無機多孔質材としては、使用溶融塩に対し化学的
に安定であること、溶融塩の保持されている高温度域で
安定であること、溶融塩中に池の不純物イオンを放出し
ないことなどの条件を満たすものが望ましく、実験の結
果では特に活性アルミナ(r−アルミナ)が好適であっ
た。
The above-mentioned inorganic porous material must be chemically stable to the molten salt used, stable in the high temperature range where the molten salt is held, and do not release impurity ions into the molten salt. It is desirable to use a material that satisfies the following conditions, and according to experimental results, activated alumina (r-alumina) is particularly suitable.

活性アルミナを溶融塩再生に用いる場合の好ましい条件
を示すと、溶融塩の温度3 !; 0−t 00”Cで
あり、塩の温度が低ければ溶融塩そのものは分解が遅く
なるが反対に再生能力は高温はど良くなる。
The preferred conditions when using activated alumina for molten salt regeneration are as follows: molten salt temperature 3! 0-t 00''C, and the lower the temperature of the salt, the slower the decomposition of the molten salt itself will be, but on the contrary, the regeneration ability will be better at higher temperatures.

また活性アルミナの溶融塩に対する浸漬■は、溶融塩の
重量に対しlO〜30%程度が望ましい。
Further, the immersion of activated alumina in the molten salt (2) is preferably about 10 to 30% by weight of the molten salt.

量が少ないと間欠的にアルミナを俵き出すときに塩を細
孔内に吸い込む■は少ないが、再生能力は低くなる。
If the amount is small, there will be less salt sucked into the pores when bales of alumina are taken out intermittently, but the regeneration ability will be low.

また浸漬時間は、溶融塩の温度、活性アルミナの浸漬貴
に依存するので一概には言えないが一般的には/872
いし5日の範囲が望ましい。さらにアルミナの繰り返し
再生能力は、使用頻度が増せば再生能力が徐々に下るの
で経済性を考慮して、!;−IO回程度使用した後新品
と交換するのがよい。
Also, the immersion time depends on the temperature of the molten salt and the degree of immersion of the activated alumina, so it cannot be stated unconditionally, but in general it is /872
A range of 5 days is desirable. Furthermore, the regeneration ability of alumina gradually decreases as it is used more frequently, so consider economic efficiency! - It is best to replace it with a new one after using it about 10 times.

〔作  用〕[For production]

硝酸塩を例にとると、分解反応として一般的に以下のよ
うな反応を生じる。
Taking nitrates as an example, the following reactions generally occur as decomposition reactions.

RNO3→R++N○3− (R−アルカリ)NO3−
→NO2−十/ /202 i’2NO3−→2NO2
’j’ + //202↑+Q2−ここで上記のNO2
−及び02−はそれぞれRuO2゜R,20として分析
される。
RNO3→R++N○3- (R-alkali) NO3-
→NO2-10/ /202 i'2NO3-→2NO2
'j' + //202↑+Q2-Here, above NO2
- and 02- are analyzed as RuO2°R,20, respectively.

このように分解によって生成した亜硝酸イオン、活性酸
素イオンを分析することで分解の程度が推定できる。
The degree of decomposition can be estimated by analyzing the nitrite ions and active oxygen ions generated by decomposition in this way.

溶融塩中に活性な酸素イオン02′″が増すとガラス表
面近傍のシリカ網目構造を切断していき、結果的に表面
の白濁が起る。
When active oxygen ions 02''' increase in the molten salt, the silica network structure near the glass surface is cut, resulting in clouding of the surface.

そして溶融塩の分解が進みO2−が増すほどガラスの浸
食は激しくなる。
As the molten salt decomposes and O2- increases, the erosion of the glass becomes more severe.

一方、分解生成物である02−イオンやNO2−イオン
を含む溶融塩を多孔質材に接触させると、多孔質材表面
にある活性点にR+イオンが多数吸着されその電荷を補
償するために02−イオンやNO2−イオンがR+イオ
ン付近に束縛される。
On the other hand, when a porous material is brought into contact with a molten salt containing 02- ions and NO2- ions, which are decomposition products, many R+ ions are adsorbed to the active sites on the surface of the porous material, and the 02- ions are absorbed to compensate for the charge. - ions and NO2- ions are bound near R+ ions.

上記の推定メカニズムによって溶融塩中の分解生成物が
無機多孔質材との接触で除去され、すなわち溶融塩が再
生されて後述の実験結果に示す通り塩劣化π伴なう被処
理ガラスへの悪影響を排除することができる。
Due to the above-mentioned presumed mechanism, the decomposition products in the molten salt are removed by contact with the inorganic porous material, that is, the molten salt is regenerated, and as shown in the experimental results described below, there is an adverse effect on the glass to be treated due to salt deterioration π. can be eliminated.

そして本発明方法によれば、溶融塩を再生処理のために
冷却する必要がなく、被処理物に対する所定の処理温度
に溶融塩を保ったまま多孔質材を浸漬するだけで済むの
で極めて経済的である。
According to the method of the present invention, there is no need to cool the molten salt for regeneration treatment, and it is only necessary to immerse the porous material while maintaining the molten salt at the predetermined treatment temperature for the object to be treated, making it extremely economical. It is.

〔実 施 例〕 以下本発明を図面に示した実施例に基づき詳細に説明す
る。
[Embodiments] The present invention will be described in detail below based on embodiments shown in the drawings.

第1図は屈折率分布型レンズの製造におけるイオン交換
処理工程を示し、レンズ素材ガラス棒/の多数を溶融塩
コ、例えばsoo′c付近に保持された硝酸ナトリウム
干に浸漬することにより、ガラス棒l中のイオンと溶融
塩コ中のイオンとを交換させてガラス棒/に断面内で中
心軸から外周に向けて次第に変化する屈折率分布を形成
する。
Figure 1 shows the ion exchange treatment process in the production of gradient index lenses, in which a large number of lens material glass rods are immersed in molten salt, for example, sodium nitrate held near soo'c. The ions in the rod l and the ions in the molten salt are exchanged to form a refractive index distribution that gradually changes from the central axis toward the outer periphery within the cross section of the glass rod.

上記工程では溶融塩2を上記一定温度をで保持したまま
、レンズ母材ガラス俸群/・・・・・・を次々と入れ替
えて浸漬しイオン交換処理を行なう。この繰り返し処理
に伴なって前述したように溶融塩2が次第に劣化し、塩
の再生処理を何ら施さない場合にはガラス棒/・・・・
・・に浸食を生じたり、イオン交換が■外されて所望の
屈折率分布が得られなくなったりする。
In the above step, while the molten salt 2 is maintained at the above-mentioned constant temperature, the glass pellets of the lens base material are sequentially changed and immersed to perform an ion exchange treatment. With this repeated treatment, the molten salt 2 gradually deteriorates as described above, and if no salt regeneration treatment is performed, the glass rod/...
... may occur, or ion exchange may be interrupted, making it impossible to obtain the desired refractive index distribution.

そこで、ガラス棒/・・・・・・のイオン交換処理を終
えた後、第1図(ロ)に示すように活性アルミナ等の無
機多孔質材tを収容した金網カゴ3を溶融塩λ中に浸漬
する。
Therefore, after completing the ion exchange treatment of the glass rod/..., the wire mesh basket 3 containing the inorganic porous material t such as activated alumina is placed in the molten salt λ as shown in Figure 1 (b). Soak in.

多孔質材グは、溶融塩2の上方に単に浸漬静置しておく
だけでも塩コ中の自然対−流3゛によって広範囲の溶融
塩が多孔質材qと接触することになるが、さらに再生処
理効果を高めるには、多孔質材tの入ったカゴ3を溶融
塩2中で深部方向あるいは水平方向に広い範囲で繰り返
し移動させるかあるいは溶融塩−を強制攪拌するのが望
ましい。
If the porous material q is simply immersed and left above the molten salt 2, a wide range of molten salt will come into contact with the porous material q due to the natural convection 3' in the salt solution. In order to enhance the regeneration treatment effect, it is desirable to repeatedly move the basket 3 containing the porous material t in the molten salt 2 in a deep direction or horizontally over a wide range, or to forcibly stir the molten salt.

上記のように溶融塩2を多孔質材≠に接触させることに
より、前述したように塩コ中の分解生成物であるアルカ
リ醗化物R20あるいは亜ElfmイオンNO3″″等
が多孔質材lに捕捉され、一定時間の浸漬の後溶融塩2
外に取り出せば溶融塩λ中の分解生成物が除去され、つ
まり再生されて次回のガラス棒l・・・・・・のイオン
交換が良好な状態で行なわれる。
By bringing the molten salt 2 into contact with the porous material ≠ as described above, the alkali fluoride R20 or sub-Elfm ion NO3'', etc., which are decomposition products in the salt co, are captured in the porous material 1 as described above. After soaking for a certain period of time, the molten salt 2
When taken out, the decomposition products in the molten salt λ are removed, that is, the molten salt λ is regenerated, and the next time the ion exchange of the glass rod 1 is carried out in good condition.

以下に具体的な数値例を示す。Specific numerical examples are shown below.

実施例1 硝酸ナトリウムIIKfを520°Cで溶融した溶融塩
を2種準備し、一方は2r日間そのまま保持し、他方に
は、第1表に示す比表面積と細孔分布を持つ二種の市販
の粒状活性アルミナA、Bをそれぞれ10077ずつ間
欠的に浸漬した。
Example 1 Two types of molten salts were prepared by melting sodium nitrate IIKf at 520°C, one was kept as it was for 2r days, and the other was prepared using two types of commercially available salts having the specific surface area and pore distribution shown in Table 1. 10077 pieces of each of granular activated alumina A and B were intermittently immersed.

アルミナの浸漬のサイクル及び浸漬時間は、当辺アルミ
ナ浸漬無しでt日間保持し、以後3日間浸漬、ψ日間浸
漬無しを交互に繰り返して計2g日間実験を行なった。
The alumina immersion cycle and immersion time were such that the experiment was carried out for a total of 2 g days by holding the alumina for t days without immersing the alumina, then alternately repeating immersion for 3 days and no immersion for ψ days.

1回の浸漬処理前後の溶融塩分解生成物である第  7
  表 Na2O量を分析した結果を第2表及び第1図に示す。
No. 7, which is a molten salt decomposition product before and after one immersion treatment.
Table 2 and FIG. 1 show the results of analyzing the amount of Na2O.

Na2Oflは溶融塩30gを採取し、純水10OCC
を加えて水溶液とした後、フェノールフタレインで赤く
呈色させ、//100規定HC1で無色になる滴定量で
表わした。つまり//100規定HCIの滴定量が多い
程、その溶融塩中に含まれるNa2OMが多い、よって
分解が進んでいることがわかる。
For Na2Ofl, collect 30g of molten salt and add 10OCC of pure water.
was added to form an aqueous solution, colored red with phenolphthalein, and expressed as a titer until it became colorless with //100N HCl. In other words, it can be seen that the greater the titration of //100N HCI, the more Na2OM is contained in the molten salt, and therefore the decomposition is progressing.

また2を日経過後の各々の溶融塩中のNaNO21を過
マンガン酸カリ滴定法により測定した結果を第3表に示
す。
Further, Table 3 shows the results of measuring NaNO21 in each molten salt after 2 days by potassium permanganate titration method.

N aNo 2はNaNO3溶融塩の分解生成物の1つ
であり、Na2Oと同様その量が多いということは溶融
塩の分解が進んだことを示している。
NaNo 2 is one of the decomposition products of the NaNO 3 molten salt, and like Na 2 O, its large amount indicates that the molten salt has been decomposed.

実施例かられかるようにブランク(アルミナ浸第  2
  表 第3表 漬無しの溶融塩)に比べて、アルミナA、Bを間欠的に
浸漬した溶融塩のNa2OとNaNO3量は明らかに少
なくなっており、アルミナが分解生成物を低減させる効
果を持つことがはっきりわかる。
As shown in the example, the blank (alumina immersion No. 2
Compared to the molten salt (without immersion in Table 3), the amounts of Na2O and NaNO3 in the molten salt in which alumina A and B were intermittently immersed are clearly lower, indicating that alumina has the effect of reducing decomposition products. I can see that clearly.

特にNa2O量に関してはアルミナ浸漬前後で大きく減
少しており、アルミナによりNa 2o成分が吸着減少
させられていることがわかり、またその能力も1回の使
用ではほとんど変化しない。
In particular, the amount of Na2O decreased significantly before and after immersion in alumina, indicating that the Na2O component was adsorbed and reduced by alumina, and its ability hardly changed after one use.

実施例2 次に溶融塩の分解による被処理ガラスへの影響及び本発
明による溶融塩の賦活再生の効果を見るため、以下の実
験を行なった。
Example 2 Next, the following experiment was conducted in order to examine the influence of the decomposition of the molten salt on the glass to be treated and the effect of the activation and regeneration of the molten salt according to the present invention.

実施例1で2g日間処理を行なった後の3種の溶融塩を
用いて、5i02 、MgO、P))O、TiO2)N
a2O。
Using three types of molten salts after 2 g of treatment in Example 1, 5i02, MgO, P))O, TiO2)N
a2O.

Li2Oの組成から成る!、/1!I+1直径のガラス
丸棒をイオン交換処理して屈折率分布型レンズを作成し
た。その結果を第q表に示す。
Composed of Li2O! ,/1! A gradient index lens was prepared by subjecting a round glass rod with a diameter of I+1 to ion exchange treatment. The results are shown in Table q.

第1表の結果かられかるように、アルミナ浸漬を行なわ
ず高温で保持し絖けたブランク溶融塩ではガラス表面が
全く白濁してしまい、ガラスも非常に脆くなった。
As can be seen from the results in Table 1, in the case of a blank molten salt which was kept at a high temperature without being immersed in alumina, the glass surface became completely cloudy and the glass became extremely brittle.

第  ダ  表 する割合を示している。Table 1 It shows the percentage of

またそのレンズ性能もレンズ有効半径が70%とアルミ
ナ浸漬を行なった溶融塩に比べてかなり減少した。
Furthermore, the lens performance was significantly reduced, with an effective lens radius of 70% compared to the molten salt immersed in alumina.

実施例3 活性アルミナによる溶融塩再生効果をさらに確認するた
めに、S工02含有量の異なる5種類の活性アルミナ材
を用意し、pso′cで溶融した硝酸ナトリウムsoo
gの塩浴5基にそれぞれ前記活性アルミナ材30gずつ
浸漬させて10日間保持した後NagO量を測定した。
Example 3 In order to further confirm the molten salt regeneration effect of activated alumina, five types of activated alumina materials with different S-02 contents were prepared, and sodium nitrate soo melted with pso'c was prepared.
The amount of NagO was measured after immersing 30 g of the activated alumina material in each of 5 salt baths of 30 g and holding for 10 days.

そしてそれら塩中に、5i02 、zno 、Li2O
+ N a 20の組成から成るガラス片を投入し7日
後にその表面状態な較察したところ第5表の結果を得た
And in those salts, 5i02, zno, Li2O
A glass piece having a composition of +N a 20 was introduced and its surface condition was examined after 7 days, and the results shown in Table 5 were obtained.

また比較例として、上記アルミナ材を浸漬させない溶融
塩をljO″Cで10日間保持した後、上記と同一の組
成のガラス片を投入して7日後に表面状態を観察した結
果を第5表に「ブランク」として示した。
As a comparative example, after holding the molten salt in which the alumina material was not immersed in ljO''C for 10 days, glass pieces with the same composition as above were introduced and the surface condition was observed 7 days later.Table 5 shows the results. Shown as "blank".

第5表かられかるようにt/10ONHc1滴定量の少
ない溶融塩はどガラス表面の浸食は抑えられ、つまり溶
融塩中の分解生成物は低減しており、活性アルミナとの
接触が溶融塩の再生に有効であることが確認できた。
As can be seen from Table 5, when the molten salt has a small titer of t/10ONHc, the erosion of the glass surface is suppressed, that is, the number of decomposition products in the molten salt is reduced, and the contact with activated alumina is It was confirmed that it is effective for playback.

〔発四の効果〕[Effect of four shots]

本発明によれば以下に列記するような多くの利点がある
The present invention has many advantages as listed below.

(1)溶融塩を高温に保ったままで再生処理できる。(1) Molten salt can be recycled while being kept at high temperature.

(2)再生の時間が短かく、且つ再生処理後直ちに溶融
塩を使用することができる。
(2) The regeneration time is short and the molten salt can be used immediately after the regeneration treatment.

(3)再生処理に熱エネルギーおよび塩の損失が少ない
(3) There is less loss of thermal energy and salt in the regeneration process.

(4)再生操作が簡便で装置が小型化できる。(4) Regeneration operation is simple and the device can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は多孔
質材浸漬による溶融塩の再生効果の一例を示すグラフで
ある。 /・・・・・・イオン交換処理ガラス棒 2・・・・・
・溶融塩3・・・・・・カゴ l・・・・・・無機多孔
質材第1図
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a graph showing an example of the regeneration effect of molten salt by immersion in a porous material. /...Ion exchange treated glass rod 2...
- Molten salt 3... Basket l... Inorganic porous material Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)被処理物との接触処理を終えた溶融塩を無機多孔
質材に接触させることを特徴とする溶融塩の再生方法
(1) A method for regenerating molten salt characterized by bringing the molten salt, which has undergone contact treatment with the object to be treated, into contact with an inorganic porous material.
(2)特許請求の範囲第1項において、前記被処理物は
ガラス体であり、且つ前記溶融塩が該ガラス体中に拡散
し得るイオンを含む塩である溶融塩の再生方法
(2) A method for regenerating a molten salt according to claim 1, wherein the object to be treated is a glass body, and the molten salt is a salt containing ions that can diffuse into the glass body.
JP15938786A 1986-07-07 1986-07-07 Regeneration of molten salt Pending JPS6317218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15938786A JPS6317218A (en) 1986-07-07 1986-07-07 Regeneration of molten salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15938786A JPS6317218A (en) 1986-07-07 1986-07-07 Regeneration of molten salt

Publications (1)

Publication Number Publication Date
JPS6317218A true JPS6317218A (en) 1988-01-25

Family

ID=15692676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15938786A Pending JPS6317218A (en) 1986-07-07 1986-07-07 Regeneration of molten salt

Country Status (1)

Country Link
JP (1) JPS6317218A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6381118B1 (en) 1999-07-22 2002-04-30 Tdk Corporation Ceramic electronic component having electronic component containing cuprous oxide
CN103848441A (en) * 2012-11-28 2014-06-11 艾力创新有限公司 Cooling-control purification method of molten salt and impurity removal agent
JP2015113261A (en) * 2013-12-12 2015-06-22 旭硝子株式会社 METHOD FOR ADJUSTING Na ION CONCENTRATION IN MOLTEN SALT AND METHOD FOR MANUFACTURING TEMPERED GLASS
CN112079559A (en) * 2020-09-25 2020-12-15 光华科学技术研究院(广东)有限公司 Method for controlling lithium ion concentration in molten salt and molten salt treating agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646557A (en) * 1979-09-26 1981-04-27 Chiyou Lsi Gijutsu Kenkyu Kumiai Transistor
JPS60215553A (en) * 1984-04-12 1985-10-28 Nippon Sheet Glass Co Ltd Production of refractive index distribution type lens
JPS6418022A (en) * 1987-07-14 1989-01-20 Tokyo Keiki Kk Production of eddy generating body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646557A (en) * 1979-09-26 1981-04-27 Chiyou Lsi Gijutsu Kenkyu Kumiai Transistor
JPS60215553A (en) * 1984-04-12 1985-10-28 Nippon Sheet Glass Co Ltd Production of refractive index distribution type lens
JPS6418022A (en) * 1987-07-14 1989-01-20 Tokyo Keiki Kk Production of eddy generating body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6381118B1 (en) 1999-07-22 2002-04-30 Tdk Corporation Ceramic electronic component having electronic component containing cuprous oxide
US6729003B2 (en) 1999-07-22 2004-05-04 Tdk Corporation Process for producing a ceramic electronic component
CN103848441A (en) * 2012-11-28 2014-06-11 艾力创新有限公司 Cooling-control purification method of molten salt and impurity removal agent
JP2015113261A (en) * 2013-12-12 2015-06-22 旭硝子株式会社 METHOD FOR ADJUSTING Na ION CONCENTRATION IN MOLTEN SALT AND METHOD FOR MANUFACTURING TEMPERED GLASS
CN112079559A (en) * 2020-09-25 2020-12-15 光华科学技术研究院(广东)有限公司 Method for controlling lithium ion concentration in molten salt and molten salt treating agent
CN112079559B (en) * 2020-09-25 2023-03-10 光华科学技术研究院(广东)有限公司 Method for controlling lithium ion concentration in molten salt and molten salt treating agent

Similar Documents

Publication Publication Date Title
US3751238A (en) Method of chemically strengthening a silicate article containing soda
US3441398A (en) Method of removing ion from salt bath by ion exchange regeneration
US4218230A (en) Method of glass strengthening by ion exchange
JPS61178004A (en) Treatment of molten salt
JP5229966B2 (en) Manufacturing method of polarizing glass
US3485687A (en) Porous high silica glass
US4164402A (en) Strengthening of thin-walled, light glass containers
KR20160123368A (en) Glass With Enhanced Strength and Antimicrobial Properties, and Method of Making Same
JPH01145335A (en) Method for manufacturing glassware having improved strength
US3451796A (en) Method of treating strengthened glass surface to increase acid durability
JPS6317218A (en) Regeneration of molten salt
US3692186A (en) Filter and/or absorption media
KR20170054438A (en) Glass Articles and Methods for Improving the Reliability of Glass Articles
IL35821A (en) Glass lasers of increased heat dissipation capability and process comprising an ion exchange for making the same
US3697242A (en) Strengthening borosilicate glass by crowding surface layer with lioh and/or koh
US3567618A (en) Fluoridized graphite and method of manufacture thereof
JPS631256B2 (en)
US3586521A (en) Glass-ceramic article and method
JP2023540559A (en) Recycled materials for the regeneration of salt melts used in glass hardening and/or glass strengthening processes
JP2023541941A (en) Salt bath system and method for regenerating molten salt for strengthening glass articles
JPS60215553A (en) Production of refractive index distribution type lens
US3661545A (en) Method for treating a molten salt with water vapor
US3585053A (en) Glass-ceramic article and method
JP4163809B2 (en) Manufacturing method of glass substrate for information recording medium
JPH01131038A (en) Production of refractive index distribution-type optical element