JPH0671147A - Dual film - Google Patents

Dual film

Info

Publication number
JPH0671147A
JPH0671147A JP25082392A JP25082392A JPH0671147A JP H0671147 A JPH0671147 A JP H0671147A JP 25082392 A JP25082392 A JP 25082392A JP 25082392 A JP25082392 A JP 25082392A JP H0671147 A JPH0671147 A JP H0671147A
Authority
JP
Japan
Prior art keywords
membrane
film
porous support
conductive
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25082392A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kawashima
敏行 川島
Katsumi Ishii
勝視 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP25082392A priority Critical patent/JPH0671147A/en
Publication of JPH0671147A publication Critical patent/JPH0671147A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To provide a dual film which makes prevention of frictional electrification possible without being influenced by the surrounding condition and can keep permeation characteristics as it is and can be manufactured by the conventional manufacturing facility and inexpensively. CONSTITUTION:A selective functional film is provided on another face of a porous substrate film wherein substrate fabric made of electrically conductive woven fabric or nonwoven fabric is embedded and at least part of the one face of the substrate fabric is exposed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気体または液体、特に引
火性ガス及び有機蒸気の分離に有用な複合膜に関するも
のである。
FIELD OF THE INVENTION This invention relates to composite membranes useful for the separation of gases or liquids, especially flammable gases and organic vapors.

【0002】[0002]

【従来の技術】特定分子に対して選択透過性を有する膜
を使用してその特定分子の気体または液体を分離する場
合、織布または不織布等の基布を埋着した多孔性支持膜
の片面に選択性機能膜を設けた複合膜を用いることがあ
る。この複合膜を界面活性剤層や金属蒸着層等を設けて
上記の摩擦帯電を防止することが提案されている(特開
平1−115406号)。
2. Description of the Related Art When a gas having a selective permeability to a specific molecule is used to separate a gas or a liquid of the specific molecule, one side of a porous support membrane in which a base cloth such as a woven cloth or a nonwoven cloth is embedded. A composite film having a selective functional film may be used. It has been proposed that the composite film is provided with a surfactant layer, a metal vapor deposition layer, or the like to prevent the above-mentioned triboelectric charging (JP-A-1-115406).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、界面活
性剤層による帯電防止効果は一時的なものであり、湿度
に大きく影響され、乾燥状態のもとではその効果が殆ど
期待できず、複合膜を長期間保存後、巻き戻して使用す
る場合等においては問題がある。
However, the antistatic effect of the surfactant layer is temporary, is greatly affected by humidity, and its effect can hardly be expected under a dry condition. There is a problem when it is rewound and used after storage for a long time.

【0004】他方、金属蒸着層においては、蒸着された
金属粒子間が溶着一体化されており、相当の透過抵抗を
呈するから、複合膜の透過性能の変動が避けられない。
また金属蒸着層を連続的に形成するには、製膜段階にお
いて高真空度の大型装置が必要になり工程の複雑化、高
コスト化が招来され、更に、蒸着面が搬送ロ−ルとの接
触で摩耗する畏れもある。
On the other hand, in the metal vapor deposition layer, the vapor-deposited metal particles are welded and integrated with each other and exhibit a considerable permeation resistance, so that the permeation performance of the composite membrane cannot be avoided.
Further, in order to continuously form a metal vapor deposition layer, a large apparatus with a high degree of vacuum is required at the film forming stage, which complicates the process and raises the cost. There is also the fear of contact wear.

【0005】本発明の目的は、周囲条件に影響されるこ
となく摩擦帯電の防止を可能とすると共に透過性能をそ
のまま保持し得、かつ既存の製造設備のままで、しかも
低コストで製造できる複合膜を提供することにある。
An object of the present invention is to prevent frictional electrification without being affected by ambient conditions, to maintain the permeation performance as it is, and to manufacture it with existing manufacturing equipment at low cost. To provide a membrane.

【0006】[0006]

【課題を解決するための手段】本発明の複合膜は導電性
の織布または不織布等の基布が埋着され、しかも、該基
布の片面の少なくとも一部が露出された多孔性支持膜の
他面に選択性機能膜が設けられていることを特徴とする
構成であり、多孔性支持膜の片面の表面抵抗率を109
Ω/□以下とすることが好ましい。
The composite membrane of the present invention is a porous support membrane in which a base fabric such as a conductive woven fabric or a non-woven fabric is embedded, and at least a part of one side of the base fabric is exposed. This is characterized in that a selective functional film is provided on the other surface of the porous support film, and the surface resistivity of one surface of the porous support film is 10 9
It is preferably Ω / □ or less.

【0007】[0007]

【作用】多孔性支持膜の裏面が導電性基布の片面の露出
のために低表面抵抗とされる。従って、複合膜の巻き取
り、または巻き戻し時、多孔性支持膜裏面と選択性機能
膜表面とが摩擦接触しても、摩擦電荷が多孔性支持膜裏
面を導電路として放流され、帯電が防止される。
The back surface of the porous support film has a low surface resistance because one surface of the conductive base cloth is exposed. Therefore, during winding or unwinding of the composite film, even if the back surface of the porous support film and the surface of the selective functional film make frictional contact, triboelectric charges are discharged through the back surface of the porous support film as a conductive path, preventing charging. To be done.

【0008】また、基布の導電性化は基布繊維の導電性
化によって行われ、この基布の導電性化によっては、気
体または液体の透過性がいささかも影響されることがな
いから、複合膜全体の透過性がそのまま保持される。
Further, the base cloth is made conductive by making the base cloth fibers conductive, and the conductivity of the base cloth is not affected at all by gas or liquid permeability. Permeability of the entire composite membrane is retained.

【0009】[0009]

【実施例】本発明の複合膜は多孔性支持膜と選択性機能
膜とが積層されてなり、その多孔性支持膜においては、
多孔質膜内に導電性の織布または不織布等の基布が埋着
され、その基布片面の一部または全体が多孔質膜裏面か
ら露出されている。この導電性の織布または不織布等の
基布は、カ−ボン繊維またはステンレス,アルミニウ
ム,ニッケル,銅或は合金等の金属繊維或は非導電性繊
維に金属を蒸着等によってコ−ティングした導電性繊維
の一種若しくは2種以上の織製または抄造、またはこれ
らの導電性繊維と合成繊維或は天然繊維との混紡または
混抄によって得ることができる。
EXAMPLES The composite membrane of the present invention comprises a porous support membrane and a selective functional membrane laminated, and in the porous support membrane,
A base cloth such as a conductive woven cloth or a non-woven cloth is embedded in the porous film, and one part or the whole of the base cloth is exposed from the back surface of the porous film. This conductive woven or non-woven fabric is made of carbon fiber or metal fiber such as stainless steel, aluminum, nickel, copper or alloy or non-conductive fiber coated with metal by vapor deposition. It can be obtained by weaving or paper-making one or more kinds of conductive fibers, or by blending or blending these conductive fibers with synthetic fibers or natural fibers.

【0010】この多孔性支持膜には、多孔質膜素材の溶
液を基布の片面上に流延して基布に当該溶液を含浸する
と共に所定の厚みで塗布し、次いで水浴にて浸漬凝固さ
せたものを使用できる。この多孔性支持膜は非対称膜で
あって、基布への溶液の含浸量の調整によって裏面から
導電性基布を容易に露出させることができる。対称構造
の多孔性支持膜も使用可能であり、この場合、多孔性支
持膜の両面の少なくとも一部に導電性基布が露出され
る。
For this porous support membrane, a solution of the material for the porous membrane is cast on one side of the base cloth to impregnate the base cloth with the solution and apply it to a predetermined thickness, and then dip-coagulate in a water bath. It can be used. This porous support membrane is an asymmetric membrane, and the conductive base fabric can be easily exposed from the back surface by adjusting the amount of solution impregnated into the base fabric. A porous support membrane having a symmetrical structure can also be used, in which case the conductive base fabric is exposed on at least a part of both surfaces of the porous support membrane.

【0011】この多孔質膜の素材としては、水蒸気や有
機化合物の蒸気によって膨潤しないものであれば、適宜
のものを使用できるが、ポリイミド,ポリスルホン,ポ
リアミド,ポリエ−テルスルホン,ポリアクリロニトリ
ル等の使用が好適である。
As a material for the porous membrane, any material can be used as long as it does not swell by water vapor or vapor of an organic compound, but polyimide, polysulfone, polyamide, polyethersulfone, polyacrylonitrile, etc. are used. It is suitable.

【0012】上記の選択性機能膜には、分離しようとす
る有機物や水の蒸気または液体に対し選択透過性を有す
るものが使用され、その蒸気や液体に応じポリジメチル
シロキサン,キトサン,ポリ−4メチルペンテンまたは
これらの誘導体等が使用される。この選択性機能膜は単
層または異種の複層のいずれであってもよい。また、こ
の選択性機能膜の厚みは通常、0.03μm〜50μm
好ましくは0.1μm〜20μmとされる。
As the above-mentioned selective functional membrane, one having a selective permeability to the organic substance or water vapor or liquid to be separated is used, and polydimethylsiloxane, chitosan or poly-4 is used depending on the vapor or liquid. Methylpentene or derivatives thereof are used. The selective functional film may be either a single layer or a heterogeneous multilayer. The thickness of the selective functional film is usually 0.03 μm to 50 μm.
The thickness is preferably 0.1 μm to 20 μm.

【0013】これに対し、上記多孔性支持膜の厚みは通
常、1μm〜8000μm好ましくは10μm〜800
μmとされる。
On the other hand, the thickness of the porous support membrane is usually 1 μm to 8000 μm, preferably 10 μm to 800.
μm.

【0014】本発明の複合膜の製造には、片面の一部ま
たは全部に導電性基布が露出された多孔性支持膜の他面
に選択性機能膜素材の溶液を所定の厚みで塗工し、乾燥
する方法、または選択性機能膜素材の溶液を水面上に滴
下し、水面展開法により薄膜を形成し、片面の一部また
は全部に導電性基布が露出された多孔性支持膜の他面に
この薄膜を密着させる方法等を使用できる。
In the production of the composite membrane of the present invention, a solution of the selective functional membrane material is applied to a predetermined thickness on the other surface of the porous support membrane having the conductive base cloth exposed on a part or all of one side. Then, a method of drying, or dropping the solution of the selective functional membrane material on the water surface, to form a thin film by the water surface development method, the conductive substrate is exposed on part or all of one side of the porous support membrane A method of bringing this thin film into close contact with the other surface can be used.

【0015】本発明の複合膜は、平膜または管状膜等の
形態でプレ−ト・アンドフレ−ム型モジュ−ル,スパイ
ラル型モジユ−ルまたは管状型モジュ−ル内に組み込ま
れて使用される。
The composite membrane of the present invention is used by being incorporated into a plate-and-frame type module, a spiral type module or a tubular type module in the form of a flat membrane or a tubular membrane. .

【0016】本発明の複合膜においては、多孔性支持膜
の基布の繊維に導電性繊維を使用し、多孔性支持膜裏面
の少なくとも一部にその基布を露出させるだけでよく、
その基布の露出は多孔質膜素材溶液の基布への含浸量を
調節することにより容易に行い得るから、既存の製造設
備で簡易に低コストで製造できる。
In the composite membrane of the present invention, conductive fibers are used as the fibers of the base fabric of the porous support membrane, and the base fabric may be exposed on at least a part of the back surface of the porous support membrane.
The exposure of the base fabric can be easily performed by adjusting the amount of the porous membrane material solution impregnated into the base fabric, so that the base fabric can be easily manufactured at low cost with existing manufacturing equipment.

【0017】また、複合膜内での基布の透過抵抗は多孔
質膜,選択性機能膜等の透過抵抗に対し無視でき、基布
の繊維を導電性繊維にしても、この基布の超低透過抵抗
が実質上保持されるから、複合膜全体の透過性能がその
まま保持され得る。更に、基布の繊維を金属繊維等の導
電性繊維にしても、基布の強度を充分に保証でき、多孔
性支持膜の機械的補強作用もよく保持できる。
Further, the permeation resistance of the base fabric in the composite membrane can be neglected with respect to the permeation resistance of the porous membrane, the selective functional membrane and the like. Since the low permeation resistance is substantially retained, the permeation performance of the entire composite membrane can be retained as it is. Further, even if the fibers of the base cloth are made of conductive fibers such as metal fibers, the strength of the base cloth can be sufficiently ensured and the mechanical reinforcing effect of the porous support membrane can be well maintained.

【0018】従って、本発明によれば、既存の製造設備
で、しかも透過性能並びに機械的強度を実質上そのまま
保持して、裏面即ち多孔性支持膜の外面が導電性の複合
膜を得ることができる。この多孔性支持膜外面の導電性
を帯電を防止するのに充分な値にすれば(通常表面抵抗
率で109Ω/□以下程度)、複合膜の巻き取り、巻き
戻し時での選択性機能膜外面と多孔性支持膜との接触摩
擦にもかかわらず、選択性機能膜の表面電位を著しく低
くでき、その表面での放電による膜損傷を回避できる。
Therefore, according to the present invention, it is possible to obtain a composite membrane in which the back surface, that is, the outer surface of the porous support membrane, is electrically conductive, while maintaining the permeation performance and the mechanical strength substantially in the existing manufacturing equipment. it can. If the conductivity of the outer surface of the porous support membrane is set to a value sufficient to prevent electrification (usually a surface resistivity of about 10 9 Ω / □ or less), the selectivity when the composite membrane is wound or unwound is selected. Despite the contact friction between the outer surface of the functional film and the porous support film, the surface potential of the selective functional film can be remarkably lowered, and the film damage due to discharge on the surface can be avoided.

【0019】また、選択透過される気体等が有機溶剤蒸
気のような引火性ガスであっても、膜と該ガスとの摩擦
接触によって発生する電荷が導電性基布を通過する際に
放流され、透過室内での放電を確実に防止できるから、
安全に分離できる。
Even if the gas or the like that is selectively permeated is a flammable gas such as an organic solvent vapor, the charge generated by frictional contact between the membrane and the gas is discharged when passing through the conductive base cloth. Since it is possible to reliably prevent discharge in the transmission chamber,
Can be safely separated.

【0020】このように、本発明の複合膜においては、
多孔性支持膜外面を充分に導電性にでき(表面抵抗率で
109Ω/□以下)、摩擦帯電に基づく選択性機能膜の
表面電位を著しく低くでき。このことは、次の実施例と
比較例との対比からも明らかである。
Thus, in the composite membrane of the present invention,
The outer surface of the porous support film can be made sufficiently conductive (surface resistivity of 10 9 Ω / □ or less), and the surface potential of the selective functional film based on triboelectrification can be remarkably lowered. This is clear from the comparison between the following examples and comparative examples.

【0021】なお、以下において、表面抵抗率は三菱油
化株式会社製Hi restaを用いて24±2℃,60±5%
RH,印加電圧10ボルトで測定し、表面電位は集電式
電位測定器(春日電気株式会社製KS−471型)で測
定した。
In the following, the surface resistivity is 24 ± 2 ° C. and 60 ± 5% using Hi resta manufactured by Mitsubishi Petrochemical Co., Ltd.
RH was measured with an applied voltage of 10 V, and the surface potential was measured with a current collector-type potential measuring device (KS-471 type manufactured by Kasuga Electric Co., Ltd.).

【0022】実施例1 ポリエステル繊維75重量部とカ−ボン繊維25重量部
とを湿式抄造してなる不織布の片面にポリイミド18重
量%のN,N−ジメチルホルムアミド溶液を塗布含浸
し、塗布厚みを180μmとし、次いで水浴に浸漬して
ポリイミド多孔質支持膜を作成した。
Example 1 One side of a non-woven fabric obtained by wet-fabrication of 75 parts by weight of polyester fiber and 25 parts by weight of carbon fiber was coated and impregnated with an N, N-dimethylformamide solution containing 18% by weight of polyimide to obtain a coating thickness. The thickness was set to 180 μm, and then immersed in a water bath to prepare a polyimide porous support film.

【0023】このポリイミド多孔質支持膜の片面上に、
架橋剤を含む架橋性シリコ−ン樹脂4重量%のイソオク
タン溶液を厚み100μmで塗布し、次いで120℃で
5分間加熱しイソオクタンを蒸発させると共に架橋性シ
リコ−ン樹脂からなる選択性機能膜を形成して複合膜を
得た。
On one side of this polyimide porous support membrane,
Cross-linking silicone resin containing cross-linking agent 4% by weight of isooctane solution was applied to a thickness of 100 μm, and then heated at 120 ° C. for 5 minutes to evaporate isooctane and form a selective functional film made of the cross-linking silicone resin. To obtain a composite membrane.

【0024】この実施例品の裏面側(ポリイミド多孔質
支持膜面側)の表面抵抗率は104Ω/□以下であつ
た。
The surface resistivity on the back surface side (polyimide porous support film surface side) of this example product was 10 4 Ω / □ or less.

【0025】この実施例品の選択性機能膜面上にゴムロ
−ラを10回転がし、次いで巻回し更に巻き戻して選択
性機能膜の表面電位を測定したところ、0.3Kボルト
以下であった。
The rubber roller was rotated 10 times on the surface of the selective functional film of this example, and then wound and rewound to measure the surface potential of the selective functional film, which was 0.3 KV or less. It was

【0026】比較例1 不織布としてポリエステル繊維のみからなるものを使用
した以外、実施例1と同じとした。実施例品1と同様に
表面抵抗率を測定したところ、1012Ω/□以上であ
り、表面電位を測定したところ、7Kボルト以上であっ
た。この比較例と上記実施例1との対比から、本発明で
の優れた帯電防止効果が明らかである。
Comparative Example 1 The same as Example 1 except that a non-woven fabric made only of polyester fibers was used. When the surface resistivity was measured in the same manner as in Example product 1, it was 10 12 Ω / □ or more, and the surface potential was measured, it was 7 KV or more. From the comparison between this comparative example and Example 1 above, the excellent antistatic effect of the present invention is clear.

【0027】実施例2 不織布として、ポリエステル繊維75重量部とステンレ
ス繊維25重量部とを湿式抄造してなるものを使用した
以外、実施例1と同じとした。実施例品1と同様に表面
抵抗率を測定したところ、104Ω/□以下であり、表
面電位を測定したところ、0.2Kボルト以下であっ
た。
Example 2 The same as Example 1 except that as the non-woven fabric, a non-woven fabric obtained by wet papermaking of 75 parts by weight of polyester fiber and 25 parts by weight of stainless fiber was used. When the surface resistivity was measured in the same manner as in Example product 1, it was 10 4 Ω / □ or less, and when the surface potential was measured, it was 0.2 KV or less.

【0028】実施例3 多孔質膜の素材溶液として、ポリスルホン18重量%の
N,N−ジメチルホルムアミド溶液を使用した以外、実
施例1と同じとした。実施例品1と同様に表面抵抗率を
測定したところ、104Ω/□以下であり、表面電位を
測定したところ、0.3Kボルト以下であった。
Example 3 The same procedure as in Example 1 was carried out except that an N, N-dimethylformamide solution containing 18% by weight of polysulfone was used as the material solution for the porous membrane. When the surface resistivity was measured in the same manner as in Example product 1, it was 10 4 Ω / □ or less, and the surface potential was measured, it was 0.3 KV or less.

【0029】比較例2 比較例1の複合膜の裏面側に、第4級アンモニウム塩カ
チオン系界面活性剤(第一工業株式会社製商品名カチオ
−ゲン)の1重量%エタノ−ル溶液を流延し、約100
μm厚さで塗布し、室温(25℃,64%RH)乾燥し
たものと、加熱乾燥(120℃,10min)したものとの
界面活性剤層面の表面抵抗率を測定したところ、前者に
おいては1.27×109Ω/□であり、後者において
は1.48×1010Ω/□であった。
Comparative Example 2 A 1% by weight ethanol solution of a quaternary ammonium salt cationic surfactant (trade name: Cationogen, manufactured by Daiichi Kogyo Co., Ltd.) was applied to the back side of the composite film of Comparative Example 1. Deferred, about 100
The surface resistivities of the surface-active agent layers of the ones coated at a thickness of μm and dried at room temperature (25 ° C., 64% RH) and those dried by heating (120 ° C., 10 min) were measured. 0.27 × 10 9 Ω / □, and the latter was 1.48 × 10 10 Ω / □.

【0030】また、これらのそれぞれにつき湿度約13
%RH(温度25℃)の乾燥環境下で表面抵抗率を測定
したところ、前者においては1.54×1010Ω/□で
あり、後者においては9.85×1010Ω/□であっ
た。更に、100℃の乾燥機中に30分間放置して同じ
く表面抵抗率を測定したところ、何れの場合もほぼ7.
00×1011Ω/□であった。
The humidity is about 13 for each of these.
When the surface resistivity was measured in a dry environment of% RH (temperature 25 ° C.), the former was 1.54 × 10 10 Ω / □, and the latter was 9.85 × 10 10 Ω / □. . Further, when the surface resistivity was measured by leaving it in a dryer at 100 ° C. for 30 minutes, it was almost 7.
It was 00 × 10 11 Ω / □.

【0031】このように、当該比較例品においては、乾
燥状態で複合膜裏面の表面抵抗が著しく高くなり、摩擦
帯電の効果的な防止を期待できない。
As described above, in the comparative example product, the surface resistance of the back surface of the composite film becomes extremely high in a dry state, and effective prevention of triboelectrification cannot be expected.

【0032】しかしながら、上記実施例1〜3につい
て、100℃の乾燥機中に30分間放置したのちの複合
膜裏面側の表面抵抗率を測定したところ、すべて104
Ω/□以下であり、乾燥状態の如何にかかわらず、優れ
た摩擦帯電の防止を達成できることが明らかである。。
[0032] However, for the above Examples 1 to 3 was measured composite film backside surface resistivity of the slurry was allowed to stand for 30 minutes in a 100 ° C. oven, all 10 4
It is Ω / □ or less, and it is clear that excellent triboelectrification prevention can be achieved regardless of the dry state. .

【0033】[0033]

【発明の効果】本発明の複合膜においては、帯電防止の
ための裏面導電性化を、多孔質支持膜の基布の繊維を導
電性とし、この基布を多孔質支持膜の裏面の少なくとも
一部に露出させることによって行っているから、その導
電性繊維の安定な導電性のために帯電防止を確実に保証
できる。
In the composite membrane of the present invention, in order to make the back surface conductive for preventing static electricity, the fibers of the base fabric of the porous support membrane are made electrically conductive, and this base fabric is provided on at least the back surface of the porous support membrane. Since it is carried out by exposing it partially, it is possible to reliably ensure antistatic due to the stable conductivity of the conductive fiber.

【0034】また、基布の間隙をそのまま保持できるの
で、透過特性への影響が無く、更に、基布の多孔質支持
膜裏面での露出は基布への多孔質膜素材溶液の含浸量の
調整により容易に行い得え、帯電防止のための裏面導電
性化のために特別な設備を必要することなく、低コスト
で容易に製造することが可能である。
Further, since the gap of the base cloth can be maintained as it is, there is no influence on the permeation characteristics, and furthermore, the exposure of the base cloth on the back surface of the porous support membrane depends on the amount of the porous membrane material solution impregnated into the base cloth. This can be easily carried out by adjustment, and it is possible to easily manufacture at low cost without requiring special equipment for making the back surface conductive for antistatic.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】導電性の織布または不織布等の基布が埋着
され、しかも、該基布の片面の少なくとも一部が露出さ
れた多孔性支持膜の他面に選択性機能膜が設けられてい
ることを特徴とする複合膜。
1. A selective functional membrane is provided on the other surface of a porous support membrane in which a base cloth such as a conductive woven cloth or a non-woven cloth is embedded, and at least a part of one side of the base cloth is exposed. A composite membrane characterized in that
【請求項2】多孔性支持膜の片面の表面抵抗率が109
Ω/□以下である請求項1記載の複合膜。
2. The surface resistivity of one side of the porous support membrane is 10 9
The composite film according to claim 1, which has an Ω / □ or less.
JP25082392A 1992-08-25 1992-08-25 Dual film Pending JPH0671147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25082392A JPH0671147A (en) 1992-08-25 1992-08-25 Dual film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25082392A JPH0671147A (en) 1992-08-25 1992-08-25 Dual film

Publications (1)

Publication Number Publication Date
JPH0671147A true JPH0671147A (en) 1994-03-15

Family

ID=17213566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25082392A Pending JPH0671147A (en) 1992-08-25 1992-08-25 Dual film

Country Status (1)

Country Link
JP (1) JPH0671147A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703359A (en) * 1996-07-29 1997-12-30 Leybold Inficon, Inc. Composite membrane and support assembly
WO2002038255A1 (en) * 2000-11-13 2002-05-16 Japan Gore-Tex Inc. Antistatic membrane module
JP2006068644A (en) * 2004-09-02 2006-03-16 Nitto Denko Corp Spiral type reverse osmosis membrane element, production method therefor and using method therefor
WO2006068626A1 (en) * 2004-12-23 2006-06-29 National University Of Singapore A method of treating a permeable membrane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703359A (en) * 1996-07-29 1997-12-30 Leybold Inficon, Inc. Composite membrane and support assembly
WO2002038255A1 (en) * 2000-11-13 2002-05-16 Japan Gore-Tex Inc. Antistatic membrane module
JP2006068644A (en) * 2004-09-02 2006-03-16 Nitto Denko Corp Spiral type reverse osmosis membrane element, production method therefor and using method therefor
JP4484635B2 (en) * 2004-09-02 2010-06-16 日東電工株式会社 Spiral type reverse osmosis membrane element and manufacturing method thereof
US8591684B2 (en) 2004-09-02 2013-11-26 Nitto Denko Corporation Spiral reverse osmosis membrane element, method of manufacturing the same, and its use method
US8608964B2 (en) 2004-09-02 2013-12-17 Nitto Denko Corporation Spiral reverse osmosis membrane element, method of manufacturing the same, and its use method
WO2006068626A1 (en) * 2004-12-23 2006-06-29 National University Of Singapore A method of treating a permeable membrane

Similar Documents

Publication Publication Date Title
Liu et al. Spray layer‐by‐layer electrospun composite proton exchange membranes
JP5588434B2 (en) Resin composition, laminated film including the same, and image forming apparatus using the laminated film for a part
TW422888B (en) A metallized film, a production method thereof, and a capacitor using it
US4207482A (en) Multilayered high voltage grading system for electrical conductors
Klose et al. Electrospun sulfonated poly (ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes
CA2503433A1 (en) Heat-resistant film and composite ion-exchange membrane
KR100414601B1 (en) Para-Oriented Aromatic Polyamide Porous Film
CN102460618B (en) Ionic polymer metal composite capacitor
Harjo et al. Polypyrrole‐coated fiber‐scaffolds: concurrent linear actuation and sensing
Varesano et al. A systematic study on the effects of doping agents on polypyrrole coating of fabrics
JPH0671147A (en) Dual film
Yang et al. Triboelectric Power Generation from Heterostructured Air‐Laid Paper for Breathable and Wearable Self‐Charging Power System
US1945933A (en) Process for the manufacture of diaphragms adapted for use in physical or like apparatus
US2709663A (en) Electrical capacitors
JP7061908B2 (en) Composite nanofiber non-woven fabric and its manufacturing method
WO2011021446A1 (en) Electrically insulating sheet and method for producing same
JPS5815532A (en) Solid polymer electrolyte and manufacture
US4261287A (en) Method for manufacturing sensitive elements having a permanent electric polarization and device for performing the same
JPH0874193A (en) Electrically conductive paper
JPH05174991A (en) Static eliminator sheet
JPS6078742A (en) Permanently charged layer material and manufacture thereof
JPH05226187A (en) Electret cloth
JPH01115406A (en) Permselective membrane
JPH06154563A (en) Antistatic selective permeation membrane element
JP2510530B2 (en) Manufacturing method of composite membrane