JPH01115406A - Permselective membrane - Google Patents

Permselective membrane

Info

Publication number
JPH01115406A
JPH01115406A JP62272351A JP27235187A JPH01115406A JP H01115406 A JPH01115406 A JP H01115406A JP 62272351 A JP62272351 A JP 62272351A JP 27235187 A JP27235187 A JP 27235187A JP H01115406 A JPH01115406 A JP H01115406A
Authority
JP
Japan
Prior art keywords
membrane
conductive layer
composite
porous support
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62272351A
Other languages
Japanese (ja)
Inventor
Kuniyasu Jiyou
邦恭 城
Isamu Sakuma
勇 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62272351A priority Critical patent/JPH01115406A/en
Publication of JPH01115406A publication Critical patent/JPH01115406A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To prevent the title permselective membrane from being charged and to obviate the deterioration in the performance due to static electricity by forming >=1 layer of the composite membrane with an electrically conductive layer. CONSTITUTION:A conductive layer is provided on the back of at least a porous supporting membrane of the composite membrane consisting of the porous supporting membrane and a functional membrane. A material consisting essen tially of a surfactant is used for the conductive layer, and the surface resistivity is controlled to <=1X10<10>OMEGA. Any porous formed article can be used as the porous supporting membrane, and the microporous supporting membrane having 0.005-0.1mu pore diameter and permeable to air is preferably used. A material capable of separating a gaseous and liq. material to be separated, especially capable of separating an oxygen/nitrogen mixture, is used as the functional membrane. Since the conductive layer is brought into contact with the functional membrane surface when the composite membrane is wound, the layer of the surfactant is preferably used as the conductive layer, because the functional membrane is not damaged by such a conductive layer and the gas separability is not deteriorated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気体分離性および液体分離性に優れる選択透
過膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a selectively permeable membrane having excellent gas separation properties and liquid separation properties.

[従来の技術] 選択透過膜を用いて混合気体または混合液体から特定の
気体または液体を分離濃縮する方法については、近年多
くの提案がなされており、それらの膜形態の多くは多孔
質支持膜に機能膜を設けた複合形態をとっている。これ
らの気体および液体分離は、工業的規模で行なわれるた
め、それに供される膜の製造は、多孔質支持膜上に機能
膜素材の溶液を塗工して連続的に生産されるか、または
水面上に連続的に機能膜素材の溶液を供給し、得られた
固体薄膜を連続的に多孔質支持膜に複合化する方法(G
、E社、LJSP、3767737号明細書)などが知
られている。これらの連続的な製造方法では、多孔質支
持膜の巻き出し、搬送ロールとの膜の接触、複合膜の巻
き取りなどによりおびただしい静電気を発生し、膜の帯
電の表面電位は数+kvにもおよぶ。通常の機能膜の厚
みは約1μ以下であるため、このような高い帯電によっ
て絶縁破壊が起こり、複合膜の分離性の低下をきたすと
いう問題点を有している。また、モジュールに組み込み
長期にわたって連続操業した場合、透過ガスおよび液体
による膜面への帯電が、性能低下の原因にもつながる。
[Prior Art] Many proposals have been made in recent years regarding methods of separating and concentrating a specific gas or liquid from a mixed gas or mixed liquid using a selectively permeable membrane. It has a composite form with a functional membrane attached to it. Since these gas and liquid separations are carried out on an industrial scale, the membranes used for this purpose are manufactured either continuously by coating a solution of functional membrane material on a porous support membrane, or by continuous production. A method (G
, Company E, LJSP, Specification No. 3767737). In these continuous manufacturing methods, a large amount of static electricity is generated due to unwinding of the porous support membrane, contact of the membrane with a transport roll, winding of the composite membrane, etc., and the surface potential of the charged membrane reaches several + kV. . Since the thickness of a typical functional film is about 1 μm or less, such a high charge causes dielectric breakdown, which causes a problem in that the separability of the composite film deteriorates. Furthermore, when the module is incorporated into a module and operated continuously for a long period of time, charging of the membrane surface due to the permeated gas and liquid can lead to a decrease in performance.

[発明が解決しようとする問題点コ 本発明の目的は、かかる静電気による性能低下の少ない
、気体分離性および液体分離性に優れた選択透過膜を提
供せんとするものである。
[Problems to be Solved by the Invention] An object of the present invention is to provide a selectively permeable membrane with excellent gas separation properties and liquid separation properties, with less deterioration in performance due to static electricity.

[問題点を解決するための手段] 本発明は、上記の目的を達成するために下記の構成を有
する。
[Means for Solving the Problems] The present invention has the following configuration to achieve the above object.

「多孔質支持膜と機能膜から少なくともなる複合膜にお
いて1.該複合膜が、1層以上の導電層を有することを
特徴とする選択透過膜。」 本発明における、多孔質支持膜とは、多孔性の成形品で
あればよく、好ましくはその支持膜の片面における微細
孔の孔径が0.001〜5.0μ、好ましくは0.00
5〜0.1μで、かつ通気性の構造の支持膜か望ましい
。なかでも、微細孔の孔径が小ざくかつ通気性を十分有
するために非対称構造の多孔質支持膜が最も望ましい。
"In a composite membrane consisting of at least a porous support membrane and a functional membrane, 1. A permselective membrane characterized in that the composite membrane has one or more conductive layers." In the present invention, the porous support membrane is: Any molded product may be porous, and preferably the diameter of micropores on one side of the support membrane is 0.001 to 5.0μ, preferably 0.00μ.
A supporting membrane having a thickness of 5 to 0.1 μm and having an air permeable structure is preferable. Among these, a porous support membrane with an asymmetric structure is most desirable because the pore size of the micropores is small and the membrane has sufficient air permeability.

このような多孔質支持膜として、“′オフィス・オブ・
セイリーシ・ウォーター・リサーチ・アンド・ディベロ
ップメント・プログレス・レポート”No、359 (
1968)に記載された方法に従って得られた、ポリス
ルホン多孔質支持膜、ポリイミド多孔質支持膜、酢酸セ
ルロース多孔質支持膜、ポリ塩化ビニル多孔質支持膜な
どがあげられる。また、タフタ、不織布といった基布を
用いて形成された支持膜であってもよい。
As such a porous support membrane, “Office of
Salihsi Water Research and Development Progress Report” No. 359 (
Examples include polysulfone porous support membranes, polyimide porous support membranes, cellulose acetate porous support membranes, polyvinyl chloride porous support membranes, etc., obtained according to the method described in 1968). Alternatively, the support film may be formed using a base fabric such as taffeta or nonwoven fabric.

本発明における機能膜とは、気体および液体の分離対象
物に対する分離特性を有する素材、特にに酸素/窒素分
離性を有する素材からなる薄膜でおり、素材としては例
えば次のものをあげることができる。
The functional membrane in the present invention is a thin film made of a material that has separation properties for gas and liquid objects to be separated, particularly a material that has oxygen/nitrogen separation properties. Examples of the material include the following: .

ポリジメチルシロキサン、ポリジメヂルシロギサン/ポ
リカーホネート共重合体、ポリジメチルシロキサン/ポ
リスチレン共重合体、z vfJWポリジメヂルシロキ
ザンなどのシリコーン系重合体。
Silicone polymers such as polydimethylsiloxane, polydimethylsiloxane/polycarbonate copolymer, polydimethylsiloxane/polystyrene copolymer, and zvfJW polydimethylsiloxane.

ポリスチレン、ポリ−α−メチルスチレン、ポリ酢酸ビ
ニル、ポリエチレン、ポリプロピレン、ポリブテン、ポ
リ−4−メチルペンテン、ポリ−1−ヘキセン、ポリ−
1−オクテン、ポリメタクリル酸メチル、ポリブタジェ
ン、ポリアクリロニトリル、ポリビニルトリメチルシラ
ン、ポリアリルトリメチルシラン、ポリビニルジメチル
フェニルシランなどのビニル重合体やそれらの誘導体な
らびにこれらの重合体を構成する単量体から合成される
共重合体。ポリカーボネート、ポリスルホン、ポリエー
テルスルホン、ポリ(2,6−シメチルフエニレンオキ
シド)、セルロースアセテート、セルロースナイトレー
ト、セルロースジアセテート、セルローストリアセテー
ト、ポリエチレンテレフタレート、ポリブチレンテレフ
タレートなどの縮合系重合体またはそれらの誘導体。
Polystyrene, poly-α-methylstyrene, polyvinyl acetate, polyethylene, polypropylene, polybutene, poly-4-methylpentene, poly-1-hexene, poly-
Synthesized from vinyl polymers such as 1-octene, polymethyl methacrylate, polybutadiene, polyacrylonitrile, polyvinyltrimethylsilane, polyallyltrimethylsilane, polyvinyldimethylphenylsilane, their derivatives, and the monomers that make up these polymers. copolymer. Condensation polymers such as polycarbonate, polysulfone, polyethersulfone, poly(2,6-dimethylphenylene oxide), cellulose acetate, cellulose nitrate, cellulose diacetate, cellulose triacetate, polyethylene terephthalate, polybutylene terephthalate, etc., or their derivative.

機能膜は、上記のうち二種以上の素材がブレンドされた
薄膜であってもよいし、または異種の素材からなる複数
の薄膜が積層した構成でもかまわない。
The functional film may be a thin film made of a blend of two or more of the above materials, or may have a structure in which a plurality of thin films made of different materials are laminated.

機能膜の厚みは、可能な限り薄いことが望ましいが、薄
くなるとピンホールの発生や耐圧性に問題が生じるので
、0.0’lμ〜0.5μ程度が望ましい。
It is desirable that the thickness of the functional film be as thin as possible, but if it becomes thin, problems will occur such as the generation of pinholes and pressure resistance, so it is desirable that the thickness be about 0.0'lμ to 0.5μ.

該多孔質支持膜と該機能膜から少なくともなる複合膜の
作成方法は、(ア)上記機能膜素材を溶媒に溶かした溶
液を多孔質支持膜上に直接塗工し、溶媒を屹燥する方法
や、(イ)該溶液を水面上に流延し、水面上に広がった
溶液から溶媒が蒸発した復行られる薄膜を多孔質支持膜
に押しつけて複合化する方法などがある。(ア)の方法
では、使用する溶媒は、多孔質支持膜の非溶媒でかつ機
能膜素材の良溶媒の中から選択されなければならない。
A method for producing a composite membrane consisting of at least the porous support membrane and the functional membrane is (a) a method in which a solution of the functional membrane material dissolved in a solvent is directly applied onto the porous support membrane, and the solvent is dried. and (a) a method in which the solution is cast onto a water surface, and a thin film in which the solvent has evaporated from the solution spread on the water surface is pressed against a porous support membrane to form a composite. In method (a), the solvent used must be selected from among those that are non-solvents for the porous support membrane and are good solvents for the functional membrane material.

導電層としては、Aff、Zn、Snなどの金属を蒸着
した層や、界面活性剤から構成された層などがあげられ
るが、複合膜の巻取時に機能膜面に導電層が接触するこ
とから、界面活性剤から構成された層は機能膜面に対し
て傷をつけにくく気体分離性を低下させないために好ま
しい。
Examples of the conductive layer include a layer made of vapor-deposited metals such as Af, Zn, and Sn, and a layer made of a surfactant, but since the conductive layer comes into contact with the functional film surface when the composite film is rolled up A layer composed of a surfactant is preferable because it does not easily damage the surface of the functional membrane and does not reduce gas separation properties.

界面活性剤は、アニオン界面活性剤、カチオン界面活性
剤、両性界面活性剤、非イオン界面活性剤に分類される
が、非イオン界面活性剤を除いて、導電層の構成成分と
して帯電防止効果は大きい。
Surfactants are classified into anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants, but with the exception of nonionic surfactants, they have no antistatic effect as a component of the conductive layer. big.

その中でも耐久性、除電性の点でカチオン界面活性剤が
望ましい。カチオン界面活性剤は、親水基の種類によっ
て第1級アミン塩、第2級アミン塩、第3級アミン塩、
第4級アンモニウム塩に分類されるが、除電性の点で第
4級アンモニウム塩が最も望ましい。
Among these, cationic surfactants are preferred in terms of durability and static neutralizing properties. Cationic surfactants can be used as primary amine salts, secondary amine salts, tertiary amine salts, or
Although it is classified as a quaternary ammonium salt, the quaternary ammonium salt is the most desirable in terms of static elimination properties.

本発明において、導電層の表面抵抗は、1X1Q 1o
Ω以下であることが好ましく、1 X 101”Ω以下
であると極めて帯電防止効果が大きく、複合膜の静電気
による性能低下を抑えることが可能となる。1 X 1
010Ωを超えると、帯電が大きく、複合膜の性能低下
を招く傾向がある。
In the present invention, the surface resistance of the conductive layer is 1X1Q 1o
Ω or less is preferable, and when it is 1 × 101” Ω or less, the antistatic effect is extremely large, and it becomes possible to suppress performance deterioration due to static electricity of the composite film. 1 × 1
If it exceeds 0.010 Ω, charging will be large and the performance of the composite membrane will tend to deteriorate.

表面抵抗が’l X 10 IQΩ以下の導電層の表面
抵抗とは、川口電機製作新製の超絶縁計(vE−40〉
に常温測定箱(RC−02>を接続し、20℃、60%
RHにコントロールされた恒温恒湿室で印加電圧100
Vで測定した値である。
The surface resistance of a conductive layer with a surface resistance of 1 x 10 IQΩ or less is measured using a super megohmmeter (vE-40) manufactured by Kawaguchi Electric.
Connect the room temperature measurement box (RC-02> to 20℃, 60%
Applied voltage 100 in a constant temperature and humidity room controlled by RH
This is a value measured at V.

導電層は、前期複合膜の機能膜層上面、または機能膜と
多孔質支持膜の境界面、または多孔質支持膜の裏面に設
けることが可能であるが、複合膜の分離性、透過性を損
なうことなく、帯電を防止するためには、多孔質支持膜
の裏面に導電層を設けることが望ましい。
The conductive layer can be provided on the upper surface of the functional membrane layer of the composite membrane, on the interface between the functional membrane and the porous support membrane, or on the back surface of the porous support membrane, but it may be necessary to In order to prevent charging without causing damage, it is desirable to provide a conductive layer on the back surface of the porous support membrane.

導電層の厚みは、厚くなると透過抵抗となるので薄いこ
とが望ましいが、表面抵抗が1 X 10 ”Ω以下で
かつ透過性を損なうことのない厚みでおることが好まし
い。
The thickness of the conductive layer is desirably thin, since a thicker layer increases the transmission resistance, but it is preferable that the conductive layer has a surface resistance of 1.times.10" .OMEGA. or less and a thickness that does not impair transparency.

導電層を多孔質支持膜裏面に設ける方法として、界面活
性剤を構成成分とする場合、界面活性剤を溶媒に溶解し
た溶液を多孔質支持膜裏面に塗工し、乾燥する方法がと
られる。溶媒としては、多孔質支持膜を侵さないことが
必要で、例えば、水、メタノール、エタノールなどがあ
げられる。溶液濃度としては、O,O1t%〜5.Qw
t%が望ましい。塗工方法としては、グラビヤコータ、
リバースコータ、スリットダイコータなどの一般のコー
タで定量的にかつ均一に塗工することが望ましい。
As a method for providing a conductive layer on the back surface of a porous support membrane, when a surfactant is used as a constituent component, a method is used in which a solution of the surfactant dissolved in a solvent is applied to the back surface of the porous support membrane and dried. The solvent must not attack the porous support membrane, and examples thereof include water, methanol, and ethanol. The solution concentration is O, O1t% to 5. Qw
t% is desirable. Coating methods include gravure coater,
It is desirable to apply the coating quantitatively and uniformly using a general coater such as a reverse coater or a slit die coater.

なお、導電層は、機能膜が複合化される前に多孔質支持
膜に設けることが、導電層を設ける時に機能膜面に傷を
つけることを防げるので望ましい。
Note that it is desirable to provide the conductive layer on the porous support membrane before the functional membrane is composited, since this prevents damage to the functional membrane surface when the conductive layer is provided.

本発明の導電層は、連続的または不連続的に形成された
ものをさす。
The conductive layer of the present invention refers to one formed continuously or discontinuously.

導電層が多孔質支持膜の裏面にあるとは、導電層を支持
膜の裏面に有する、または裏面から形成されたことを意
味する。すなわち、多孔質支持膜とは非対照多孔質支持
膜の場合、導電層が支持膜の孔の中に形成されたものも
含めて指す。また、タフタ、不織布といった基布を用い
て形成された多孔質支持膜の場合、導電層とは、基布を
含めた支持膜のすきま、および孔の中に形成されたもの
も含めて指す。
The conductive layer being on the back side of the porous support membrane means that the conductive layer is on the back side of the support membrane or is formed from the back side. That is, the term "porous support membrane" refers to non-contrastive porous support membranes, including those in which a conductive layer is formed in the pores of the support membrane. Furthermore, in the case of a porous support membrane formed using a base fabric such as taffeta or nonwoven fabric, the conductive layer includes those formed in the gaps and pores of the support membrane including the base fabric.

[特性の測定方法ならびに効果の評価方法]本発明の特
性値の測定方法ならびに効果の評価方法は次のとおりで
ある。
[Method of Measuring Characteristics and Method of Evaluating Effects] The method of measuring characteristic values and the method of evaluating effects of the present invention are as follows.

(1)気体透過性、気体分離性 複合膜を隔てて、−次側の圧力を2atm、二次側の圧
力を’l atmにし、複合膜を透過してきた気体(酸
素または窒素)の透過速度を精密膜流量計5F−101
(スタンダード・テクノロジー社製)で測定した。酸素
透過速度を気体透過性能とし、酸素透過速度と窒素透過
速度の比である分離係数を気体分離性能の評価基準とし
た。
(1) Gas permeability, gas separation properties Across the composite membrane, the pressure on the downstream side is 2 atm and the pressure on the secondary side is 'l atm, and the permeation rate of gas (oxygen or nitrogen) that has permeated through the composite membrane. Precision membrane flow meter 5F-101
(manufactured by Standard Technology). The oxygen permeation rate was defined as the gas permeation performance, and the separation coefficient, which is the ratio of the oxygen permeation rate to the nitrogen permeation rate, was used as the evaluation standard for the gas separation performance.

(2)  導電層の表面抵抗 川口電機製作新製の超絶縁計(VE−40>に常温測定
箱(RC−02)を接続し、20℃、60%RHにコン
トロールされた恒温恒湿室で印加電圧100Vで測定し
た。
(2) Surface resistance of the conductive layer A room temperature measurement box (RC-02) was connected to a new super megohmmeter (VE-40) manufactured by Kawaguchi Electric, and the surface resistance was measured in a constant temperature and humidity room controlled at 20°C and 60% RH. Measurement was performed with an applied voltage of 100V.

(3)  複合膜の帯電性 シシド静電気(株)の静電気測定器スタチロンTHで表
面電位を測定した。
(3) Chargeability of composite membrane The surface potential was measured using a static electricity meter, Statylon TH, manufactured by Shishido Electrostatic Co., Ltd.

(4)絶縁破壊による膜性能低下 製膜直1変に膜性能を測定しておいた複合膜の長尺10
mをコア(または紙管)に巻き取り、そのままの状態で
15日間室温で放置後に、膜性能を評価した。
(4) Decrease in membrane performance due to dielectric breakdown 10 long lengths of composite membrane whose membrane performance was measured immediately after film formation
M was wound around a core (or paper tube) and left as it was at room temperature for 15 days, after which the membrane performance was evaluated.

[実施例コ 本発明を実施例に基づいて説明する。[Example code] The present invention will be explained based on examples.

実施例1 ポリエステルのタフタにポリスルホン/ジメチルホルム
アミド15.6wt%溶液をウェット厚50μで塗工し
、水凝固浴に浸漬してポリスルホン多孔質支持膜を得た
。該ポリスルホン多孔質支持膜のタフタ面側に、第4級
アンモニウム塩カチオン界面活性剤(“エフコール70
′′松本油脂製薬(株)製〉の1wt%メタノール溶液
をスリットダイコータで100μ塗工し乾燥する。該導
電層の表面抵抗は1.9X109Ωであった。
Example 1 A polysulfone/dimethylformamide 15.6 wt% solution was coated on polyester taffeta to a wet thickness of 50 μm, and the coated film was immersed in a water coagulation bath to obtain a polysulfone porous support membrane. A quaternary ammonium salt cationic surfactant (“Fcol 70
A 1 wt % methanol solution (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) was applied in an amount of 100 μm using a slit die coater and dried. The surface resistance of the conductive layer was 1.9×10 9 Ω.

ポリ(2,6−シメチルー1,4−フェニレンオキシド
)6.10を無水テトラヒドロフラン400m1に溶解
し、室温にてN、N、N’、N’−テトラメチルエチレ
ンジアミン8.5mlとn−ブチルリチウムのn−ヘキ
サン溶液(1,58M>28m1とを添加し、80分間
攪拌した。次いで、この反応溶液にトリメチルクロロシ
ラン5.9mlとトリエトキシクロロシラン1.3m+
の混合物を添加し、さらに1時間W1拌を続け、得られ
た反応溶液を2Qのメタノール中に投入し、析出したポ
リマーを濾過により回収した。このポリマーを再度メタ
ノール再沈澱により精製した俊、減圧下で乾燥し、7.
4gのポリマー[ポリマ(■)]を得た。このポリマー
の赤外分光スペクトルでは、125 Qcm−1にトリ
メチルシリル基に由来する吸収が見られ、ざらにプロト
ン該磁気共−スベクトルによれば繰返し単位の25%の
にトリメチルシリル基が、また、繰返し単位の4%にト
リエトキシシリル基が導入されていることが確認された
Poly(2,6-dimethyl-1,4-phenylene oxide) 6.10 was dissolved in 400 ml of anhydrous tetrahydrofuran, and 8.5 ml of N,N,N',N'-tetramethylethylenediamine and n-butyllithium were dissolved at room temperature. A n-hexane solution (1,58M>28ml) was added and stirred for 80 minutes. Next, 5.9ml of trimethylchlorosilane and 1.3ml of triethoxychlorosilane were added to the reaction solution.
The mixture was added, W1 stirring was continued for another 1 hour, the resulting reaction solution was poured into 2Q methanol, and the precipitated polymer was collected by filtration. This polymer was purified again by methanol reprecipitation, dried under reduced pressure, and 7.
4 g of polymer [polymer (■)] was obtained. In the infrared spectrum of this polymer, absorption derived from the trimethylsilyl group is seen at 125 Qcm-1, and roughly according to the proton magnetic coexistence vector, the trimethylsilyl group accounts for 25% of the repeating units. It was confirmed that triethoxysilyl groups were introduced into 4% of the units.

このポリマーをトリクロロトリフルオロエタンに溶解し
、1wt%溶液を調製する。この溶液を滴下ロートで水
面上に静かに連続的に供給し、水面上に形成された薄膜
をポリマー液供給側と反対側で導電層を設けたポリスル
ホン多孔質支持膜に連続的に複合化していき、長さ10
mの長尺複合膜を作成した。
This polymer is dissolved in trichlorotrifluoroethane to prepare a 1 wt % solution. This solution is quietly and continuously supplied onto the water surface using a dropping funnel, and the thin film formed on the water surface is continuously composited onto a polysulfone porous support membrane provided with a conductive layer on the side opposite to the polymer liquid supply side. Come, length 10
A long composite membrane of m length was prepared.

作成直後の複合膜性能および表面電位を表−1に示す。Table 1 shows the composite membrane performance and surface potential immediately after preparation.

該長尺複合膜をコアに巻き取り、15日間室温保管模、
複合膜性能および表面電位を測定した。測定結果を表−
1に示す。表−1かられかるように複合膜性能の低下お
よび帯電が抑えられていることがわかる。
The long composite membrane was wound around a core and stored at room temperature for 15 days,
Composite membrane performance and surface potential were measured. Display the measurement results.
Shown in 1. As can be seen from Table 1, it can be seen that deterioration in composite membrane performance and charging were suppressed.

比較例1 実施例1で作成したポリマ[I]をトリクロロトリフル
オロエタンに溶解し、’1wt%溶液とし、導電層を設
けていないポリスルホン多孔質支持膜に実施例1の方法
に従って複合化し、10mの長尺複合膜を作成した。作
成直後の複合膜の性能および表面電位を表−1に示す。
Comparative Example 1 The polymer [I] prepared in Example 1 was dissolved in trichlorotrifluoroethane to make a 1 wt% solution, and the mixture was composited onto a polysulfone porous support membrane without a conductive layer according to the method of Example 1. A long composite membrane was created. Table 1 shows the performance and surface potential of the composite membrane immediately after preparation.

該長尺複合膜をコアに巻き取り15日間V温保管侵、複
合膜の性能および表面電位を測定した。測定結果を表−
1に示す。表−1かられかるように、導電層を設けてい
ない複合膜は、性能低下および帯電ともに大きい。
The long composite membrane was wound around a core and stored at V temperature for 15 days, and the performance and surface potential of the composite membrane were measured. Display the measurement results.
Shown in 1. As can be seen from Table 1, the composite membrane without a conductive layer had a large decrease in performance and large charge.

実施例2 両末端がシラノール基であるポリジメチルシロキサン(
数平均分子量約5万)9.5重量部、テトラ(ジメチル
ケトキシム)シラン0.4重量部、ジブチル錫ジアセテ
ート0.1重量部をトリクロロトリフルオロエタンに溶
解し、固形分0.5重量%に調製する。この稀薄溶液を
スリットダイコ一ダで実施例1で作成したポリスルホン
多孔質支持膜にWet厚25μで塗工し、120’Cで
1分間加熱乾燥した後、複合膜(I)を得た。該複合膜
(I)のタフタ面側に実施例1で使用した界面活性剤/
メタノール1wt%溶液を100μ塗工し乾燥して、複
合膜(I[>を得た。該複合膜<II)のシリコーン層
側に、実施例1で使用したポリマ(I)のトリクロロト
リフルオロエタン0.5wt%溶液をスリットダイコー
タで25μ塗工し、120℃乾燥後、複合膜(III)
の10m長尺品を14だ。作成直後の複合膜(III)
の性能および表面電位を測定した。測定結果を表−1に
示す。該長尺複合膜(I)をコアに巻き取り15日間室
温保管、性能および表面電位を測定した。その結果を表
−1に示す。表−1かられかるように、性能低下および
帯電が抑えられていることがわかる。
Example 2 Polydimethylsiloxane with silanol groups at both ends (
9.5 parts by weight (number average molecular weight approximately 50,000), 0.4 parts by weight of tetra(dimethylketoxime)silane, and 0.1 parts by weight of dibutyltin diacetate were dissolved in trichlorotrifluoroethane to obtain a solid content of 0.5 parts by weight. Adjust to %. This dilute solution was applied to the polysulfone porous support membrane prepared in Example 1 using a slit diecoder to a wet thickness of 25 μm, and was dried by heating at 120° C. for 1 minute to obtain a composite membrane (I). The surfactant used in Example 1 was applied to the taffeta side of the composite membrane (I).
100μ of a 1wt% methanol solution was applied and dried to obtain a composite film (I[>). Trichlorotrifluoroethane, the polymer (I) used in Example 1, was applied on the silicone layer side of the composite film <II). Coat 25μ of 0.5wt% solution with a slit die coater, dry at 120°C, and then form a composite film (III).
The 10m long product is 14. Composite membrane immediately after creation (III)
performance and surface potential were measured. The measurement results are shown in Table-1. The long composite membrane (I) was wound around a core and stored at room temperature for 15 days, and its performance and surface potential were measured. The results are shown in Table-1. As can be seen from Table 1, it can be seen that performance deterioration and charging are suppressed.

比較例2 実施例2の複合膜(I)に、実施例1で使用したポリマ
(I)のトリクロロトリフルオロエタン0.5wt%溶
液をスリットダイコータで25μ塗エし、120’Cで
乾燥後、複合膜(IV>の10m長尺晶を得た。作成直
後の複合膜(N)の性能および表面電位を測定した。測
定結果を表−1に示す。該長尺複合膜(IV)をコアに
巻き取り15日間室温保管後、性能および表面電位を測
定した結果を表−1にしめす。表−1かられかるように
、導電層を設けていない複合膜(II7)は、性能低下
および帯電が大きいことがわかる。
Comparative Example 2 25μ of a 0.5wt% trichlorotrifluoroethane solution of the polymer (I) used in Example 1 was applied to the composite membrane (I) of Example 2 using a slit die coater, and after drying at 120'C, A 10 m long crystal of the composite film (IV) was obtained. The performance and surface potential of the composite film (N) immediately after preparation were measured. The measurement results are shown in Table 1. The performance and surface potential were measured after being rolled up and stored at room temperature for 15 days, and the results are shown in Table 1.As seen from Table 1, the composite membrane (II7) without a conductive layer showed a decrease in performance and charging. It can be seen that the is large.

[発明の効果コ 本発明の選択透過膜は、導電層を有しているので、選択
透過膜の帯電が抑えられ、静電気による膜性能の低下が
少なく、また気体および液体の分離性、透過性の高い実
用上優れた特性を有している。
[Effects of the invention] Since the selectively permeable membrane of the present invention has a conductive layer, charging of the selectively permeable membrane is suppressed, there is less deterioration of membrane performance due to static electricity, and gas and liquid separation and permeability are improved. It has excellent practical properties.

Claims (4)

【特許請求の範囲】[Claims] (1)多孔質支持膜と機能膜から少なくともなる複合膜
において、該複合膜が、1層以上の導電層を有すること
を特徴とする選択透過膜。
(1) A selectively permeable membrane comprising at least a porous support membrane and a functional membrane, characterized in that the composite membrane has one or more conductive layers.
(2)導電層が1×10^1^0Ω以下の表面抵抗値を
有することを特徴とする特許請求の範囲第(1)項記載
の選択透過膜。
(2) The permselective membrane according to claim (1), wherein the conductive layer has a surface resistance value of 1×10^1^0Ω or less.
(3)導電層が、少なくとも多孔質支持膜の裏面にある
ことを特徴とする特許請求の範囲第(1)項記載の選択
透過膜。
(3) The permselective membrane according to claim (1), wherein the conductive layer is at least on the back surface of the porous support membrane.
(4)導電層が、主成分として界面活性剤からなること
を特徴とする特許請求の範囲第(1)項記載の選択透過
膜。
(4) The permselective membrane according to claim (1), wherein the conductive layer consists of a surfactant as a main component.
JP62272351A 1987-10-27 1987-10-27 Permselective membrane Pending JPH01115406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62272351A JPH01115406A (en) 1987-10-27 1987-10-27 Permselective membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62272351A JPH01115406A (en) 1987-10-27 1987-10-27 Permselective membrane

Publications (1)

Publication Number Publication Date
JPH01115406A true JPH01115406A (en) 1989-05-08

Family

ID=17512669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62272351A Pending JPH01115406A (en) 1987-10-27 1987-10-27 Permselective membrane

Country Status (1)

Country Link
JP (1) JPH01115406A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136872A (en) * 1998-11-20 2000-10-24 Shell Oil Company Freeze-dried polystyrene-polysiloxane foams
KR100443845B1 (en) * 2001-07-27 2004-08-09 (주)오오히로 코리아 Washing bowl
CN105415842A (en) * 2015-10-22 2016-03-23 金田集团(桐城)塑业有限公司 Double-sided corona cover light membrane
CN105751647A (en) * 2016-03-17 2016-07-13 金田集团(桐城)塑业有限公司 Special film for automatic laminating machine adopting double-sided corona and preparation method of special film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186904A (en) * 1986-02-13 1987-08-15 Kiyoshi Sugai Composite porous membrane for separation and purification

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186904A (en) * 1986-02-13 1987-08-15 Kiyoshi Sugai Composite porous membrane for separation and purification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136872A (en) * 1998-11-20 2000-10-24 Shell Oil Company Freeze-dried polystyrene-polysiloxane foams
KR100443845B1 (en) * 2001-07-27 2004-08-09 (주)오오히로 코리아 Washing bowl
CN105415842A (en) * 2015-10-22 2016-03-23 金田集团(桐城)塑业有限公司 Double-sided corona cover light membrane
CN105751647A (en) * 2016-03-17 2016-07-13 金田集团(桐城)塑业有限公司 Special film for automatic laminating machine adopting double-sided corona and preparation method of special film

Similar Documents

Publication Publication Date Title
US5296144A (en) Composite membrane of a hydrophilic asymmetric membrane coated with an organosiloxane block copolymer
US4857363A (en) Process for preparation of semipermeable composite membrane
JP6432508B2 (en) Method for producing film having nanostructure on surface
JPH0157613B2 (en)
JPS6135803A (en) Composite hollow yarn
US4470831A (en) Permselective membrane
GB2607470A (en) Composite ion exchange membranes
CN103122067A (en) Polysiloxane imide segmented copolymer, asymmetric membrane and preparation methods
US4567245A (en) Substituted polyacetylene copolymer
JPH01115406A (en) Permselective membrane
JPS6178402A (en) Separation of organic liquid mixture
EP0099432B1 (en) Permselective membrane
US5176724A (en) Permselective composite membrane having improved gas permeability and selectivity
Wang et al. pH-sensitive fluorinated polyimides with grafted acid and base side chains
Babu et al. Preparation, structure, and transport properties of ultrafiltration membranes of poly (vinyl chloride)(PVC), carboxylated poly (vinyl chloride)(CPVC), and PVC/CPVC blends
JPH0157614B2 (en)
Liu et al. Antifouling polyethersulfone membrane blended with a dual-mode amphiphilic copolymer
JPH02290230A (en) Composite polymer membrane for separating gas mixture and manufacture thereof
JPH0451218B2 (en)
CN111821861B (en) Method for preparing high-flux organic solvent nanofiltration membrane by star-shaped molecular compound
Gasemloo et al. Fabrication of sulfated nanofilter membrane based on carboxymethyl cellulose
JPS646813B2 (en)
JPS5895539A (en) Gas separating membrane
JPH05503034A (en) Ultra-thin film composite membrane
JPH0387B2 (en)