JPH0670095B2 - Method for producing catalyst component for olefin polymerization - Google Patents

Method for producing catalyst component for olefin polymerization

Info

Publication number
JPH0670095B2
JPH0670095B2 JP60121469A JP12146985A JPH0670095B2 JP H0670095 B2 JPH0670095 B2 JP H0670095B2 JP 60121469 A JP60121469 A JP 60121469A JP 12146985 A JP12146985 A JP 12146985A JP H0670095 B2 JPH0670095 B2 JP H0670095B2
Authority
JP
Japan
Prior art keywords
catalyst component
polymerization
titanium
polymer
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60121469A
Other languages
Japanese (ja)
Other versions
JPS61281103A (en
Inventor
稔 寺野
拓雄 片岡
元基 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP60121469A priority Critical patent/JPH0670095B2/en
Publication of JPS61281103A publication Critical patent/JPS61281103A/en
Publication of JPH0670095B2 publication Critical patent/JPH0670095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオレフイン類の重合に供した際、高活性に作用
し、しかも立体規則性重合体を高収率で得ることのでき
る触媒成分の製造方法に係り更に詳しくは、マグネシウ
ム化合物と電子供与性物質とを低温で粉砕して得られた
固体組成物をチタンハロゲン化物と接触させることを特
徴とするオレフイン類重合用触媒成分の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention provides a catalyst component which, when subjected to the polymerization of olephins, has a high activity and is capable of obtaining a stereoregular polymer in a high yield. More particularly, it relates to a method for producing a catalyst component for olefin polymerization, which comprises contacting a solid composition obtained by pulverizing a magnesium compound and an electron donating substance at a low temperature with a titanium halide. It is a thing.

〔従来の技術〕[Conventional technology]

従来、オレフイン類重合用触媒成分としては固体のチタ
ンハロゲン化物が周知であり、広く用いられているが、
触媒成分、および触媒成分中のチタン当りの重合体の収
量(以下単に触媒成分および触媒成分中のチタン当りの
重合活性という。)が低いため、触媒残渣を除去するた
めの所謂脱灰工程が不可避であつた。この脱灰工程は多
量のアルコールまたはキレート剤を使用するために、そ
れ等の回収装置または再生装置が必要不可欠であり、資
源、エネルギー、その他付随する問題が多く、当業者に
とつて早急に解決を望まれる重要な課題であつた。この
煩雑な脱灰工程を省くため触媒成分、とりわけ触媒成分
中のチタン当りの重合活性を高めるべく数多くの研究が
なされ、提案されている。
Conventionally, solid titanium halides are well known and widely used as catalyst components for olefin polymerization.
Since the yield of the catalyst component and the polymer per titanium in the catalyst component (hereinafter simply referred to as the catalyst component and the polymerization activity per titanium in the catalyst component) is low, a so-called deashing step for removing the catalyst residue is unavoidable. It was. Since this deashing process uses a large amount of alcohol or a chelating agent, a recovery device or a regenerating device for them is indispensable, and there are many resources, energy, and other incidental problems, and a person skilled in the art can quickly solve them. This is an important issue that is desired. In order to eliminate this complicated deashing process, many studies have been made and proposed to increase the polymerization activity of the catalyst component, especially titanium per catalyst component.

特に最近の傾向として活性成分であるチタンハロゲン化
物等の遷移金属化合物を、塩化マグネシウム等の担体物
質に担持させ、オレフイン類の重合に供した際に、触媒
成分中のチタン当りの重合活性を飛躍的に高めたという
提案が数多く見かけられる。
In particular, as a recent tendency, when a transition metal compound such as titanium halide, which is an active ingredient, is supported on a carrier substance such as magnesium chloride and subjected to the polymerization of olefins, the polymerization activity per titanium in the catalyst component is significantly increased. There are many proposals to raise the price.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、従来提案されている方法においては、塩化マグ
ネシウムをアルコールに溶解させるなどそれぞれ非常に
煩雑な工程を必要とし、簡単な手法をもつて立体規則性
重合体の収率をも高度に維持しつつ触媒成分当りの重合
活性を高めた例は見出し得ない。
However, the conventionally proposed methods require very complicated steps such as dissolving magnesium chloride in alcohol, and while maintaining a high degree of stereoregular polymer yield with a simple method. No example can be found in which the polymerization activity per catalyst component is increased.

本発明者等は、斯かる従来技術に残された課題を解決す
べく鋭意研究の結果本発明に達し茲に提案するものであ
る。
The present inventors have reached the present invention as a result of earnest research in order to solve the problems left over in the related art, and make a proactive proposal.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明の特徴とするところは、(a)一般式MgX2
(式中Xはハロゲン元素である。)で表わされるマグネ
シウム化合物と、(b)芳香族カルボン酸エステルおよ
びSi−O結合を有するケイ素化合物の各々から選択され
る2種の電子供与性物質とを、5℃以下の低温で粉砕し
て得られた固体組成物に、(c)一般式TiX4(式中Xは
ハロゲン元素である。)で表わされるチタンハロゲン化
物を接触させた後、更に該チタンハロゲン化物を接触さ
せるオレフィン類重合用触媒成分の製造方法を提供する
ところにある。
That is, the feature of the present invention is that (a) the general formula MgX 2
A magnesium compound represented by the formula (wherein X is a halogen element), and (b) two kinds of electron-donating substances each selected from an aromatic carboxylic acid ester and a silicon compound having a Si—O bond. The solid composition obtained by pulverizing at a low temperature of 5 ° C. or lower is contacted with (c) a titanium halide represented by the general formula TiX 4 (where X is a halogen element), and Another object of the present invention is to provide a method for producing a catalyst component for polymerization of olefins, which comprises contacting with a titanium halide.

本発明において用いられるマグネシウム化合物としては
弗化マグネシウム、塩化マグネシウム、臭化マグネシウ
ム、沃化マグネシウム等があげられるが、中でも塩化マ
グネシウムが好ましい。
Examples of the magnesium compound used in the present invention include magnesium fluoride, magnesium chloride, magnesium bromide, magnesium iodide, and the like. Among them, magnesium chloride is preferable.

本発明において用いられる2種の電子供与性物質として
は、芳香族カルボン酸エステル類、Si−O結合を有する
ケイ素化合物の中からそれぞれ選択して供される。
The two types of electron-donating substances used in the present invention are selected from aromatic carboxylic acid esters and silicon compounds having a Si—O bond, respectively.

本発明において用いられる一般式TiX4(式中Xはハロゲ
ン元素である。)で表わされるチタンハロゲン化物とし
てはTiCl4,TiBr4,TiI4等があげられるが中でもTiCl4
好ましい。
Examples of the titanium halide represented by the general formula TiX 4 (where X is a halogen element) used in the present invention include TiCl 4 , TiBr 4 , TiI 4 and the like, among which TiCl 4 is preferable.

本発明において生成された固体組成物とチタンハロゲン
化物との接触後、更にチタンハロゲン化物と接触させる
ことが必要であり、あるいはまたn−ヘプタン等の有機
溶媒で洗浄することにより、本発明の効果をより高める
ことも可能である。
After contacting the titanium halide with the solid composition produced in the present invention, it is necessary to further contact with the titanium halide, or the effect of the present invention can be obtained by washing with an organic solvent such as n-heptane. Can be increased.

これ等各成分の使用割合は生成される触媒成分の性能に
悪影響を及ぼすことのない限り任意であり、特に限定す
るものではないが、通常マグネシウム化合物1gに対して
電子供与性物質はそれぞれ0.01〜1gの割合で用いられ
る。
The use ratio of each of these components is arbitrary as long as it does not adversely affect the performance of the produced catalyst component, and is not particularly limited, but usually the electron donating substance is 0.01 to 1 g per 1 g of the magnesium compound. Used at a rate of 1g.

本発明におけるマグネシウム化合物と2種以上の電子供
与性物質との粉砕は、通常機械的手段によつて行なわれ
るが、一般にボールミル、振動ミル、塔式摩砕機、衝撃
粉砕機等が用いられる。粉砕時間は用いられる装置の性
能に応じて異なることは勿論であるが通常1〜500時間
の範囲である。また粉砕温度は5℃以下の低温であるこ
とが必要である。
The pulverization of the magnesium compound and two or more kinds of electron-donating substances in the present invention is usually carried out by a mechanical means, but a ball mill, a vibration mill, a tower grinder, an impact grinder, etc. are generally used. The crushing time varies depending on the performance of the apparatus used, but is usually in the range of 1 to 500 hours. Further, the pulverization temperature needs to be a low temperature of 5 ° C. or lower.

チタンハロゲン化物と前記固体組成物との接触は、種々
の方法を用いて行ない得るが、例えば撹拌機を具備した
容器中で通常室温ないし用いられるチタンハロゲン化物
の沸点までの温度範囲で行なわれる。接触時間は固体組
成物と、チタンハロゲン化物とが十分に接触し得る範囲
であれば任意であるが、通常10分ないし100時間の範囲
で行なわれる。
The contact between the titanium halide and the solid composition can be carried out by various methods, for example, in a vessel equipped with a stirrer, at a temperature range from room temperature to the boiling point of the titanium halide which is usually used. The contact time is arbitrary as long as the solid composition and titanium halide can be sufficiently contacted with each other, but is usually in the range of 10 minutes to 100 hours.

本発明におけるこれ等一連の操作は酸素、水分等の不存
在下に行なわれることが好ましい。
It is preferable that these series of operations in the present invention are performed in the absence of oxygen, water and the like.

以上の如くして製造された触媒成分は有機アルミニウム
化合物と組合せてオレフイン類重合用触媒を形成する。
使用する有機アルミニウム化合物は触媒成分中のチタン
原子のモル当りモル比で1〜1000の範囲で用いられる。
また重合に際して電子供与性物質などの第三成分を添加
使用することも妨げない。
The catalyst component produced as described above is combined with an organoaluminum compound to form a catalyst for olefin polymerization.
The organoaluminum compound used is used in a range of 1 to 1000 in terms of molar ratio per mole of titanium atom in the catalyst component.
In addition, addition of a third component such as an electron-donating substance during the polymerization does not interfere.

重合は有機溶媒の存在下でも、或いは不存在下でも行な
うことができる。またオレフイン単量体は気体および液
体どちらの状態でも用いることができる。重合温度は20
0℃以下好ましくは100℃以下であり、重合圧力は100kg/
cm2・G以下、好ましくは50kg/cm2・G以下である。
The polymerization can be carried out in the presence or absence of an organic solvent. Further, the olefin monomer can be used in either a gas or liquid state. Polymerization temperature is 20
0 ℃ or less, preferably 100 ℃ or less, the polymerization pressure is 100kg /
cm 2 · G or less, preferably 50 kg / cm 2 · G or less.

本発明により製造された触媒成分を用いて単独重合また
は共重合されるオレフイン類はエチレン、プロピレン、
1−ブテン、4−メチル−1−ペンテン等である。
Olefins homopolymerized or copolymerized using the catalyst component produced by the present invention are ethylene, propylene,
1-butene, 4-methyl-1-pentene and the like.

〔発明の効果〕〔The invention's effect〕

本発明によつて得られた触媒成分を用いてオレフイン類
の重合を行なつた場合、高活性であるがゆえに生成重合
体中の触媒残渣を極めて低くおさえることができ、従つ
て生成重合体に及ぼす塩素の影響を低減することができ
る。更に立体規則性重合体の収率においても極めて優れ
た効果を示している。
When olefins are polymerized using the catalyst component obtained according to the present invention, the catalyst residue in the produced polymer can be kept extremely low due to its high activity, and thus the produced polymer can be The influence of chlorine exerted can be reduced. Further, it also shows an extremely excellent effect on the yield of the stereoregular polymer.

また、従来知られている高活性担持型触媒においては重
合の進行につれて活性が大きく低下してしまい、実質上
共重合等に使用することは不可能であつたが、本発明に
よつて得られた触媒成分を用いた場合、そのような現象
が極めて低くおさえることができ、共重合にも十分使用
することができる。
Further, in the conventionally known highly active supported catalyst, the activity was greatly reduced as the polymerization proceeded, and it was practically impossible to use it for copolymerization and the like, but it was obtained by the present invention. When such a catalyst component is used, such a phenomenon can be suppressed to a very low level and can be sufficiently used for copolymerization.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically described below with reference to examples.

実施例1 〔触媒成分の調製〕 塩化マグネシウム30g、フエニルトリエトキシシラン3.8
mlおよびジプロピルフタレート7.2mlを窒素ガス雰囲気
下で25mmφのステンレスボールを全容積の4/5充填した
容量1.0の振動ミルポツトに装入し、振動数1430v.p.
m、振巾3.5mmで−10℃において17時間の粉砕処理を行な
つた。
Example 1 [Preparation of catalyst component] Magnesium chloride 30 g, phenyltriethoxysilane 3.8
ml and dipropyl phthalate 7.2 ml in a nitrogen gas atmosphere into a vibrating mill pot with a capacity of 1.0 filled with 25 mmφ stainless balls 4/5 of the total volume, and the frequency is 1430 v.p.
Milling was performed for 17 hours at −10 ° C. with a m and a swing of 3.5 mm.

窒素ガスで充分に置換され、撹拌機を具備した容量500m
lの丸底フラスコにTiCl4200mlと前記粉砕処理によつて
得た固体組成物8gを装入し、120℃で2時間の撹拌反応
を行なつた。反応終了後静置してデカンテーシヨンによ
り上澄液を除去し、新たにTiCl4200mlを加え110℃で2
時間反応させた。次いでn−ヘプタン100mlによる洗浄
を繰返し行ない、洗浄液中に塩素が検出されなくなつた
時点を以つて洗浄終了とみなし触媒成分とした。なお、
この際該触媒成分中の固液を分離して固体分中のチタン
含有率を測定したところ、2.28重量%であつた。
Fully replaced by nitrogen gas, capacity 500m equipped with stirrer
200 ml of TiCl 4 and 8 g of the solid composition obtained by the above-mentioned pulverization treatment were charged into a round-bottomed flask having a volume of 1 l, and stirred at 120 ° C. for 2 hours. After completion of the reaction, the mixture was left standing and the supernatant was removed by decantation, 200 ml of TiCl 4 was newly added, and the mixture was stirred at 110 ° C for 2
Reacted for hours. Then, washing with 100 ml of n-heptane was repeated, and when the chlorine was not detected in the washing solution, the washing was considered to be completed and the catalyst component was obtained. In addition,
At this time, when the solid-liquid in the catalyst component was separated and the titanium content in the solid was measured, it was 2.28% by weight.

〔重合〕〔polymerization〕

窒素ガスで完全に置換された内容積2.0の撹拌装置付
オートクレープに、n−ヘプタン700mlを装入し、窒素
ガス雰囲気を保ちつつトリエチルアルミニウム300mg、
フエニルトリエトキシシラン62.7mgおよび前記触媒成分
をチタン原子として0.62mg装入した。その後水素ガス16
0mlを装入し70℃に昇温してプロピレンガスを導入しつ
つ6kg/cm2・Gの圧力を維持して2時間の重合を行なつ
た。
700 ml of n-heptane was charged into an autoclave with an internal volume of 2.0, which was completely replaced with nitrogen gas, and 300 mg of triethylaluminum was added while maintaining a nitrogen gas atmosphere.
62.7 mg of phenyltriethoxysilane and 0.62 mg of the above catalyst component as titanium atoms were charged. Then hydrogen gas 16
0 ml was charged, the temperature was raised to 70 ° C., propylene gas was introduced, and the pressure of 6 kg / cm 2 · G was maintained to carry out polymerization for 2 hours.

重合終了後得られた固体重合体を別し、80℃に加温し
て減圧乾燥し、256gの重合体を得た。一方液を凝縮し
て2.9gの重合体を得た。また、該固体重合体のMIは5.8
であつた。
After the completion of the polymerization, the solid polymer obtained was separated, heated to 80 ° C. and dried under reduced pressure to obtain 256 g of a polymer. On the other hand, the liquid was condensed to obtain 2.9 g of a polymer. The MI of the solid polymer is 5.8.
It was.

実施例2 重合時間を3時間にした以外は実施例1と同様にして実
験を行なつたところ、351gの固体重合体が得られた。該
固体重合体のMIは6.2、また、液を凝縮して得られた
重合体は4.8gであつた。
Example 2 When an experiment was conducted in the same manner as in Example 1 except that the polymerization time was 3 hours, 351 g of a solid polymer was obtained. The MI of the solid polymer was 6.2, and the polymer obtained by condensing the liquid was 4.8 g.

実施例3 ジプロピルフタレートの代りにジブチルフタレート10.2
mlを使用して実施例1と同様にして実験を行なつた。な
お、この際の固体成分中のチタン含有率は2.57重量%で
あつた。重合終了後得られた固体重合体は261g、液を
凝縮して得られた固体重合体は3.1gであつた。
Example 3 Dibutyl phthalate 10.2 instead of dipropyl phthalate
An experiment was conducted in the same manner as in Example 1 using ml. The titanium content in the solid component at this time was 2.57% by weight. The solid polymer obtained after completion of the polymerization was 261 g, and the solid polymer obtained by condensing the liquid was 3.1 g.

また、該固体重合体のMIは6.2であつた。The MI of the solid polymer was 6.2.

実施例4 TiCl4との反応温度を100℃とした以外は実施例1と同様
にして実験を行なつた。なお、この際の固体分中のチタ
ン含有率は2.69重量%であつた。
Example 4 An experiment was performed in the same manner as in Example 1 except that the reaction temperature with TiCl 4 was 100 ° C. The titanium content in the solid content at this time was 2.69% by weight.

重合に際してはフエニルトリエトキシシランを52.5mg使
用した以外は実施例1と同様にして実験を行なつた。得
られた固体重合体は270g、液を凝縮して得られた重合
体は3.8gであつた。また、該固体重合体のMIは4.7であ
つた。
An experiment was conducted in the same manner as in Example 1 except that 52.5 mg of phenyltriethoxysilane was used in the polymerization. The obtained solid polymer was 270 g, and the polymer obtained by condensing the liquid was 3.8 g. The MI of the solid polymer was 4.7.

実施例5 粉砕を0℃で30時間行なつた以外は実施例1と同様にし
て実験を行なつた。なお、この際の固体分中のチタン含
有率は2.36重量%であつた。
Example 5 An experiment was conducted in the same manner as in Example 1 except that pulverization was performed at 0 ° C. for 30 hours. The titanium content in the solid content at this time was 2.36% by weight.

重合終了後、得られた固体重合体は268g、液を凝縮し
て得られた重合体は3.7gであつた。また、該固体重合体
のMIは6.1であつた。
After the completion of the polymerization, the amount of the obtained solid polymer was 268 g, and the amount of the polymer obtained by condensing the liquid was 3.7 g. The MI of the solid polymer was 6.1.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を説明するためのフローチャートであ
る。
FIG. 1 is a flow chart for explaining the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(a)一般式MgX2(式中Xはハロゲン元素
である。)で表わされるマグネシウム化合物と、(b)
芳香族カルボン酸エステルおよびSi−O結合を有するケ
イ素化合物各々から選択される2種の電子供与性物質と
を、5℃以下の低温で粉砕して得られた固体組成物に、
(c)一般式TiX4(式中Xはハロゲン元素である。)で
表わされるチタンハロゲン化物を接触させた後、更に該
チタンハロゲン化物を接触させることを特徴とするオレ
フィン類重合用触媒成分の製造方法。
1. A magnesium compound represented by the general formula MgX 2 (where X is a halogen element), and (b)
A solid composition obtained by crushing two kinds of electron-donating substances selected from aromatic carboxylic acid esters and silicon compounds each having a Si—O bond at a low temperature of 5 ° C. or lower,
(C) A catalyst component for polymerization of olefins, which comprises contacting a titanium halide represented by the general formula TiX 4 (where X is a halogen element) and then contacting the titanium halide. Production method.
JP60121469A 1985-06-06 1985-06-06 Method for producing catalyst component for olefin polymerization Expired - Lifetime JPH0670095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60121469A JPH0670095B2 (en) 1985-06-06 1985-06-06 Method for producing catalyst component for olefin polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60121469A JPH0670095B2 (en) 1985-06-06 1985-06-06 Method for producing catalyst component for olefin polymerization

Publications (2)

Publication Number Publication Date
JPS61281103A JPS61281103A (en) 1986-12-11
JPH0670095B2 true JPH0670095B2 (en) 1994-09-07

Family

ID=14811919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60121469A Expired - Lifetime JPH0670095B2 (en) 1985-06-06 1985-06-06 Method for producing catalyst component for olefin polymerization

Country Status (1)

Country Link
JP (1) JPH0670095B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494590A (en) * 1978-01-05 1979-07-26 Showa Denko Kk Improved polymerization of olefin
JPS5494492A (en) * 1978-01-10 1979-07-26 Denki Kagaku Kogyo Kk Catalyst for polymerization of olefins
JPS54144489A (en) * 1978-05-04 1979-11-10 Denki Kagaku Kogyo Kk Polymerization of olefin
JPS58127708A (en) * 1982-01-26 1983-07-29 Mitsubishi Petrochem Co Ltd Production of catalyst for alpha-olefin polymerization

Also Published As

Publication number Publication date
JPS61281103A (en) 1986-12-11

Similar Documents

Publication Publication Date Title
JP2513997B2 (en) Method for producing catalyst component for olefin polymerization
JPH0670095B2 (en) Method for producing catalyst component for olefin polymerization
JPH0670096B2 (en) Method for producing catalyst component for olefin polymerization
JPH0725824B2 (en) Method for producing catalyst component for olefin polymerization
JPH0699505B2 (en) Method for producing catalyst component for olefin polymerization
JPH0753772B2 (en) Method for producing catalyst component for olefin polymerization
JPH06104686B2 (en) Method for producing catalyst component for olefin polymerization
JPH0674291B2 (en) Method for producing catalyst component for olefin polymerization
JPH0721020B2 (en) Method for producing catalyst component for olefin polymerization
JPH07108929B2 (en) Method for producing catalyst component for olefin polymerization
JP3301790B2 (en) Solid catalyst component for olefin polymerization
JP2587243B2 (en) Catalyst components and catalysts for olefins polymerization
JPH0692455B2 (en) Olefin polymerization catalyst
JPS6354723B2 (en)
JPH0665686B2 (en) Olefin polymerization catalyst
JPH078887B2 (en) Catalyst component for olefin polymerization
JPS6225110A (en) Catalyst component for polymerizing olefin and catalyst
JPH0442408B2 (en)
JPS61255910A (en) Catalyst component for polymerization of olefin
JPH0532405B2 (en)
JPS58109508A (en) Production of catalytic component for olefin polymerization
JPH0442409B2 (en)
JPS5898309A (en) Production of catalytic component for olefin polymerization
JPH059445B2 (en)
JPH0710885B2 (en) Catalyst for olefin polymerization