JPH0668840A - Photoelectic surface and photomultiplier tube - Google Patents

Photoelectic surface and photomultiplier tube

Info

Publication number
JPH0668840A
JPH0668840A JP22414392A JP22414392A JPH0668840A JP H0668840 A JPH0668840 A JP H0668840A JP 22414392 A JP22414392 A JP 22414392A JP 22414392 A JP22414392 A JP 22414392A JP H0668840 A JPH0668840 A JP H0668840A
Authority
JP
Japan
Prior art keywords
alkali metal
photocathode
base film
quantum efficiency
window material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22414392A
Other languages
Japanese (ja)
Other versions
JP2923395B2 (en
Inventor
Hiroyuki Tamagawa
博幸 玉川
Daijiro Oguri
大二郎 小栗
Seiji Suzuki
誠司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP22414392A priority Critical patent/JP2923395B2/en
Publication of JPH0668840A publication Critical patent/JPH0668840A/en
Application granted granted Critical
Publication of JP2923395B2 publication Critical patent/JP2923395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

PURPOSE:To improve the quantum efficiency of a UV-ray photoelectric surface. CONSTITUTION:A photoelectric surface or a photomultiplier tube is provided with a window material to transmit incidental light, a substrate film including aluminum formed on the window material, and a photo-electron emission film including tellurium and alkali metal formed on the substrate film. Compared to a constitution using Cr for the substrate film, or compared to a constitution using Au or Ag for the substrate film, a favorable quantum efficiency can be realized in a UV-ray zone. As above alkali metal, Cs, Rb, or K-Cs can be used, and a similar result can be achieved in either case.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光電面および光電子増倍
管に関するものである。
FIELD OF THE INVENTION The present invention relates to a photocathode and a photomultiplier tube.

【0002】[0002]

【従来の技術】紫外線に有感な透過型光電面として、テ
ルル;Teとアルカリ金属(セシウム;Cs,カリウ
ム;K,ルビジウム;Rbなど)を含むものが知られて
いる。このような光電面は、石英などの窓材上にクロ
ム;Crなどからなる下地膜を堆積し、その上にTeと
アルカリ金属の光電子放出膜を堆積して構成される。従
来から下地膜には、主にCrやNi;ニッケルが用いら
れている。
2. Description of the Related Art A transparent photocathode sensitive to ultraviolet rays is known to contain tellurium; Te and an alkali metal (cesium; Cs, potassium; K, rubidium; Rb). Such a photocathode is formed by depositing a base film made of chromium; Cr or the like on a window material such as quartz, and then depositing a photoelectron emission film of Te and an alkali metal thereon. Conventionally, Cr, Ni; nickel have been mainly used for the base film.

【0003】[0003]

【発明が解決しようとする課題】ここで、下地膜の性質
としては、検出対象の紫外線を透過し得ることと、放出
される光電子を供給し得る程度の導電性があることが必
要であると推定され、また光電子放出膜と直接に接する
ことから、Teやアルカリ金属と反応しないことなども
必要であると考え得る。このような観点から考えると、
下地膜の材料としてCrは導電性が十分ではなく、例え
ばAu;金やAg;銀の方が低抵抗にできると思われ
る。また、紫外線透過率についても同様に、Crが最適
であるとは言い難く、この事は公知の材料物性データか
らも推定できる。
Here, it is necessary that the underlying film has the property of being able to transmit the ultraviolet rays to be detected and having a conductivity sufficient to supply the emitted photoelectrons. It is presumed, and since it is in direct contact with the photoelectron emission film, it may be considered necessary not to react with Te or alkali metal. From this perspective,
As the material of the base film, Cr is not sufficiently conductive, and it is considered that Au; gold and Ag; Similarly, it is difficult to say that Cr is the most suitable for the ultraviolet transmittance, and this can be estimated from known material physical property data.

【0004】しかし、公知文献に示された物性データ
は、あくまでバルク材料の物性データであり、このデー
タにもとづいて光電面の特性を改善することは事実上、
不可能である。すなわち、光電面を構成する下地膜はオ
ングストローム単位の極めて薄い膜であり、かつ、この
上には反応性の高いアルカリ金属が堆積され、しかも堆
積時には200℃前後の高温にさらされるため、種々の
要因から物性データにもとづく推定通りの結果とはなら
ない。
However, the physical property data shown in the publicly known documents are only the physical property data of bulk materials, and it is virtually effective to improve the characteristics of the photocathode based on this data.
It is impossible. That is, the base film that constitutes the photocathode is an extremely thin film in the unit of angstrom, and a highly reactive alkali metal is deposited on the base film. Due to the factors, the results are not as expected based on the physical property data.

【0005】ここに、光電面の改良を実現する際の困難
性があるのである。また、光電面を用いた光電子増倍管
は、極めて微弱な光現象を極めて高い感度と利得で検出
するものであるため、たとえ数%であっても、量子効率
の向上は重要な意味を持つ。
Here, there is a difficulty in realizing the improvement of the photocathode. In addition, a photomultiplier tube using a photocathode detects extremely weak light phenomena with extremely high sensitivity and gain. Therefore, even if it is several%, improvement of quantum efficiency is important. .

【0006】[0006]

【課題を解決するための手段】本発明は、上記のような
課題を解決することを目的として、発明者らの試行錯誤
の結果から完成されたものであり、このような光電面
は、入射光を透過する窓材と、この窓材に形成されたア
ルミニウムを含む下地膜と、この下地膜上に形成された
テルルとアルカリ金属を含む光電子放出膜とを備える。
The present invention has been completed from the results of trial and error by the inventors for the purpose of solving the above-mentioned problems. A window material that transmits light, a base film containing aluminum formed on the window material, and a photoelectron emission film containing tellurium and an alkali metal formed on the base film are provided.

【0007】[0007]

【作用】本発明の光電面によれば、Crを下地膜とする
従来例に比べても、またAuやAgを下地膜とする比較
例と比べても、紫外線域において優れた量子効率を実現
できる。ここで、上記のアルカリ金属としては、Cs、
RbあるいはK−Csとすることができ、いずれも同様
の結果が達成される。
According to the photocathode of the present invention, excellent quantum efficiency is realized in the ultraviolet region as compared with the conventional example in which Cr is used as the base film and also in the comparative example in which Au or Ag is used as the base film. it can. Here, as the above-mentioned alkali metal, Cs,
It can be Rb or K-Cs, both achieving similar results.

【0008】[0008]

【実施例】本発明に係る光電面は、紫外線に有感な光電
子増倍管に用いられるが、このような光電子増倍管は、
例えば下記のように構成される。すなわち、受光面板と
しての窓材を有する真空容器の内部には、ダイノードあ
るいはマイクロチャンネルプレートなどの電子増倍部が
セットされ、窓材の内面には光電面が形成される。一
方、陽極(アノード)も真空容器の内部に収容され、リ
ードピンを介して上記の光電面、電子増倍部および陽極
に所定のバイアスが印加される。そして、陽極からの出
力信号はリードピンを介して外部に出力される。
The photocathode according to the present invention is used in a photomultiplier tube sensitive to ultraviolet rays. Such a photomultiplier tube is
For example, it is configured as follows. That is, an electron multiplying part such as a dynode or a microchannel plate is set inside a vacuum container having a window material as a light receiving surface plate, and a photocathode is formed on the inner surface of the window material. On the other hand, the anode is also housed inside the vacuum container, and a predetermined bias is applied to the photocathode, the electron multiplying section and the anode through the lead pin. Then, the output signal from the anode is output to the outside via the lead pin.

【0009】ここで、窓材の内面にはAlの薄膜(下地
膜)が真空蒸着され、この上に光電子放出膜としてTe
とアルカリ金属が堆積される。なお、Teとアルカリ金
属の堆積手法および活性化の手順については、従来と特
に異なる点はない。また、窓材については、紫外線透過
性のものであればよいが、実施例では石英板とフッ化マ
グネシウム(MgF2 )板を使用した。光電子放出膜に
おけるTeとアルカリ金属の組み合わせについては、C
s−Te,K−Cs−Te,Rb−Teの他、各種のも
のが考えられるが、実施例ではK−Cs−TeとRb−
Teを検討した。
Here, a thin film (base film) of Al is vacuum-deposited on the inner surface of the window material, and Te as a photoelectron emission film is formed thereon.
And alkali metal is deposited. There is no particular difference between the deposition method of Te and the alkali metal and the activation procedure. The window material may be any one that is transparent to ultraviolet light, but in the examples, a quartz plate and a magnesium fluoride (MgF 2 ) plate were used. For the combination of Te and alkali metal in the photoelectron emission film, see C
In addition to s-Te, K-Cs-Te, and Rb-Te, various kinds are conceivable, but in the examples, K-Cs-Te and Rb-.
Te was considered.

【0010】以下、具体的な実施例を説明する。Specific examples will be described below.

【0011】実施例1 窓材としてMgF2 を採用し、光電子放出膜としてK−
Cs−Teを採用した。そして、下地膜としてCrを用
いたもの(比較例)と、下地膜としてAlを用いたもの
(実施例)を試作し、波長150〜300nmの範囲に
おける量子効率を測定した。図1はその結果を示すグラ
フであり、下地膜をAlとすることにより、波長200
〜250nmにおける量子効率が、従来に比べて大幅に
向上していることがわかる。
Example 1 MgF 2 was used as the window material, and K- was used as the photoelectron emission film.
Cs-Te is adopted. Then, a sample using Cr as a base film (comparative example) and a sample using Al as a base film (example) were prototyped, and the quantum efficiency in the wavelength range of 150 to 300 nm was measured. FIG. 1 is a graph showing the results. By using Al as the base film, the wavelength of 200
It can be seen that the quantum efficiency at ˜250 nm is significantly improved compared to the conventional one.

【0012】実施例2 窓材として石英(SiO2 )を採用し、光電子放出膜と
してRb−Teを採用した。図2に結果を示す。下地膜
をCrとしたものに比べて、Alの下地膜とすること
で、量子効率が大幅に向上している。
Example 2 Quartz (SiO 2 ) was used as the window material, and Rb-Te was used as the photoelectron emission film. The results are shown in FIG. The quantum efficiency is significantly improved by using an Al underlayer film as compared with a Cr underlayer film.

【0013】実施例3 窓材として石英を採用し、光電子放出膜としてK−Cs
−Teを採用した。そして、下地膜としてCrおよびA
lを採用し、それぞれ量子効率を対比した。図3に示す
ように、Alを用いた場合に大きく量子効率が向上して
いる。
Example 3 Quartz was used as the window material, and K-Cs was used as the photoelectron emission film.
-Used Te. Then, Cr and A are used as a base film.
1 was adopted and the quantum efficiency was compared with each other. As shown in FIG. 3, the quantum efficiency is greatly improved when Al is used.

【0014】検討 以上のように、下地膜としてAlを用いると、Crを用
いる場合に比べて、紫外域での量子効率を顕著に向上さ
せることができる。ところで、先に説明したように、下
地膜としては紫外線の透過率が高いこと、導電性が高い
ことなどが必要とされ、またアルカリ金属などと反応し
ないことなども必要になると考えられる。このような材
料としては、例えばAlが挙げられるが、Ag(銀)や
Au(金)などの薄膜も、同様に下地膜として適してい
ると考えられる。
Examination As described above, when Al is used as the base film, the quantum efficiency in the ultraviolet region can be remarkably improved as compared with the case where Cr is used. By the way, as described above, it is considered that the base film is required to have a high transmittance of ultraviolet rays, a high conductivity, and the like, and also be required not to react with an alkali metal or the like. Examples of such a material include Al, but a thin film of Ag (silver), Au (gold), or the like is considered to be suitable as a base film in the same manner.

【0015】そこで、本発明者はAu,Agについても
下地膜として採用し、石英を窓材、K−Cs−Teを光
電子放出膜とした光電面を試作し、波長150〜350
nmの量子効率を測定した。その結果を図4に示す。図
示の通り、Ag下地膜については、量子効率はCr下地
膜とほとんど同一となり、Au下地膜については、量子
効率はCr下地膜よりも劣っていた。すなわち、Alを
採用したときのみ、量子効率を大幅に改善し得ることが
判明した。
Therefore, the present inventor also adopted Au and Ag as the base film, and made a prototype of a photocathode using quartz as a window material and K-Cs-Te as a photoelectron emission film, and wavelengths of 150 to 350.
The quantum efficiency of nm was measured. The result is shown in FIG. As shown in the figure, the quantum efficiency of the Ag underlayer film was almost the same as that of the Cr underlayer film, and the quantum efficiency of the Au underlayer film was inferior to that of the Cr underlayer film. That is, it was found that the quantum efficiency can be significantly improved only when Al is adopted.

【0016】そこで本発明者は、Au,Ag,Crおよ
びAlについて、石英の窓材に下地膜を作成し、その面
抵抗と波長200〜600nmの透過率を測定した。そ
の結果を図5〜図8に示す。光電子放出用の電流供給に
とって十分な面抵抗の低さと、波長200〜300nm
の紫外線の高透過率との双方が、Alによって実現され
ていることが推測できる。そして、Alは光電子放出材
料と反応して感度を低下させたりすることがなく、下地
膜に適しているものと推定できる。
Therefore, the inventor of the present invention formed a base film on a window material made of quartz for Au, Ag, Cr and Al, and measured the sheet resistance and the transmittance at a wavelength of 200 to 600 nm. The results are shown in FIGS. Low surface resistance sufficient for supplying current for photoelectron emission and wavelength of 200 to 300 nm
It can be inferred that both of the above-mentioned high transmittance of ultraviolet rays are realized by Al. Then, Al does not react with the photoelectron emitting material to reduce the sensitivity, and it can be presumed that Al is suitable for the base film.

【0017】[0017]

【発明の効果】以上の通り、本発明によれば、Teとア
ルカリ金属からなる紫外線用の光電面において、下地膜
としてAlを採用することにより、量子効率を向上させ
ることが可能となった。このため、高感度の紫外線有感
光電子増倍管が得られる。
As described above, according to the present invention, the quantum efficiency can be improved by adopting Al as the base film in the ultraviolet photocathode made of Te and alkali metal. Therefore, a highly sensitive UV-sensitive photomultiplier tube can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の光電面の量子効率を示すグラフ。FIG. 1 is a graph showing the quantum efficiency of the photocathode of the first embodiment.

【図2】第2実施例の光電面の量子効率を示すグラフ。FIG. 2 is a graph showing the quantum efficiency of the photocathode of the second embodiment.

【図3】第3実施例の光電面の量子効率を示すグラフ。FIG. 3 is a graph showing the quantum efficiency of the photocathode of the third embodiment.

【図4】Al,Au,AgおよびCrの下地膜を有する
光電面の量子効率を示すグラフ。
FIG. 4 is a graph showing the quantum efficiency of a photocathode having an underlying film of Al, Au, Ag and Cr.

【図5】Crの下地膜の紫外線透過率を示すグラフ。FIG. 5 is a graph showing ultraviolet transmittance of a Cr underlayer.

【図6】Alの下地膜の紫外線透過率を示すグラフ。FIG. 6 is a graph showing the ultraviolet transmittance of an Al underlayer.

【図7】Auの下地膜の紫外線透過率を示すグラフ。FIG. 7 is a graph showing the ultraviolet transmittance of an Au underlayer.

【図8】Agの下地膜の紫外線透過率を示すグラフ。FIG. 8 is a graph showing the ultraviolet transmittance of a base film of Ag.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 入射光を透過する窓材と、この窓材に形
成されたアルミニウムを含む下地膜と、この下地膜上に
形成されたテルルとアルカリ金属を含む光電子放出膜と
を備えることを特徴とする光電面。
1. A window material that transmits incident light, a base film containing aluminum formed on the window material, and a photoelectron emission film containing tellurium and an alkali metal formed on the base film. Characteristic photocathode.
【請求項2】 前記アルカリ金属は、セシウム、カリウ
ムもしくはルビジウムである請求項1記載の光電面。
2. The photocathode according to claim 1, wherein the alkali metal is cesium, potassium or rubidium.
【請求項3】 請求項1記載の光電面を有する真空容器
と、この真空容器の内部に収容され前記光電子放出膜か
ら放出された電子を増倍する電子増倍手段と、前記真空
容器の内部に収容され前記電子増倍手段で増倍された電
子が入射されるアノードとを備えることを特徴とする光
電子増倍管。
3. A vacuum container having a photocathode according to claim 1, electron multiplying means for multiplying electrons emitted from the photoelectron emission film, which is housed inside the vacuum container, and inside the vacuum container. A photomultiplier tube, wherein the photomultiplier tube comprises: an anode which is housed in and into which electrons multiplied by the electron multiplying means are incident.
JP22414392A 1992-08-24 1992-08-24 Photocathode and photomultiplier tube Expired - Fee Related JP2923395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22414392A JP2923395B2 (en) 1992-08-24 1992-08-24 Photocathode and photomultiplier tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22414392A JP2923395B2 (en) 1992-08-24 1992-08-24 Photocathode and photomultiplier tube

Publications (2)

Publication Number Publication Date
JPH0668840A true JPH0668840A (en) 1994-03-11
JP2923395B2 JP2923395B2 (en) 1999-07-26

Family

ID=16809225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22414392A Expired - Fee Related JP2923395B2 (en) 1992-08-24 1992-08-24 Photocathode and photomultiplier tube

Country Status (1)

Country Link
JP (1) JP2923395B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1004071C2 (en) * 1996-09-19 1998-03-20 Nl Laser Res Potassium telluride
NL1004822C2 (en) * 1996-12-18 1998-06-19 Nl Laser Res Material for a photo-electrode in a free electron laser
WO2007102471A1 (en) * 2006-03-08 2007-09-13 Hamamatsu Photonics K.K. Photoelectric surface, electron tube comprising same, and method for producing photoelectric surface
US8421354B2 (en) 2006-12-28 2013-04-16 Hamamatsu Photonics K.K. Photocathode, photomultiplier and electron tube
CN107112175A (en) * 2014-12-26 2017-08-29 浜松光子学株式会社 Photoelectric surface, photoelectric conversion tube, image intensifier and photoelectron-multiplier-tube

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1004071C2 (en) * 1996-09-19 1998-03-20 Nl Laser Res Potassium telluride
NL1004822C2 (en) * 1996-12-18 1998-06-19 Nl Laser Res Material for a photo-electrode in a free electron laser
WO2007102471A1 (en) * 2006-03-08 2007-09-13 Hamamatsu Photonics K.K. Photoelectric surface, electron tube comprising same, and method for producing photoelectric surface
JP2007242412A (en) * 2006-03-08 2007-09-20 Hamamatsu Photonics Kk Photoelectric surface, electron tube having it, and manufacturing method of photoelectric surface
US8421354B2 (en) 2006-12-28 2013-04-16 Hamamatsu Photonics K.K. Photocathode, photomultiplier and electron tube
CN107112175A (en) * 2014-12-26 2017-08-29 浜松光子学株式会社 Photoelectric surface, photoelectric conversion tube, image intensifier and photoelectron-multiplier-tube
KR20170099934A (en) 2014-12-26 2017-09-01 하마마츠 포토닉스 가부시키가이샤 Photoelectric surface, photoelectric conversion tube, image intensifier, and photomultiplier tube
US10559445B2 (en) 2014-12-26 2020-02-11 Hamamatsu Photonics K.K. Photoelectric surface, photoelectric conversion tube, image intensifier, and photomultiplier tube

Also Published As

Publication number Publication date
JP2923395B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
JP4939033B2 (en) Photocathode
US8421354B2 (en) Photocathode, photomultiplier and electron tube
JP4926504B2 (en) Photocathode, electron tube provided with the photocathode, and method for producing photocathode
JP2500209B2 (en) Reflective photocathode and photomultiplier tube
CN107112175B (en) Photoelectric surface, photoelectric conversion tube, image intensifier and photoelectron-multiplier-tube
JP4562844B2 (en) Photocathode and electron tube
JP5308078B2 (en) Photocathode
JPH0668840A (en) Photoelectic surface and photomultiplier tube
JP2758529B2 (en) Reflective photocathode and photomultiplier tube
WO2007063678A1 (en) Photomultiplier
US4196257A (en) Bi-alkali telluride photocathode
JP4116294B2 (en) Photocathode and photoelectric conversion tube
JPS63108658A (en) Photoelectric transfer tube
WO2001054157A1 (en) Cathode for emitting photoelectron or secondary electron, photomultiplier tube, and electron-multiplier tube
JP2651329B2 (en) Cathode for photoelectron or secondary electron emission
US6674235B2 (en) Photocathode having ultra-thin protective layer
JPH0714502A (en) Transmission type photoelectric surface, photoelectric tube and manufacture of transmission type photoelectric surface
JP3518880B2 (en) Reflective alkaline photocathode and photomultiplier tube
JPH0883561A (en) Secondary electron multiplying electrode and photomultiplier
Hallensleben et al. Limitations on the enhancement of photomultiplier quantum efficiency through multiple total internal reflection
JPH04129134A (en) Photoelectric surface with multiplier
JPH06342626A (en) Reflection type alkali-tellirium photoelectric face and photoelectron multiplying tube
JPS5820449B2 (en) photoelectron emission cathode
JPH08264120A (en) Manufacture of x-ray image tube
JPH06342625A (en) Reflection type ultraviolet ray photoelectric face and photoelectron multiplifying tube

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees