JPH0883561A - Secondary electron multiplying electrode and photomultiplier - Google Patents

Secondary electron multiplying electrode and photomultiplier

Info

Publication number
JPH0883561A
JPH0883561A JP21901194A JP21901194A JPH0883561A JP H0883561 A JPH0883561 A JP H0883561A JP 21901194 A JP21901194 A JP 21901194A JP 21901194 A JP21901194 A JP 21901194A JP H0883561 A JPH0883561 A JP H0883561A
Authority
JP
Japan
Prior art keywords
secondary electron
plate
intermediate layer
electron multiplying
magnesium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21901194A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Okano
和芳 岡野
Shinji Suzuki
伸治 鈴木
Takehiro Iida
剛弘 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP21901194A priority Critical patent/JPH0883561A/en
Publication of JPH0883561A publication Critical patent/JPH0883561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

PURPOSE: To enhance a secondary electron multiplication factor of a secondary electron multiplying electrode used in a photomultiplier by forming an intermediate layer mainly composed of magnesium oxide on a metallic backing board, and forming an antimony layer on it. CONSTITUTION: In a secondary electron multiplying electrode used in a dynode having a circular gauge structure of a side-on type photomultiplier, an intermediate layer mainly composed of magnesium oxide is interposed between a backing board and an antimony layer. A nickel plate and a copper beryllium alloy plate are particularly preferable as the backing board, and even an aluminium plate and a stainless steel plate fulfill a sufficient effect to improve a secondary electron emitting effect. Even when oxidation treatment is performed on an alloy plate with silver or a surface of the backing board, an improvement in a secondary electron multiplication factor by an intermediate layer of magnesium oxide can be confirmed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次電子増倍電極および
光電子増倍管に関する。
FIELD OF THE INVENTION The present invention relates to a secondary electron multiplying electrode and a photomultiplier tube.

【0002】[0002]

【従来の技術】光電子増倍管(PMT)は光入射により
光電子を放出する光電陰極(光電面)と、光電子を二次
電子放出効果によって増倍する二次電子増倍電極(二次
電子増倍面)と、増倍された電子を受容する陽極とを有
する。ここで、二次電子増倍電極の二次電子増倍率を向
上(増大)させる技術として、従来から種々のものが提
案されている。
2. Description of the Related Art A photomultiplier tube (PMT) includes a photocathode (photocathode) that emits photoelectrons upon incidence of light, and a secondary electron multiplier electrode (secondary electron multiplier) that multiplies photoelectrons by a secondary electron emission effect. And a positive electrode that accepts the multiplied electrons. Here, various techniques have been conventionally proposed as a technique for improving (increasing) the secondary electron multiplication factor of the secondary electron multiplication electrode.

【0003】例えば、特開昭47−45571号公報で
は、ニッケル基板上に酸化マグネシウムの薄層を形成し
た二次電子増倍電極が開示されており、特開昭51−1
48352号公報では、ニッケル基板上に酸化マンガン
層を形成し、その上にアンチモン層を形成した二次電子
増倍電極が開示されている。
For example, Japanese Patent Laid-Open No. 47-45571 discloses a secondary electron multiplying electrode in which a thin layer of magnesium oxide is formed on a nickel substrate.
Japanese Patent No. 48352 discloses a secondary electron multiplication electrode in which a manganese oxide layer is formed on a nickel substrate and an antimony layer is formed thereon.

【0004】[0004]

【発明が解決しようとする課題】光電子増倍管は、極め
て微弱な光を検出する光センサであり、したがって数%
の感度向上は極めて大きな意味をもつ一方で、微弱光入
射に対応する陽極(アノード)出力をできるだけ高レベ
ルとすることも大切である。そこで、従来から、光電陰
極における光電子放出効率(量子効率)の向上が試みら
れ、これとは別に、二次電子増倍電極における二次電子
放出効果の向上も試みられてきた。
A photomultiplier tube is an optical sensor for detecting extremely weak light, and therefore has a few percent.
While the improvement of sensitivity is extremely important, it is also important to make the output of the anode (anode) corresponding to the incidence of weak light as high as possible. Therefore, conventionally, attempts have been made to improve the photoelectron emission efficiency (quantum efficiency) in the photocathode, and in addition to this, attempts have also been made to improve the secondary electron emission effect in the secondary electron multiplication electrode.

【0005】具体的には、下地基板の選定、活性化のた
めのアルカリ金属の選定、下地基板への蒸着物質の選定
の他、プロセスにおける温度、処理時間などの検討がな
されてきた。本発明は、これらの検討の中で、本発明者
により見出された知見にもとづき完成されたものであ
り、二次電子増倍率の大幅な向上を可能にした。
Specifically, selection of a base substrate, selection of an alkali metal for activation, selection of a vapor deposition material on a base substrate, and temperature, processing time in the process have been studied. The present invention has been completed based on the findings found by the present inventors in these studies, and made it possible to significantly improve the secondary electron multiplication factor.

【0006】[0006]

【課題を解決するための手段および作用】本発明者は、
金属の下地基板の上にアンチモン層を形成するにあたっ
て、何らかの中間層を介在させることで二次電子増倍率
を向上できるのではないか、と考えた。そして、実験を
重ねた結果、酸化マグネシウムを中間層として用いるこ
とで、二次電子放出効果を高め、二次電子増倍率の数1
0%もの向上をなし得ることを見出した。この二次電子
増倍率の本発明による増大率は、後述のように40%以
上にも達し、数%の増感、数%の出力レベルの増加が大
きな意味をもつ光電子増倍管においては、画期的とも言
える極めて大きな値である。
Means and Actions for Solving the Problems
We thought that the secondary electron multiplication factor could be improved by interposing an intermediate layer when forming the antimony layer on the metal base substrate. As a result of repeated experiments, the use of magnesium oxide as the intermediate layer enhances the secondary electron emission effect, and the secondary electron multiplication factor of 1
It has been found that an improvement of 0% can be achieved. The rate of increase of the secondary electron multiplication factor according to the present invention reaches 40% or more as described later, and in the photomultiplier tube in which the sensitization of several% and the increase of the output level of several% are significant, It is an extremely large value that can be said to be epoch-making.

【0007】ここにおいて、本発明の二次電子増倍電極
は、金属の下地基板上に酸化マグネシウムを主成分とす
る中間層が形成され、中間層上にアンチモン層が形成さ
れていることを特徴とする。ここで、下地基板として
は、本発明者の研究によれば、ニッケル板、銅ベリリウ
ム合金板が特に望ましく、アルミニウム板やステンレス
板でも、二次電子放出効果の向上に十分な効果を奏する
ことが判明した。なお、下地基板としては上記の金属に
限らず、例えば銀(Ag)との合金板などを用いること
もできる。また、これら下地基板の表面を酸化処理した
場合でも、同様に酸化マグネシウムの中間層による二次
電子増倍率の向上が確認できた。
Here, the secondary electron multiplying electrode of the present invention is characterized in that an intermediate layer containing magnesium oxide as a main component is formed on a metal base substrate, and an antimony layer is formed on the intermediate layer. And Here, according to the research of the present inventors, a nickel plate and a copper-beryllium alloy plate are particularly preferable as the base substrate, and even an aluminum plate or a stainless plate can sufficiently exhibit the secondary electron emission effect. found. The base substrate is not limited to the above metals, but may be, for example, an alloy plate with silver (Ag). Further, even when the surface of these underlying substrates was oxidized, it was confirmed that the intermediate layer of magnesium oxide similarly improved the secondary electron multiplication factor.

【0008】光電子増倍管にその部品として適用される
本発明の二次電子増倍電極は、ガラスバルブ中に組み込
まれ、反射型あるいは透過型の光電陰極をアルカリ金属
で活性化する際に、同時に活性化されて増感つまり二次
電子放出効果が増強されると考えられる。本発明者は、
バイアルカリとしてK−Cs(カリウム・セシウム)、
マルチアルカリとしてNa−K−Cs(ナトリウム・カ
リウム・セシウム)の反射型光電面を有する光電子増倍
管を試作し、良好な結果を得たが、この場合のアルカリ
金属は一種類(モノアルカリ)でもよい。また、二次電
子増倍面の増感に用い得るアルカリ金属としては、上記
以外にRb(ルビジウム)などがある。
The secondary electron multiplying electrode of the present invention applied as a component to a photomultiplier tube is incorporated in a glass bulb, and when a reflection type or transmission type photocathode is activated with an alkali metal, It is considered that they are activated at the same time to enhance the sensitization, that is, the secondary electron emission effect. The inventor
K-Cs (potassium cesium) as bialkali,
A prototype photomultiplier tube with a reflective photocathode of Na-K-Cs (sodium-potassium-cesium) as a multi-alkali was produced, and good results were obtained, but in this case, one kind of alkali metal (monoalkali) was used. But it's okay. Further, as the alkali metal that can be used for sensitizing the secondary electron multiplying surface, there is Rb (rubidium) or the like in addition to the above.

【0009】[0009]

【実施例】以下、実施例に従い、本発明を更に詳細に説
明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0010】本発明の二次電子増倍電極は、図1に示さ
れるように、下地基板とアンチモン層の間に中間層が介
在する点で、従来のものと異なる。このような二次電子
増倍電極は、図2に示すサイドオン型光電子増倍管の、
サーキュラーゲージ構造の9個のダイノード(Dy1
Dy9 )に用いられる。
The secondary electron multiplying electrode of the present invention is different from the conventional one in that an intermediate layer is interposed between a base substrate and an antimony layer, as shown in FIG. Such a secondary electron multiplying electrode is one of the side-on type photomultiplier tubes shown in FIG.
9 dynodes with circular gauge structure (Dy 1 ~
Dy 9 ).

【0011】図2の光電子増倍管について説明すると、
プラスチック製のベース1にはガラス製の真空バルブ2
が取り付けられ、ベース1から下方には電極ピン3が突
出している。真空バルブ2の内部にはシールド板4が立
設され、この前面には反射型光電面を形成した陰極板5
が固定されている。9段のダイノードDy1 〜Dy9
サーキュラーゲージ構造をなして真空バルブ2中に設け
られ、最終段ダイノードDy9 の前面にはアノードすな
わち陽極6が設けられる。また、陰極板5の前面にはメ
ッシュ電極8が設けられる。上記の構造は、セラミック
ス製の2枚の支持板71,72により一体に支持されて
いる。
The photomultiplier tube of FIG. 2 will be described.
Vacuum valve 2 made of glass on base 1 made of plastic
Is attached, and the electrode pin 3 projects downward from the base 1. A shield plate 4 is erected inside the vacuum valve 2, and a cathode plate 5 having a reflection type photoelectric surface is formed on the front surface thereof.
Has been fixed. 9-stage dynode Dy 1 ~Dy 9 is provided in the vacuum valve 2 forms a circular gauge structure, in front of the final-stage dynode Dy 9 anode i.e. the anode 6 is provided. A mesh electrode 8 is provided on the front surface of the cathode plate 5. The above structure is integrally supported by two support plates 71 and 72 made of ceramics.

【0012】本発明に係る二次電子増倍電極は、上記の
ような反射型光電面を有する光電子増倍管だけでなく、
いわゆる透過型光電面を有する光電子増倍管にも適用で
きる。ここで、反射型光電面とは金属板上にアルカリ金
属などの光電子放出膜を形成したものであって、入射光
子の進行方向とは反対方向に、つまり、入射光子を光電
子に変換してあたかも反射する如く真空バルブ2中に放
出する。透過型光電面とはガラス板上に光電子放出膜を
形成したものであって、入射光子の進行方向と同一方向
に、つまり、入射光子を光電子に変換してあたかも透過
する如く真空バルブ2中に放出する。
The secondary electron multiplying electrode according to the present invention is not limited to the photomultiplier tube having the reflection type photocathode as described above,
It can also be applied to a photomultiplier tube having a so-called transmission type photocathode. Here, the reflection type photocathode is a photoelectron emission film such as an alkali metal formed on a metal plate, and it is as if the incident photons were converted into photoelectrons in the direction opposite to the traveling direction of the incident photons. It is emitted into the vacuum valve 2 so as to be reflected. The transmissive photocathode is a glass plate on which a photoelectron emission film is formed, and is in the same direction as the traveling direction of incident photons, that is, in the vacuum bulb 2 so that incident photons are converted into photoelectrons and transmitted. discharge.

【0013】また、本発明の二次電子増倍電極は真空バ
ルブ2の側面に光が入射するサイドオン型光電子増倍管
だけでなく、頂面に光が入射するいわゆるヘッドオン型
の光電子増倍管にも適用できる。さらに、本発明の二次
電子増倍電極はサーキュラーゲージ構造となるダイノー
ドだけでなく、ボックスアンドグリッド構造となるも
の、ベネシアンブラインド構造となるもの、ラインフォ
ーカス構造となるものなど、各種の光電子増倍管に適用
できる。
The secondary electron multiplying electrode of the present invention is not limited to a side-on type photomultiplier tube in which light is incident on the side surface of the vacuum valve 2, but a so-called head-on type photoelectron multiplier in which light is incident on the top surface. It can also be applied to double tubes. Further, the secondary electron multiplying electrode of the present invention is not limited to a dynode having a circular gauge structure, but also has various types of photoelectron multiplying such as a box and grid structure, a Venetian blind structure, and a line focus structure. Applicable to tubes.

【0014】次に、本発明者による具体的な実験(二次
電子増倍電極および光電子増倍管の試作および測定)に
ついて説明する。
Next, a concrete experiment by the present inventor (trial manufacture and measurement of secondary electron multiplying electrode and photomultiplier tube) will be described.

【0015】本発明者は、次のようにしてサイドオン型
光電子増倍管を試作した。まず、実施例としては、9段
のダイノードのうち、初段ダイノードのみを本発明構造
とした。つまり、初段ダイノードDy1 は金属の下地基
板上に酸化マグネシウムの中間層を形成し、その上にア
ンチモン層を形成した。そして、第2段〜最終段ダイノ
ードDy2 〜Dy9 については、酸化マグネシウムの中
間層を設けることなく、金属の下地基板上に直接アンチ
モン層を形成した。一方、比較例としては、9段のダイ
ノードDy1 〜Dy9 の全てについて、金属の下地基板
上に直接にアンチモン層を形成し、他は同一とした。
The present inventor prototyped a side-on type photomultiplier tube as follows. First, as an example, among the 9-stage dynodes, only the first-stage dynode has the structure of the present invention. That is, in the first-stage dynode Dy 1, an intermediate layer of magnesium oxide was formed on a metal base substrate, and an antimony layer was formed thereon. And, for the second stage to last-stage dynode Dy 2 ~Dy 9, without providing an intermediate layer of magnesium oxide, it was formed directly antimony layer to the underlying metal substrate. On the other hand, as a comparative example, all of the dynode Dy 1 ~Dy 9 of 9 stages, directly forming the antimony layer to the underlying metal substrate, others were the same.

【0016】光電子増倍管の作製プロセスを工程順に説
明すると、まず、光電陰極に用いる金属の下地基板を洗
浄し、真空蒸着装置にセットする。ここで、下地基板と
しては、ニッケル(Ni)板、表面を酸化したニッケル
基板、アルミニウム(Al)板、ステンレス板、銅ベリ
リウム(CuBe)合金板を用いた。なお、真空蒸着装
置には蒸着源として、マグネシウム(Mg)粒子とアン
チモン(Sb)粒子をセットしておく。
The manufacturing process of the photomultiplier tube will be described in the order of steps. First, the metal base substrate used for the photocathode is washed and set in a vacuum vapor deposition apparatus. Here, as the base substrate, a nickel (Ni) plate, a surface-oxidized nickel substrate, an aluminum (Al) plate, a stainless plate, and a copper beryllium (CuBe) alloy plate were used. In addition, magnesium (Mg) particles and antimony (Sb) particles are set in the vacuum vapor deposition apparatus as vapor deposition sources.

【0017】次に、実施例の第1段ダイノードDy1
ついてはMg蒸着後酸化し、次にSbを蒸着することに
より下地基板とアンチモン層の間に酸化マグネシウムの
中間層が介在されたダイノードが得られる。他のダイノ
ードについてはSbのみを蒸着する。
Next, regarding the first-stage dynode Dy 1 of the embodiment, Mg was deposited and then oxidized, and then Sb was deposited to form a dynode in which an intermediate layer of magnesium oxide was interposed between the base substrate and the antimony layer. can get. For other dynodes, only Sb is deposited.

【0018】次に、真空バルブ内に、上記のダイノード
を光電陰極や陽極と共にセットし、光電子増倍管構造を
組み立てる。そして、真空バルブを排気装置にセット
し、内部を真空とする。残留ガス除去のための加熱処理
を行なった後、アルカリ金属を真空バルブ内に導入して
150℃〜200℃で活性化する。これにより、光電面
が形成されると同時に、二次電子増倍電極の二次電子増
倍面も増感される。
Next, the above-mentioned dynode is set in a vacuum valve together with a photocathode and an anode, and a photomultiplier tube structure is assembled. Then, the vacuum valve is set in the exhaust device to evacuate the inside. After the heat treatment for removing the residual gas, an alkali metal is introduced into the vacuum valve and activated at 150 to 200 ° C. As a result, the photocathode is formed, and at the same time, the secondary electron multiplication surface of the secondary electron multiplication electrode is also sensitized.

【0019】上記のようなアルカリ金属による活性化
は、光電感度を測定しながら行なうととし、一定の感度
が得られたらアルカリ金属の導入を止めて真空引きし、
エージングを行なった後、真空バルブをバーナーにより
封じ切って封止管とする。そして、切り取って排気装置
から取り外す。
It is assumed that the activation by the alkali metal as described above is performed while measuring the photoelectric sensitivity, and when a certain sensitivity is obtained, the introduction of the alkali metal is stopped and the vacuum is drawn.
After aging, the vacuum valve is sealed with a burner to form a sealed tube. Then, cut it out and remove it from the exhaust device.

【0020】次に、上記の試作品の二次電子増倍率の測
定手順を説明する。図3および図4は二次電子増倍電極
の二次電子増倍率の測定系を示している。第1段ダイノ
ードDy1 の二次電子増倍率であるδ1 値は、 δ1 =1+Idy1 /Ik で求まる。ここで、Ik は光入射時のカソード(光電陰
極)に供給される電流値であり、Idy1 は光入射時の第
1段ダイノードDy1 (二次電子増倍電極)に供給され
る電流値である。
Next, the procedure for measuring the secondary electron multiplication factor of the above prototype will be described. 3 and 4 show a system for measuring the secondary electron multiplication factor of the secondary electron multiplication electrode. The δ 1 value, which is the secondary electron multiplication factor of the first-stage dynode Dy 1 , is obtained by δ 1 = 1 + I dy1 / I k . Here, I k is a current value supplied to the cathode (photocathode) when light is incident, and I dy1 is a current supplied to the first-stage dynode Dy 1 (secondary electron multiplying electrode) when light is incident. It is a value.

【0021】そこで、Ik については、図3に示すよう
に、ダイノードDy1 〜Dy5 に各100Vづつ印加し
て光電陰極への電流を測定して求める。また、Idy1
ついては、図4に示すように、ダイノードDy1 〜Dy
5 に各100Vづつ印加して第1段ダイノードDy1
の電流を測定して求める。なお、上記の測定において、
光源からの入射光は光電陰極の中心において直径2mm
のスポットになるようにし、温度は25℃とした。
Therefore, as shown in FIG. 3, I k is obtained by applying 100 V to each of the dynodes Dy 1 to Dy 5 and measuring the current to the photocathode. Regarding I dy1 , as shown in FIG. 4, dynodes Dy 1 to Dy are provided.
It is determined by applying 100V to 5 and measuring the current to the first stage dynode Dy 1 . In the above measurement,
Incident light from the light source has a diameter of 2 mm at the center of the photocathode.
And the temperature was set to 25 ° C.

【0022】以下、その結果を示す。なお、実験1〜6
において、実施例と比較例でそれぞれ2本の光電子増倍
管を試作し、それぞれの良い方のデータを本発明による
増大率の算出に採用した。
The results are shown below. Experiments 1-6
In Example 2, two photomultiplier tubes were produced for each of the example and the comparative example, and the better data of each was adopted for the calculation of the increase rate according to the present invention.

【0023】実験1 下地基板は表面を酸化処理していないニッケル基板と
し、実施例については酸化マグネシウムの中間層を介在
させてアンチモン層を形成し、比較例についてはニッケ
ル基板にアンチモン層を直接形成した。アルカリ金属と
してK−Cs(カリウム・セシウム)を用いたところ、
比較例の第1段ダイノードの二次電子増倍率に対して、
実施例の第1段ダイノードの二次電子増倍率は1.44
9倍であった。
Experiment 1 The underlying substrate was a nickel substrate whose surface was not subjected to an oxidation treatment. In the example, an antimony layer was formed with an intermediate layer of magnesium oxide interposed, and in the comparative example, the antimony layer was formed directly on the nickel substrate. did. When K-Cs (potassium cesium) was used as the alkali metal,
For the secondary electron multiplication factor of the first-stage dynode of the comparative example,
The secondary electron multiplication factor of the first stage dynode of the example is 1.44.
It was 9 times.

【0024】実験2 下地基板は表面を酸化処理したニッケル基板とし、他は
実験1と同様にした。実施例によれば、比較例の1.4
10倍の二次電子増倍率が得られた。
Experiment 2 The base substrate was a nickel substrate whose surface was oxidized, and the other conditions were the same as in Experiment 1. According to the example, 1.4 of the comparative example
A secondary electron multiplication factor of 10 was obtained.

【0025】実験3 下地基板はアルミニウム板とし、他は実験1と同様にし
た。実施例の二次電子増倍率は比較例の1.191倍で
あった。なお、下地基板には特に酸化処理していないア
ルミニウム板を用いたが、表面に薄い酸化膜が形成され
ていることは十分ありうる。
Experiment 3 The base substrate was an aluminum plate, and the others were the same as in Experiment 1. The secondary electron multiplication factor of the example was 1.191 times that of the comparative example. Although an aluminum plate that has not been oxidized is used as the base substrate, it is quite possible that a thin oxide film is formed on the surface.

【0026】実験4 下地基板はステンレス板とし、他は実験1と同様にし
た。実施例によれば、比較例の1.098倍の二次電子
増倍率が得られた。
Experiment 4 The base substrate was a stainless steel plate, and the others were the same as in Experiment 1. According to the example, the secondary electron multiplication factor of 1.098 times that of the comparative example was obtained.

【0027】実験5 下地基板は銅ベリリウム合金板とし、他は実験1と同様
にした。実施例の二次電子増倍率は、比較例の1.47
9倍であった。
Experiment 5 The base substrate was a copper-beryllium alloy plate, and the others were the same as in Experiment 1. The secondary electron multiplication factor of the example is 1.47 of the comparative example.
It was 9 times.

【0028】実験6 アルカリ金属にはNa−K−Cs(ナトリウム・カリウ
ム・セシウム)を用い、他は実験1と同様にした。実施
例によれば、比較例の1.324倍の二次電子増倍率が
得られた。
Experiment 6 Na-K-Cs (sodium-potassium-cesium) was used as the alkali metal, and the other conditions were the same as in Experiment 1. According to the example, the secondary electron multiplication factor of 1.324 times that of the comparative example was obtained.

【0029】以上の実験1〜6の結果を、図5にまとめ
て示す。下地基板の種類によらず、また、アルカリ金属
の種類によらず、酸化マグネシウムの中間層を用いるこ
とで、二次電子増倍率の大幅な向上が可能になることが
判明した。
The results of the above experiments 1 to 6 are summarized in FIG. It was found that the secondary electron multiplication factor can be significantly improved by using the magnesium oxide intermediate layer regardless of the type of the base substrate or the type of the alkali metal.

【0030】実験7 本発明者は、光電陰極と第1段ダイノードDy1 の間の
印加電圧に対する二次電子増倍率の依存性を調べた。図
6において、実線は酸化マグネシウムの中間層を有する
二次電子増倍電極を第1段ダイノードとした場合、点線
は酸化マグネシウムを有しない二次電子増倍電極を第1
段ダイノードとした場合を示し、横軸は光電陰極−第1
段ダイノード間電圧、縦軸は第1段の二次電子増倍率で
あるδ1値を表わしている。図示の通り、印加電圧によ
らず、二次電子増倍率の増大効果が現れている。
Experiment 7 The present inventor investigated the dependence of the secondary electron multiplication factor on the applied voltage between the photocathode and the first-stage dynode Dy 1 . In FIG. 6, the solid line indicates the secondary electron multiplying electrode having the magnesium oxide intermediate layer as the first dynode, and the dotted line indicates the secondary electron multiplying electrode not containing magnesium oxide on the first stage.
Shown is the case of a stepped dynode, the horizontal axis is the photocathode-first
The voltage between the stage dynodes, and the vertical axis represents the δ 1 value which is the secondary electron multiplication factor of the first stage. As shown in the figure, the effect of increasing the secondary electron multiplication factor appears regardless of the applied voltage.

【0031】[0031]

【発明の効果】以上の通り本発明では、金属の下地基板
とアンチモン層の間に酸化マグネシウムの中間層を介在
させることで、二次電子増倍率の大幅な向上が可能にな
った。したがって、本発明の二次電子増倍電極を用いた
光電子増倍管によれば、高レベルの検出出力をアノード
から出力することが可能になる。
As described above, in the present invention, by interposing the magnesium oxide intermediate layer between the metal base substrate and the antimony layer, the secondary electron multiplication factor can be greatly improved. Therefore, according to the photomultiplier tube using the secondary electron multiplying electrode of the present invention, it becomes possible to output a high level detection output from the anode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二次電子増倍電極の断面構造を従来例
と対比する図。
FIG. 1 is a diagram comparing a sectional structure of a secondary electron multiplying electrode of the present invention with a conventional example.

【図2】本発明が適用され得る光電子増倍管の図。FIG. 2 is a view of a photomultiplier tube to which the present invention can be applied.

【図3】カソード電流の測定系を示す図。FIG. 3 is a diagram showing a cathode current measurement system.

【図4】第1段ダイノード電流の測定系を示す図。FIG. 4 is a diagram showing a first-stage dynode current measurement system.

【図5】実験1〜6の内部および測定結果を示す図。FIG. 5 is a diagram showing the inside of Experiments 1 to 6 and the measurement results.

【図6】実験7の測定結果を示す図。FIG. 6 shows the measurement results of Experiment 7.

【符号の説明】[Explanation of symbols]

2…真空バルブ、4…シールド板、5…光電陰極、6…
陽極、Dy1 〜Dy9…ダイノード。
2 ... Vacuum valve, 4 ... Shield plate, 5 ... Photocathode, 6 ...
Anode, Dy 1 to Dy 9 ... Dynode.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属の下地基板上に酸化マグネシウムを
主成分とする中間層が形成され、前記中間層上にアンチ
モン層が形成されていることを特徴とする二次電子増倍
電極。
1. A secondary electron multiplying electrode, comprising: an intermediate layer containing magnesium oxide as a main component formed on a metal base substrate; and an antimony layer formed on the intermediate layer.
【請求項2】 前記下地基板は、ニッケル板、ステンレ
ス板、アルミニウム板又は銅ベリリウム合金板のいずれ
かである請求項1記載の二次電子増倍電極。
2. The secondary electron multiplying electrode according to claim 1, wherein the base substrate is any one of a nickel plate, a stainless plate, an aluminum plate and a copper beryllium alloy plate.
【請求項3】 真空容器の内部に、 アルカリ金属を含んで形成された光電陰極と、請求項1
に記載の二次電子増倍電極と、陽極とを備え、 前記二次電子増倍電極はアルカリ金属により活性化され
ていることを特徴とする光電子増倍管。
3. A photocathode formed by containing an alkali metal inside a vacuum container, and
2. A photomultiplier tube comprising: the secondary electron multiplying electrode according to 1; and an anode, wherein the secondary electron multiplying electrode is activated by an alkali metal.
JP21901194A 1994-09-13 1994-09-13 Secondary electron multiplying electrode and photomultiplier Pending JPH0883561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21901194A JPH0883561A (en) 1994-09-13 1994-09-13 Secondary electron multiplying electrode and photomultiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21901194A JPH0883561A (en) 1994-09-13 1994-09-13 Secondary electron multiplying electrode and photomultiplier

Publications (1)

Publication Number Publication Date
JPH0883561A true JPH0883561A (en) 1996-03-26

Family

ID=16728866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21901194A Pending JPH0883561A (en) 1994-09-13 1994-09-13 Secondary electron multiplying electrode and photomultiplier

Country Status (1)

Country Link
JP (1) JPH0883561A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054157A1 (en) * 2000-01-17 2001-07-26 Hamamatsu Photonics K.K. Cathode for emitting photoelectron or secondary electron, photomultiplier tube, and electron-multiplier tube
JP2007012308A (en) * 2005-06-28 2007-01-18 Hamamatsu Photonics Kk Secondary electron multiplication electrode and photomultiplier tube
JP2007026785A (en) * 2005-07-13 2007-02-01 Hamamatsu Photonics Kk Photoelectric face, as well as photomultiplier tube equipped with it, x-ray generator, ultraviolet ray image tube, and x-ray image intensifier
US8421354B2 (en) 2006-12-28 2013-04-16 Hamamatsu Photonics K.K. Photocathode, photomultiplier and electron tube
CN111223739A (en) * 2018-11-26 2020-06-02 陈新云 Novel copper-beryllium alloy multiplication grade and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670752B2 (en) 2000-01-16 2003-12-30 Hamamatsu Photonics K.K. Cathode for emitting photoelectron or secondary electron, photomultiplier tube, and electron-multiplier tube
WO2001054157A1 (en) * 2000-01-17 2001-07-26 Hamamatsu Photonics K.K. Cathode for emitting photoelectron or secondary electron, photomultiplier tube, and electron-multiplier tube
JP2007012308A (en) * 2005-06-28 2007-01-18 Hamamatsu Photonics Kk Secondary electron multiplication electrode and photomultiplier tube
JP2007026785A (en) * 2005-07-13 2007-02-01 Hamamatsu Photonics Kk Photoelectric face, as well as photomultiplier tube equipped with it, x-ray generator, ultraviolet ray image tube, and x-ray image intensifier
US8421354B2 (en) 2006-12-28 2013-04-16 Hamamatsu Photonics K.K. Photocathode, photomultiplier and electron tube
CN111223739A (en) * 2018-11-26 2020-06-02 陈新云 Novel copper-beryllium alloy multiplication grade and preparation method thereof
CN111223739B (en) * 2018-11-26 2023-11-24 陈新云 Novel copper beryllium alloy multiplication stage and preparation method thereof

Similar Documents

Publication Publication Date Title
US4639638A (en) Photomultiplier dynode coating materials and process
US2898499A (en) Transmission secondary emission dynode structure
US4039887A (en) Electron emitter including porous antimony
JP4562844B2 (en) Photocathode and electron tube
US3753023A (en) Electron emissive device incorporating a secondary electron emitting material of antimony activated with potassium and cesium
JPS5841622B2 (en) electronic discharge tube
EP0532358A1 (en) Reflection type photocathode and photomultiplier using it
WO2020261704A1 (en) Photocathode, electron tube and method for producing photocathode
JPH0883561A (en) Secondary electron multiplying electrode and photomultiplier
JP2758529B2 (en) Reflective photocathode and photomultiplier tube
JP2003338260A (en) Semiconductor photoelectric surface and its manufacturing method, and photodetection tube using this semiconductor photoelectric face
JPH0322014B2 (en)
EP0437242A2 (en) A process for forming a photoelectron emitting device, photoelectron emitting device and photomultiplier
US4963113A (en) Method for producing photomultiplier tube
US6049168A (en) Method and system for manufacturing microchannel plates
WO2003077271A1 (en) Transmitting type secondary electron surface and electron tube
US5598062A (en) Transparent photocathode
US5463272A (en) Cathode for photoelectric emission, cathode for secondary electron emission, electron multiplier tube, and photomultiplier tube
US6437491B1 (en) System for enhanced vision employing an improved image intensifier with an unfilmed microchannel plate
US4568567A (en) Method of removing trace quantities of alkali metal impurities from a bialkali-antimonide photoemissive cathode
JPS5841620B2 (en) photomultiplier tube
US2779888A (en) Photosensitive electrode and method for producing same
JPH10149761A (en) Photo-electric cathode and electron tube provided therewith
US3232781A (en) Electron image intensifying devices
JP3034105B2 (en) Method of manufacturing photomultiplier tube

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040514

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040604