JP2007026785A - Photoelectric face, as well as photomultiplier tube equipped with it, x-ray generator, ultraviolet ray image tube, and x-ray image intensifier - Google Patents

Photoelectric face, as well as photomultiplier tube equipped with it, x-ray generator, ultraviolet ray image tube, and x-ray image intensifier Download PDF

Info

Publication number
JP2007026785A
JP2007026785A JP2005204941A JP2005204941A JP2007026785A JP 2007026785 A JP2007026785 A JP 2007026785A JP 2005204941 A JP2005204941 A JP 2005204941A JP 2005204941 A JP2005204941 A JP 2005204941A JP 2007026785 A JP2007026785 A JP 2007026785A
Authority
JP
Japan
Prior art keywords
photocathode
ray
face
mixed crystal
ray image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005204941A
Other languages
Japanese (ja)
Inventor
Toshikazu Matsui
利和 松井
Yasumasa Hamana
康全 浜名
Koji Nakamura
公嗣 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2005204941A priority Critical patent/JP2007026785A/en
Publication of JP2007026785A publication Critical patent/JP2007026785A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric face having high characteristics, a photoelectron multiplier provided with it, an X-ray generator, an ultraviolet ray image tube, and an X-ray image intensifier. <P>SOLUTION: This photo electric face is that in which a mixed crystal layer of magnesium oxide and zinc oxide expressed by a composition formula Mg<SB>x</SB>Zn<SB>(1-x)</SB>O (0<x<1) is film formed on a substrate, and emit photoelectrons into vacuum. By this photoelectric face, (1) the photoelectric face of a large area is enabled, (2) a curved substrate and the photoelectric face on a curved face on a plano-convex face is fabricable, (3) it is fabricable at a low cost, and high characteristics are obtained. Moreover, compatibility is high since the photoelectrons are emitted into the vacuum, and a high photoelectric effect can be obtained since outer photoelectric effect is utilized. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光電面、並びに、それを備える光電子増倍管、X線発生装置、紫外線イメージ管及びX線イメージインテンシファイアに関する。   The present invention relates to a photocathode, and a photomultiplier tube, an X-ray generator, an ultraviolet image tube, and an X-ray image intensifier provided with the photocathode.

従来の紫外線検出器には、III属・V属半導体やダイヤモンドからなる結晶光電面が用いられていた。これらの光電面は、P型結晶に数分子層のアルカリ金属を付着して表面親和力を下げたものであるが、単結晶上に製膜されるため、(1)光電面の面積に制限がある、(2)光電面膜の形状が平面に制限される、(3)製膜コストが高くなるといった問題があり、III属・V属半導体やダイヤモンドによらない光電面が提案されつつある。   For conventional ultraviolet detectors, crystal photocathodes made of Group III / V semiconductors and diamond have been used. These photocathodes are made by attaching several molecular layers of alkali metal to a P-type crystal to lower the surface affinity. However, since the film is formed on a single crystal, (1) the area of the photocathode is limited. There are problems that (2) the shape of the photocathode film is limited to a flat surface, and (3) the film forming cost is high, and photocathodes that are not based on Group III / V semiconductors and diamond are being proposed.

酸化物からなる光電面としては、下記特許文献1及び非特許文献1に記載された技術がある。特許文献1では、MgO、ZnOを含む複数に列挙された化合物から二種以上を複合して光電面とし、空気清浄機に用いることが開示されている。また、非特許文献1では、ZnOをバッファ層とした六方晶構造型のMgZnO混晶を光電面とし、内部光電効果を利用して検出器とすることが示されている。   As a photocathode made of an oxide, there are techniques described in Patent Document 1 and Non-Patent Document 1 below. In Patent Document 1, it is disclosed that two or more kinds of compounds including MgO and ZnO are combined to form a photocathode and used for an air cleaner. Further, Non-Patent Document 1 shows that a hexagonal structure type MgZnO mixed crystal using ZnO as a buffer layer is used as a photocathode, and a detector is made using the internal photoelectric effect.

特公平7−93098号公報Japanese Patent Publication No. 7-93098 応用電子物性分科会誌2005年第11巻第1号Journal of Applied Electronic Properties, Vol. 11, No. 1, 2005

しかしながら、上記特許文献1では、空気清浄機等のように大気中において用いることとしているため、アルカリ金属による活性といった光電効果を高める処理を行うことができず、拡張性に乏しかった。また、上記非特許文献1では、内部光電効果を用いるため、バイアス電圧5Vを加えた場合のS/N比が10程度と低く(同文献内図5参照)、高い光電効果を得ることが難しかった。 However, in the said patent document 1, since it was supposed to use in air | atmosphere like an air cleaner etc., the process which raises the photoelectric effect of the activity by an alkali metal could not be performed, and the expandability was scarce. In Non-Patent Document 1, since the internal photoelectric effect is used, the S / N ratio when a bias voltage of 5 V is applied is as low as about 10 3 (see FIG. 5 in the same document), and a high photoelectric effect can be obtained. was difficult.

本発明は上記課題に鑑みてなされたものであり、高い特性を有する光電面、並びに、それを備える光電子増倍管、X線発生装置、紫外線イメージ管及びX線イメージインテンシファイアを提供することを目的とする。   The present invention has been made in view of the above problems, and provides a photocathode having high characteristics, a photomultiplier tube, an X-ray generator, an ultraviolet image tube, and an X-ray image intensifier including the photocathode. With the goal.

本発明に係る第1の光電面は、基板上に、組成式MgZn(1−x)O(0<x<1)にて表わされる酸化マグネシウムと酸化亜鉛との混晶層を製膜した反射型光電面であって、真空中に光電子を放出することを特徴とする。 The first photocathode according to the present invention forms a mixed crystal layer of magnesium oxide and zinc oxide represented by the composition formula Mg x Zn (1-x) 2 O (0 <x <1) on a substrate. A reflection type photocathode that emits photoelectrons in a vacuum.

また、この第1の光電面において、前記基板及び前記混晶層の間にMgO層を設けたことも好ましく、前記混晶層にアルカリ金属を付着して活性化させたことも好ましい。   In the first photocathode, an MgO layer is preferably provided between the substrate and the mixed crystal layer, and it is also preferable that an alkali metal is attached to the mixed crystal layer and activated.

本発明に係る第2の光電面は、紫外線を透過する基板上に、組成式MgZn(1−x)O(0<x<1)にて表わされる酸化マグネシウムと酸化亜鉛との混晶層を製膜した透過型光電面であって、真空中に光電子を放出することを特徴とする。 The second photocathode according to the present invention is a mixed crystal of magnesium oxide and zinc oxide represented by the composition formula Mg x Zn (1-x) O (0 <x <1) on a substrate that transmits ultraviolet rays. A transmission type photocathode having a layer formed thereon, wherein photoelectrons are emitted in a vacuum.

また、この第2の光電面において、前記混晶層にアルカリ金属を付着して活性化させたことも好ましい。   Moreover, it is also preferable that the second photocathode is activated by attaching an alkali metal to the mixed crystal layer.

本発明に係る光電子増倍管は、上記光電面、当該光電面から放出された光電子を増倍する増倍部、及び、増倍電子を捕集するアノードとを備えることを特徴とする。   A photomultiplier tube according to the present invention includes the photocathode, a multiplier for multiplying photoelectrons emitted from the photocathode, and an anode for collecting the multiplied electrons.

また、本発明に係るX線発生装置は、上記第2の光電面を備え、紫外線の照射によって当該光電面から放出された光電子がX線ターゲットに衝突することによりX線を発生することを特徴とする。   An X-ray generation apparatus according to the present invention includes the second photocathode, and generates X-rays when photoelectrons emitted from the photocathode upon irradiation with ultraviolet rays collide with an X-ray target. And

また、本発明に係る紫外線イメージ管は、上記第2の光電面を備え、紫外線の照射によって当該光電面から放出された光電子が蛍光体に入射することにより像光を出力することを特徴とする。   An ultraviolet image tube according to the present invention includes the second photocathode, and outputs image light when photoelectrons emitted from the photocathode upon irradiation with ultraviolet rays enter a phosphor. .

また、本発明に係るX線イメージインテンシファイアは、上記第2の光電面、及び、X線の照射により紫外線を発生させるシンチレータを備え、当該シンチレータにて発生した紫外線の照射によって当該光電面から放出された光電子が蛍光体に入射することにより像光を出力することを特徴とする。   Moreover, the X-ray image intensifier according to the present invention includes the second photocathode and a scintillator that generates ultraviolet rays by X-ray irradiation, and is irradiated from the photocathode by irradiation of ultraviolet rays generated by the scintillator. Image light is output when the emitted photoelectrons enter the phosphor.

本発明に係る第1の光電面(反射型光電面)によれば、(1)大面積の光電面が可能、(2)湾曲した基板やプラノコン面上に曲面の光電面を作製可能、(3)低コストで作製可能であり、高い特性が得られる。また、真空中で光電子を放出するため上記特許文献1と比較して拡張性が高く、外部光電効果を利用するため上記非特許文献1と比較して高い光電効果を得ることができる。   According to the first photocathode (reflection photocathode) according to the present invention, (1) a large area photocathode is possible, (2) a curved photocathode can be produced on a curved substrate or a planocon surface, 3) It can be manufactured at a low cost, and high characteristics can be obtained. In addition, since the photoelectrons are emitted in a vacuum, the expandability is higher than that of the above-mentioned Patent Document 1, and since the external photoelectric effect is used, a higher photoelectric effect than that of the Non-Patent Document 1 can be obtained.

また、基板及び混晶層の間にMgO層を設けることにより、混晶層の結晶性を高めることができ、混晶層にアルカリ金属を付着して活性化させることにより、光電効果をさらに高めることができる。   Further, by providing the MgO layer between the substrate and the mixed crystal layer, the crystallinity of the mixed crystal layer can be increased, and the photoelectric effect is further increased by attaching and activating an alkali metal to the mixed crystal layer. be able to.

本発明に係る第2の光電面(透過型光電面)によれば、(1)大面積の光電面が可能、(2)湾曲した基板やプラノコン面上に曲面の光電面を作製可能、(3)低コストで作製可能であり、高い特性が得られる。また、真空中で光電子を放出するため上記特許文献1と比較して拡張性が高く、外部光電効果を利用するため上記非特許文献1と比較して高い光電効果を得ることができる。また、混晶層にアルカリ金属を付着して活性化させることにより、光電効果をさらに高めることができる。   According to the second photocathode (transmission type photocathode) according to the present invention, (1) a large area photocathode is possible, (2) a curved photocathode can be produced on a curved substrate or a planocon surface, 3) It can be manufactured at a low cost, and high characteristics can be obtained. In addition, since the photoelectrons are emitted in a vacuum, the expandability is higher than that of the above-mentioned Patent Document 1, and since the external photoelectric effect is used, a higher photoelectric effect than that of the Non-Patent Document 1 can be obtained. Moreover, the photoelectric effect can be further enhanced by attaching and activating an alkali metal to the mixed crystal layer.

本発明に係る光電子増倍管、X線発生装置、紫外線イメージ管及びX線イメージインテンシファイアは、本発明に係る第1の光電面(反射型光電面)及び第2の光電面(透過型光電面)を用いるため、従来技術と比較して高い性能が得られる。   The photomultiplier tube, the X-ray generator, the ultraviolet image tube, and the X-ray image intensifier according to the present invention include a first photocathode (reflection photocathode) and a second photocathode (transmission type) according to the present invention. Since the photocathode is used, higher performance can be obtained compared to the prior art.

まず、図1に示すフローチャート、及び、図2に示す断面図を参照しながら、本実施形態に係る光電面、及び、この光電面を用いたサイドオン型光電子増倍管の作製方法について説明する。   First, a photocathode according to the present embodiment and a method for manufacturing a side-on photomultiplier tube using the photocathode will be described with reference to the flowchart shown in FIG. 1 and the cross-sectional view shown in FIG. .

最初に、純度99.9%のMgO粉体材料を準備しデシケータ内に保管する(S1)と共に、純度99.99%のZnO粉体材料を準備しデシケータ内に保管する(S2)。MgO粉体とZnO粉体をそれぞれ計量容器に入れ、精密電子はかりで所望のモル比率の試料を作製する(S3)。すなわち、組成式MgZn(1−x)Oにおいて、x=0.5としたい場合にはMgO:ZnOのモル比率を5:5に、x=0.7としたい場合にはMgO:ZnOのモル比率を7:3にする。次いで、作製した各々の試料を圧縮ペレット製作機にて、2mmφ〜5mmφの円形で1.5mm〜4mm厚のペレット状の錠剤を作製する(S4)。こうして作製したペレット状の各錠剤を耐熱容器に入れ、電気炉において大気雰囲気中で1000℃〜1500℃の温度に保ち60分以上焼結した後、室温まで徐冷して炉から取り出しデシケータ内に保管する(S5)。 First, an MgO powder material with a purity of 99.9% is prepared and stored in a desiccator (S1), and a ZnO powder material with a purity of 99.99% is prepared and stored in a desiccator (S2). Each of MgO powder and ZnO powder is put into a measuring container, and a sample with a desired molar ratio is prepared with a precision electronic balance (S3). That is, in the composition formula Mg x Zn (1-x) O, when it is desired to set x = 0.5, the molar ratio of MgO: ZnO is 5: 5, and when x = 0.7 is desired, MgO: ZnO. The molar ratio is 7: 3. Next, pellets in the form of 2 mmφ to 5 mmφ and 1.5 mm to 4 mm in thickness are produced from each of the produced samples using a compression pellet manufacturing machine (S4). Each pellet-like tablet produced in this way is put in a heat-resistant container, kept in an electric furnace at a temperature of 1000 ° C. to 1500 ° C. in an air atmosphere, sintered for 60 minutes or more, slowly cooled to room temperature, taken out from the furnace, and placed in a desiccator Store (S5).

一方、基板として0.3mm厚のニッケル金属板を光電面に必要な形状にプレス加工し、製膜基板の準備を行う(S6)。ニッケル金属以外に、SUS金属基板やタンタル金属基板など真空材料となり得る他の基板でもよい。プレス加工された金属基板を洗剤で洗浄し油分を十分に取り除き、さらに純水で洗浄して清潔な保管庫に保存する(S7)。   On the other hand, a nickel metal plate having a thickness of 0.3 mm is pressed into a required shape on the photocathode as a substrate to prepare a film forming substrate (S6). In addition to nickel metal, another substrate that can be a vacuum material such as a SUS metal substrate or a tantalum metal substrate may be used. The pressed metal substrate is washed with a detergent to sufficiently remove oil, and further washed with pure water and stored in a clean storage (S7).

そして、ニッケル金属基板上にMgO及びZnOを蒸着・製膜し、光電面111を作製する(S8)。具体的には、蒸着装置内にS7において準備した基板を基板装着ジグにセットすると共に、S5において保管されていたMgO及びZnO焼結体を蒸着源ジグにセットしてMgZn(1−x)O層を製膜する。この際、MgO層を要する場合には、MgZn(1−x)O層製膜前にMgO層の製膜を行い、光電面110を作製する。製膜完了後、装置内温度が十分に下がってから真空装置のバルブを閉め、乾燥窒素ガスを装置内に導入し大気圧に達した後に製膜された光電面を取り出し、窒素置換のデシケータ庫に保管する。 And MgO and ZnO are vapor-deposited and formed on a nickel metal substrate, and the photocathode 111 is produced (S8). Specifically, the substrate prepared in S7 is set in the substrate mounting jig in the vapor deposition apparatus, and the MgO and ZnO sintered body stored in S5 is set in the vapor deposition source jig to form Mg x Zn (1-x ) Form an O layer. At this time, when the MgO layer is required, the MgO layer is formed before the Mg x Zn (1-x) O layer is formed, and the photocathode 110 is manufactured. After the film formation is completed, the vacuum of the vacuum device is closed after the temperature in the device is sufficiently lowered, dry nitrogen gas is introduced into the device, and after reaching atmospheric pressure, the formed photocathode is taken out and a nitrogen-substituted desiccator chamber Keep in.

以上の工程にて本実施形態に係る光電面を作製したので、これよりこの光電面を用いたサイドオン型光電子増倍管の作製方法について説明する。まず、二次電子増倍電極、アノード電極、封着システム等の他の材料を準備し(S9)、これにS8にて作製した光電面を加えて光電子増倍管のステムを組み立てる(S10)。具体的には、図3に示す断面図のように、光電面11、複数段ダイノード12−1〜9、アノード電極13、シールド板14、メッシュ電極15等を配置する。   Since the photocathode according to the present embodiment has been produced through the above steps, a method for producing a side-on photomultiplier tube using this photocathode will be described. First, other materials such as a secondary electron multiplier electrode, an anode electrode, and a sealing system are prepared (S9), and the photocathode prepared in S8 is added thereto to assemble a stem of the photomultiplier tube (S10). . Specifically, as shown in the cross-sectional view of FIG. 3, the photocathode 11, the multistage dynodes 12-1 to 9, the anode electrode 13, the shield plate 14, the mesh electrode 15, and the like are arranged.

また、これに併せて封着材料の準備を行う(S11)。光電面入射窓材としては、高純度合成石英の透明面板、フッ化カルシウムの透明面板、フッ化バリウムの透明面板、フッ化マグネシウムの透明面板、人工サファイアの透明面板等の紫外線透過材を準備する。真空バルブ10と窓材16の融着には、インジウムシール、アルミ圧着シール、フリットガラスによる高温溶融融着が用いられる。そして、S10において組み立てられた光電子増倍管のステムと真空バルブ10とを封着する(S12)。封着溶接には、レーザー加熱溶接、抵抗加熱溶接、ヘリウムアーク溶接等が用いられる。   At the same time, a sealing material is prepared (S11). As the photocathode entrance window material, UV transparent materials such as high purity synthetic quartz transparent face plate, calcium fluoride transparent face plate, barium fluoride transparent face plate, magnesium fluoride transparent face plate, artificial sapphire transparent face plate are prepared. . For fusion bonding of the vacuum valve 10 and the window material 16, high temperature fusion fusion using an indium seal, an aluminum crimp seal, and frit glass is used. Then, the stem of the photomultiplier tube assembled in S10 and the vacuum valve 10 are sealed (S12). Laser welding, resistance heating welding, helium arc welding, or the like is used for sealing welding.

この後、アルカリ金属による光電面の活性を行う(S13)。具体的には、光電子増倍管に真空排気装置を取り付け、電気炉にて300℃に昇温して3時間以上保持し脱ガスを行って十分な高真空を確認した後、電気炉の温度を150℃に設定して光電面に水銀ランプを照射し、光電面の光電流を電流計で計測しつつセシウム金属を導入し、光電流が最高値に達したところでセシウム金属の導入を止め、電気炉の温度を140℃〜110℃に設定して焼成を30分〜60分行った後に電気炉を徐冷する。そして、電気炉内の光電子増倍管がほぼ室温に下がった後に光電子増倍管を排気装置からチップオフする。最後に、所定の性能試験や分光感度測定を行い(S14)、完成となる(S15)。以上、本発明の実施形態である第1の光電面(反射型光電面)を用いたサイドオン型光電子増倍管の作製方法について説明したが、光電子増倍管としては公知の構成に第2の光電面(透過型光電面)を備える構成を採ることも可能である。   Thereafter, the photocathode is activated with an alkali metal (S13). Specifically, a vacuum evacuation device is attached to the photomultiplier tube, heated to 300 ° C. in an electric furnace, held for 3 hours or more, degassed to confirm a sufficiently high vacuum, and then the temperature of the electric furnace Is set to 150 ° C., the photocathode is irradiated with a mercury lamp, the photocurrent of the photocathode is measured with an ammeter, cesium metal is introduced, and when the photocurrent reaches the maximum value, the introduction of cesium metal is stopped, The temperature of the electric furnace is set to 140 ° C. to 110 ° C. and firing is performed for 30 minutes to 60 minutes, and then the electric furnace is gradually cooled. Then, after the photomultiplier tube in the electric furnace has dropped to approximately room temperature, the photomultiplier tube is chipped off from the exhaust device. Finally, a predetermined performance test and spectral sensitivity measurement are performed (S14), and the process is completed (S15). The method for producing the side-on photomultiplier tube using the first photocathode (reflection photocathode) according to the embodiment of the present invention has been described above. It is also possible to adopt a configuration having a photocathode (transmission photocathode).

次に、本発明者らによる、本実施形態に係る光電面の分光感度測定の結果を示す。まず、図4は、MgZn(1−x)O光電面においてx=1、0.7及び0.5とした場合のアルカリ活性前の分光感度を示す片対数グラフである。例A(x=1、すなわちMgO)と比較して、例B(x=0.7)及び例C(x=0.5)は紫外波長域において高い感度が得られることが示される。 Next, the result of the spectral sensitivity measurement of the photocathode according to the present embodiment by the present inventors will be shown. First, FIG. 4 is a semilogarithmic graph showing the spectral sensitivity before alkali activity when x = 1, 0.7, and 0.5 on the Mg x Zn (1-x) O photocathode. Compared to Example A (x = 1, ie, MgO), Example B (x = 0.7) and Example C (x = 0.5) are shown to have higher sensitivity in the ultraviolet wavelength region.

図5は、MgO層を有するアルカリ活性後の分光感度を示すグラフである。例D、例E及び例F(以上x=0.7)、並びに、例G、例H及び例I(以上x=0.5)共にアルカリ活性によってより高い感度が得られることが示される。   FIG. 5 is a graph showing the spectral sensitivity after alkaline activity having an MgO layer. Examples D, E and F (above x = 0.7) as well as Examples G, H and I (above x = 0.5) are shown to provide higher sensitivity due to alkaline activity.

図6は、MgZn(1−x)O光電面においてx=0.7及び0.5とした場合の分光感度を、MgO層の有無別に比較したグラフである。例J(x=0.5、MgO層なし)及び例K(x=0.7、MgO層なし)よりも、例L(x=0.7、MgO層あり)及び例M(x=0.5、MgO層あり)のほうが高い分光感度を示しており、MgO層が分光感度の向上に有用であることが示される。これは、図7に示すX線回折法(XRD)による2θ−θスペクトル測定において、MgO岩塩構造に起因するピークが現れていて、他の結晶構造に起因するピークが現れていないことからも、結晶性の向上が感度向上に寄与したことが推測される。 FIG. 6 is a graph comparing the spectral sensitivities of the Mg x Zn (1-x) O photocathode with x = 0.7 and 0.5 according to the presence or absence of the MgO layer. Example L (x = 0.7, with MgO layer) and Example M (x = 0) than Example J (x = 0.5, without MgO layer) and Example K (x = 0.7, without MgO layer) .5, with MgO layer) shows higher spectral sensitivity, indicating that the MgO layer is more useful for improving spectral sensitivity. This is because, in the 2θ-θ spectrum measurement by the X-ray diffraction method (XRD) shown in FIG. 7, a peak due to the MgO rock salt structure appears and a peak due to another crystal structure does not appear. It is speculated that the improvement in crystallinity contributed to the improvement in sensitivity.

最後に、上述した光電面を用いた本実施形態に係るX線発生装置、紫外線イメージ管及びX線イメージインテンシファイアについて説明する。   Finally, the X-ray generator, the ultraviolet image tube, and the X-ray image intensifier according to this embodiment using the above-described photocathode will be described.

図8は、本実施形態に係るX線発生装置20の構成図である。このX線発生装置20は、筒状の真空容器24内の一底面にサファイアからなる紫外線透過窓21、MgZn(1−x)O光電面23が順に配置され、他底面にベリリウムからなるX線透過窓27、X線ターゲット26が順に配置されている。また、側面からゲート電極28、フォーカス電極29が導入されており、MgZn(1−x)O光電面23、ゲート電極28、フォーカス電極29及びX線ターゲット26には駆動電源25により電圧を加えられる構造になっている。このX線発生装置20において、紫外線透過窓21を通した紫外線の照射により光電面23から放出された光電子が、ゲート電極28及びフォーカス電極29により加速・集束され、X線ターゲット26に衝突することによりX線透過窓27を通してX線が発生する。 FIG. 8 is a configuration diagram of the X-ray generator 20 according to the present embodiment. In this X-ray generator 20, an ultraviolet transmissive window 21 made of sapphire and a Mg x Zn (1-x) O photocathode 23 are sequentially arranged on one bottom surface in a cylindrical vacuum vessel 24, and beryllium is formed on the other bottom surface. An X-ray transmission window 27 and an X-ray target 26 are arranged in this order. Further, a gate electrode 28 and a focus electrode 29 are introduced from the side, and a voltage is applied to the Mg x Zn (1-x) O photocathode 23, the gate electrode 28, the focus electrode 29 and the X-ray target 26 by a driving power supply 25. It has a structure that can be added. In this X-ray generator 20, photoelectrons emitted from the photocathode 23 by the irradiation of ultraviolet rays through the ultraviolet transmission window 21 are accelerated and focused by the gate electrode 28 and the focus electrode 29 and collide with the X-ray target 26. As a result, X-rays are generated through the X-ray transmission window 27.

図9は、本実施形態に係る紫外線イメージ管30の構成図である。この紫外線イメージ管30は、筒状のセラミック真空容器34内の一底面に合成石英からなる紫外線透過窓31、非常に薄いMgO層32、MgZn(1−x)O光電面33が順に配置され、他底面にコバールガラスからなる出力窓37、蛍光体36が順に配置されている。また、側面からフォーカス電極38及び39が導入されており、MgO層32、フォーカス電極38及び39及び蛍光体36には駆動電源35により電圧を加えられる構造になっている。この紫外線イメージ管30において、紫外線透過窓31を通した紫外線の照射により光電面33から放出された光電子が、フォーカス電極38及び39により集束され、蛍光体36に入射することにより像光が出力窓37を通して出力される。 FIG. 9 is a configuration diagram of the ultraviolet image tube 30 according to the present embodiment. In this ultraviolet image tube 30, an ultraviolet transmissive window 31 made of synthetic quartz, a very thin MgO layer 32, and a Mg x Zn (1-x) O photocathode 33 are arranged in this order on one bottom surface in a cylindrical ceramic vacuum vessel 34. On the other bottom surface, an output window 37 made of Kovar glass and a phosphor 36 are arranged in this order. Further, focus electrodes 38 and 39 are introduced from the side surfaces, and the MgO layer 32, the focus electrodes 38 and 39, and the phosphor 36 are configured to be applied with a voltage by a drive power source 35. In the ultraviolet image tube 30, photoelectrons emitted from the photocathode 33 by the irradiation of ultraviolet rays through the ultraviolet transmission window 31 are focused by the focus electrodes 38 and 39 and incident on the phosphor 36, whereby the image light is output to the output window. 37 is output.

また、図10は、本実施形態に係るX線イメージインテンシファイア40の構成図である。このX線イメージインテンシファイア40は、一底面が湾曲し他底面にガラス筐体45と凸部を有する金属真空容器44内の一底面にアルミニウムからなるX線透過窓41、紫外線シンチレータ42、MgZn(1−x)O光電面43が順に配置され、他底面の凸部にコバールガラスからなる出力窓48、蛍光体47が順に配置されている。また、他底面の凸部との境目からフォーカス電極46が導入されている。このX線イメージインテンシファイア40において、X線透過窓41を通したX線の照射により紫外線シンチレータ42から紫外線が照射され、これを受けた光電面43から放出された光電子が、フォーカス電極46により集束され、蛍光体47に入射することにより像光が出力窓48を通して出力される。 FIG. 10 is a configuration diagram of the X-ray image intensifier 40 according to the present embodiment. This X-ray image intensifier 40 has an X-ray transmission window 41 made of aluminum on one bottom surface in a metal vacuum vessel 44 having a curved bottom surface and a glass casing 45 and a convex portion on the other bottom surface, an ultraviolet scintillator 42, Mg The x Zn (1-x) O photocathode 43 is arranged in order, and an output window 48 made of Kovar glass and a phosphor 47 are arranged in order on the convex portions on the other bottom surface. A focus electrode 46 is introduced from the boundary with the convex portion on the other bottom surface. In the X-ray image intensifier 40, ultraviolet rays are irradiated from the ultraviolet scintillator 42 by X-ray irradiation through the X-ray transmission window 41, and photoelectrons emitted from the photocathode 43 receiving the ultraviolet rays are irradiated by the focus electrode 46. The light is focused and incident on the phosphor 47, whereby image light is output through the output window 48.

以上説明したように、本実施形態によれば、高い特性を有する光電面、並びに、それを備える光電子増倍管、X線発生装置、紫外線イメージ管及びX線イメージインテンシファイアを提供することができる。なお、本発明に係る光電面、並びに、それを備えるX線発生装置、紫外線イメージ管及びX線イメージインテンシファイアは上記実施形態記載の態様に限定されるものではなく、さまざまな変形態様を採ることが可能である。   As described above, according to the present embodiment, a photocathode having high characteristics, and a photomultiplier tube, an X-ray generator, an ultraviolet image tube, and an X-ray image intensifier including the photocathode can be provided. it can. The photocathode according to the present invention, and the X-ray generator, the ultraviolet image tube, and the X-ray image intensifier provided with the photocathode are not limited to the modes described in the above-described embodiments, but adopt various modifications. It is possible.

本実施形態に係る光電面、及び、この光電面を用いたサイドオン型光電子増倍管の作製方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the photocathode which concerns on this embodiment, and the side-on type photomultiplier tube using this photocathode. 本実施形態に係る光電面の断面図である。It is sectional drawing of the photoelectric surface which concerns on this embodiment. サイドオン型光電子増倍管の断面図である。It is sectional drawing of a side-on type photomultiplier tube. 分光感度を示すグラフである。It is a graph which shows spectral sensitivity. 分光感度を示すグラフである。It is a graph which shows spectral sensitivity. 分光感度を示すグラフである。It is a graph which shows spectral sensitivity. 結晶性測定の結果を示すグラフである。It is a graph which shows the result of crystallinity measurement. 本実施形態に係るX線発生装置の構成図である。It is a lineblock diagram of the X-ray generator concerning this embodiment. 本実施形態に係る紫外線イメージ管の構成図である。It is a block diagram of the ultraviolet image tube which concerns on this embodiment. 本実施形態に係るX線イメージインテンシファイアの構成図である。It is a block diagram of the X-ray image intensifier which concerns on this embodiment.

符号の説明Explanation of symbols

10…真空バルブ、11…光電面、12…ダイノード12、13…アノード電極、14…シールド板、15…メッシュ電極、16…窓材、20…X線発生装置、21…紫外線透過窓、23…光電面、24…真空容器、25…駆動電源、26…X線ターゲット、27…X線透過窓、28…ゲート電極、29…フォーカス電極、30…紫外線イメージ管、31…紫外線透過窓、32…MgO層、33…光電面、34…真空容器、35…駆動電源、36…蛍光体、37…出力窓、38、39…フォーカス電極、40…X線イメージインテンシファイア、41…X線透過窓、42…紫外線シンチレータ、43…光電面、44…真空容器、45…ガラス筐体、46…フォーカス電極、47…蛍光体、48…出力窓 DESCRIPTION OF SYMBOLS 10 ... Vacuum valve, 11 ... Photocathode, 12 ... Dynode 12, 13 ... Anode electrode, 14 ... Shield plate, 15 ... Mesh electrode, 16 ... Window material, 20 ... X-ray generator, 21 ... Ultraviolet transmission window, 23 ... Photocathode, 24 ... Vacuum container, 25 ... Drive power supply, 26 ... X-ray target, 27 ... X-ray transmission window, 28 ... Gate electrode, 29 ... Focus electrode, 30 ... UV image tube, 31 ... UV transmission window, 32 ... MgO layer, 33 ... photocathode, 34 ... vacuum vessel, 35 ... drive power source, 36 ... phosphor, 37 ... output window, 38, 39 ... focus electrode, 40 ... X-ray image intensifier, 41 ... X-ray transmission window 42 ... UV scintillator, 43 ... Photocathode, 44 ... Vacuum container, 45 ... Glass casing, 46 ... Focus electrode, 47 ... Phosphor, 48 ... Output window

Claims (9)

基板上に、組成式MgZn(1−x)O(0<x<1)にて表わされる酸化マグネシウムと酸化亜鉛との混晶層を製膜した反射型光電面であって、真空中に光電子を放出することを特徴とする光電面。 A reflective photocathode in which a mixed crystal layer of magnesium oxide and zinc oxide represented by the composition formula Mg x Zn (1-x) 2 O (0 <x <1) is formed on a substrate, in a vacuum A photocathode characterized in that it emits photoelectrons. 前記基板及び前記混晶層の間にMgO層を設けたことを特徴とする請求項1に記載の光電面。 The photocathode according to claim 1, wherein an MgO layer is provided between the substrate and the mixed crystal layer. 前記混晶層にアルカリ金属を付着して活性化させたことを特徴とする請求項1または2に記載の光電面。 3. The photocathode according to claim 1, wherein an alkali metal is attached to the mixed crystal layer and activated. 紫外線を透過する基板上に、組成式MgZn(1−x)O(0<x<1)にて表わされる酸化マグネシウムと酸化亜鉛との混晶層を製膜した透過型光電面であって、真空中に光電子を放出することを特徴とする光電面。 A transmission type photocathode in which a mixed crystal layer of magnesium oxide and zinc oxide represented by the composition formula Mg x Zn (1-x) 2 O (0 <x <1) is formed on a substrate that transmits ultraviolet rays. A photocathode characterized by emitting photoelectrons in a vacuum. 前記混晶層にアルカリ金属を付着して活性化させたことを特徴とする請求項4に記載の光電面。 The photocathode according to claim 4, wherein an alkali metal is attached to the mixed crystal layer and activated. 請求項1〜5のいずれかに記載の光電面、当該光電面から放出された光電子を増倍する増倍部、及び、増倍電子を捕集するアノードとを備えることを特徴とする光電子増倍管。 A photoelectron multiplier comprising the photocathode according to claim 1, a multiplier for multiplying photoelectrons emitted from the photocathode, and an anode for collecting the multiplying electrons. Double pipe. 請求項4または5に記載の光電面を備え、紫外線の照射によって当該光電面から放出された光電子がX線ターゲットに衝突することによりX線を発生することを特徴とするX線発生装置。 An X-ray generator comprising the photocathode according to claim 4 or 5, wherein photoelectrons emitted from the photocathode upon irradiation with ultraviolet rays collide with an X-ray target and generate X-rays. 請求項4または5に記載の光電面を備え、紫外線の照射によって当該光電面から放出された光電子が蛍光体に入射することにより像光を出力することを特徴とする紫外線イメージ管。 6. An ultraviolet image tube comprising the photocathode according to claim 4 or 5, wherein photoelectrons emitted from the photocathode upon irradiation with ultraviolet rays enter the phosphor to output image light. 請求項4または5に記載の光電面、及び、X線の照射により紫外線を発生させるシンチレータを備え、当該シンチレータにて発生した紫外線の照射によって当該光電面から放出された光電子が蛍光体に入射することにより像光を出力することを特徴とするX線イメージインテンシファイア。 A photocathode according to claim 4 or 5 and a scintillator that generates ultraviolet rays by X-ray irradiation, and photoelectrons emitted from the photocathode by irradiation of ultraviolet rays generated by the scintillator are incident on the phosphor. An X-ray image intensifier characterized by outputting image light.
JP2005204941A 2005-07-13 2005-07-13 Photoelectric face, as well as photomultiplier tube equipped with it, x-ray generator, ultraviolet ray image tube, and x-ray image intensifier Pending JP2007026785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204941A JP2007026785A (en) 2005-07-13 2005-07-13 Photoelectric face, as well as photomultiplier tube equipped with it, x-ray generator, ultraviolet ray image tube, and x-ray image intensifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005204941A JP2007026785A (en) 2005-07-13 2005-07-13 Photoelectric face, as well as photomultiplier tube equipped with it, x-ray generator, ultraviolet ray image tube, and x-ray image intensifier

Publications (1)

Publication Number Publication Date
JP2007026785A true JP2007026785A (en) 2007-02-01

Family

ID=37787317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204941A Pending JP2007026785A (en) 2005-07-13 2005-07-13 Photoelectric face, as well as photomultiplier tube equipped with it, x-ray generator, ultraviolet ray image tube, and x-ray image intensifier

Country Status (1)

Country Link
JP (1) JP2007026785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527620A (en) * 2009-05-21 2012-11-08 シュルンベルジェ ホールディングス リミテッド High intensity optical window for radiation detector
CN112484849A (en) * 2020-11-23 2021-03-12 北京卫星环境工程研究所 Integrated space far ultraviolet radiation detector and quantum efficiency test system thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171062A (en) * 1990-11-02 1992-06-18 Ebara Res Co Ltd Photoelectron emitting material and method for charging minute partials using the same
JPH0574406A (en) * 1991-09-11 1993-03-26 Hamamatsu Photonics Kk Reflection type photoelectric surface and photomultiplier
JPH0883561A (en) * 1994-09-13 1996-03-26 Hamamatsu Photonics Kk Secondary electron multiplying electrode and photomultiplier
JPH08236015A (en) * 1995-02-27 1996-09-13 Hamamatsu Photonics Kk Using method for photoelectron emission plane and using method for electron tube
JPH1196897A (en) * 1997-09-24 1999-04-09 Hamamatsu Photonics Kk Photoelectric cathode and electron tube using the same
JP2001036139A (en) * 1999-07-23 2001-02-09 Sony Corp Semiconductor laminated substrate, semiconductor crystal substrate, semiconductor device and method of manufacturing them
JP2001035426A (en) * 1999-07-16 2001-02-09 Toshiba Corp X-ray image intensifier
WO2003083890A1 (en) * 2002-03-28 2003-10-09 Kabushiki Kaisha Toshiba X-ray image tube, x-ray image tube device and x-ray device
JP2003297443A (en) * 2002-03-29 2003-10-17 Tdk Corp Photoelectric conversion oxide semiconductor electrode and dye-sensitized solar battery
JP2004137547A (en) * 2002-10-17 2004-05-13 Tohoku Ricoh Co Ltd Coated member and film deposition method
JP2004200174A (en) * 2002-12-18 2004-07-15 Korea Advanced Inst Of Science & Technol Manufacturing method and device of mcp using unevenness metallic mold
JP2004319873A (en) * 2003-04-18 2004-11-11 Tdk Corp Oxide semiconductor electrode for photoelectric conversion and dye-sensitized photoelectric conversion device
JP2005174556A (en) * 2003-12-05 2005-06-30 Kansai Tlo Kk X-ray generating apparatus using hemimorphic crystal

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171062A (en) * 1990-11-02 1992-06-18 Ebara Res Co Ltd Photoelectron emitting material and method for charging minute partials using the same
JPH0574406A (en) * 1991-09-11 1993-03-26 Hamamatsu Photonics Kk Reflection type photoelectric surface and photomultiplier
JPH0883561A (en) * 1994-09-13 1996-03-26 Hamamatsu Photonics Kk Secondary electron multiplying electrode and photomultiplier
JPH08236015A (en) * 1995-02-27 1996-09-13 Hamamatsu Photonics Kk Using method for photoelectron emission plane and using method for electron tube
JPH1196897A (en) * 1997-09-24 1999-04-09 Hamamatsu Photonics Kk Photoelectric cathode and electron tube using the same
JP2001035426A (en) * 1999-07-16 2001-02-09 Toshiba Corp X-ray image intensifier
JP2001036139A (en) * 1999-07-23 2001-02-09 Sony Corp Semiconductor laminated substrate, semiconductor crystal substrate, semiconductor device and method of manufacturing them
WO2003083890A1 (en) * 2002-03-28 2003-10-09 Kabushiki Kaisha Toshiba X-ray image tube, x-ray image tube device and x-ray device
JP2003297443A (en) * 2002-03-29 2003-10-17 Tdk Corp Photoelectric conversion oxide semiconductor electrode and dye-sensitized solar battery
JP2004137547A (en) * 2002-10-17 2004-05-13 Tohoku Ricoh Co Ltd Coated member and film deposition method
JP2004200174A (en) * 2002-12-18 2004-07-15 Korea Advanced Inst Of Science & Technol Manufacturing method and device of mcp using unevenness metallic mold
JP2004319873A (en) * 2003-04-18 2004-11-11 Tdk Corp Oxide semiconductor electrode for photoelectric conversion and dye-sensitized photoelectric conversion device
JP2005174556A (en) * 2003-12-05 2005-06-30 Kansai Tlo Kk X-ray generating apparatus using hemimorphic crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527620A (en) * 2009-05-21 2012-11-08 シュルンベルジェ ホールディングス リミテッド High intensity optical window for radiation detector
CN112484849A (en) * 2020-11-23 2021-03-12 北京卫星环境工程研究所 Integrated space far ultraviolet radiation detector and quantum efficiency test system thereof

Similar Documents

Publication Publication Date Title
US5982094A (en) Electron tube with polycrystalline diamond photocathode
JP4365255B2 (en) Luminescent body, electron beam detector, scanning electron microscope and mass spectrometer using the same
JP6419572B2 (en) Photocathode, photoelectric conversion tube, image intensifier, and photomultiplier tube
JP5308078B2 (en) Photocathode
JP2007026785A (en) Photoelectric face, as well as photomultiplier tube equipped with it, x-ray generator, ultraviolet ray image tube, and x-ray image intensifier
JP2007157442A (en) Photomultiplier tube
US4100445A (en) Image output screen comprising juxtaposed doped alkali-halide crystalline rods
JP5955713B2 (en) Photocathode
JP3642664B2 (en) Photocathode and electron tube having the same
US3058022A (en) Photoelectric generator
JP2703306B2 (en) Method of manufacturing photocathode for image intensifier tube
JP7445098B1 (en) electron tube
Mörmann Study of novel gaseous photomultipliers for UV and visible light
RU2558387C1 (en) Electro-optical display and method of making same
JP5865527B2 (en) Photocathode and photomultiplier tube
JP3768658B2 (en) Secondary electron emission device, manufacturing method, and electron tube using the same
JP3565535B2 (en) Photocathode and electron tube
JP2009272102A (en) Photocathode and electron tube having the same
JP2019032942A (en) Transmission type photoelectric cathode and electron tube
RU2487433C1 (en) Cathode pack of vacuum tube for high-voltage operation
RU2107355C1 (en) Unsoldered electroluminescent detector of ionizing radiation
Erjavec Vacuum problems of miniaturization of vacuum electronic components: a new generation of compact photomultipliers
RU123222U1 (en) ELECTRIC VACUUM APPLIANCE CATHODE ASSEMBLY
JP2024015761A (en) vacuum tube
Shefer Study of novel stable photocathode materials for gaseous photon detectors in the near-UV to visible spectral range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110