JPH0667233A - Waveguide type second higher harmonic generating element and its production - Google Patents

Waveguide type second higher harmonic generating element and its production

Info

Publication number
JPH0667233A
JPH0667233A JP22056492A JP22056492A JPH0667233A JP H0667233 A JPH0667233 A JP H0667233A JP 22056492 A JP22056492 A JP 22056492A JP 22056492 A JP22056492 A JP 22056492A JP H0667233 A JPH0667233 A JP H0667233A
Authority
JP
Japan
Prior art keywords
substrate
optical waveguide
waveguide layer
polarization
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22056492A
Other languages
Japanese (ja)
Inventor
Hiroshi Kaede
弘志 楓
Akitomo Itou
顕知 伊藤
Kazutami Kawamoto
和民 川本
Kohei Ito
康平 伊藤
Hisao Kurosawa
久夫 黒沢
Masazumi Sato
正純 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP22056492A priority Critical patent/JPH0667233A/en
Publication of JPH0667233A publication Critical patent/JPH0667233A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the waveguide type 2nd higher harmonic generating element which is increased in 2nd higher harmonic conversion efficiency and lowered in wave front aberration and its manufacture. CONSTITUTION:An optical waveguide 52 which has a higher refractive index than a substrate 51 and is uniform in the refractive index is formed on the substrate 51 and the scattering of light in the optical waveguide is reduced; and rectangular self-polarization inversion areas 55 are periodically formed in the optical waveguide and then the phase matchability of a 2nd higher harmonic is improved to increase the conversion efficiency of the 2nd higher harmonic, thereby reducing the wave front aberration. For the purpose, an optical waveguide layer 52 of a single polarization area thin film is grown by an LPE method on the substrate 51 provided with a polarization inversion part 56 and then, the polarization inversion part 56 of the substrate is transferred into the optical waveguide layer 52 by a heat treatment to form the polarization inversion area 55 which is rectangularly sectioned.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ディスク装置、レ−ザ
プリンタ、その他の光応用装置の光源の短波長化に係
り、とくに波長が約800nmの半導体レ−ザ光を波長
が約400nmの青色光に変換するような導波路型の第
2高調波発生素子(SHG,Seconnd Harmonic Generet
ion)とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the shortening of the wavelength of the light source of optical disk devices, laser printers, and other optical application devices, and in particular, semiconductor laser light having a wavelength of about 800 nm is blue with a wavelength of about 400 nm. Waveguide type second harmonic generation element (SHG, Seconnd Harmonic Generet)
ion) and its manufacturing method.

【0002】[0002]

【従来の技術】早い時期には、図2に示すようにニオブ
酸リチウム(以下LiNbO3と記す)の単結晶21の
表面にチタン(Ti)を熱拡散することにより形成した
光導波路22の一端に、z方向に偏光した常光線の基本
波23(パワーP1)を入射し、第二高調波24として
y方向に偏光した異常光線を用い位相整合を行う方式が
報告されている。
2. Description of the Related Art At an early stage, as shown in FIG. 2, one end of an optical waveguide 22 formed by thermally diffusing titanium (Ti) on the surface of a single crystal 21 of lithium niobate (hereinafter referred to as LiNbO 3 ). A method has been reported in which a fundamental wave 23 (power P 1 ) of an ordinary ray polarized in the z direction is made incident and an extraordinary ray polarized in the y direction is used as the second harmonic wave 24 for phase matching.

【0003】また、特開昭61−18964公報には図
3に示すように、LiNbO3単結晶基板21上にプロ
トン交換法(LiNbO3のLiイオンとプロトンを一
部置換する方法)により光導波路31を形成し、その一
端より基板表面に対して垂直に偏光した基本波23を入
射し、光導波路内でチェレンコフ放射により発生した垂
直偏光の第二高調波32を取り出す方法が開示されてい
る。
Further, as shown in FIG. 3 of Japanese Patent Application Laid-Open No. 61-18964, an optical waveguide is formed on a LiNbO 3 single crystal substrate 21 by a proton exchange method (a method of partially replacing Li ions of LiNbO 3 with protons). There is disclosed a method of forming 31 and injecting a fundamental wave 23 polarized perpendicularly to the substrate surface from one end thereof and extracting a vertically polarized second harmonic wave 32 generated by Cherenkov radiation in the optical waveguide.

【0004】また、エレクトロニクス、レターズ(Elec
tronics,Letters)第25巻,第731〜732頁には
図4に示すように、LiNbO3結晶基板21上に周期
的にTiを製膜し、約1100℃に加熱してTi製膜部
41の分極を転させ、その後プロトン交換法によって光
導波路42を作製し、基本波23を入射し第二高調波2
4を取り出す等の自発分極を持つ強誘電体上に自発分極
方向を等ピッチで反転させた分極反転部55と、プロト
ン交換法により形成した光導波路42を設け、光導波路
42の一端よりz方向に偏光した基本波23を入射し、
他端よりz方向に偏光した第2高調波24を取り出す方
法が提案されている。
Also, electronics and letters (Elec
tronics, Letters) Vol. 25, pp. 731-732, as shown in FIG. 4, Ti film is periodically formed on LiNbO 3 crystal substrate 21 and heated to about 1100 ° C. to form Ti film forming portion 41. Of the second harmonic wave 2 by producing the optical waveguide 42 by the proton exchange method.
4, a polarization inversion portion 55 in which the spontaneous polarization direction is inverted at an equal pitch and an optical waveguide 42 formed by a proton exchange method are provided on a ferroelectric material having a spontaneous polarization, and the z direction is formed from one end of the optical waveguide 42. The fundamental wave 23 polarized to
A method of extracting the second harmonic wave 24 polarized in the z direction from the other end has been proposed.

【0005】また結晶基板21にタンタル酸リチウム
(LiTaO3)を用いる場合には、Ti拡散の替わり
にプロトン交換法によって周期的プロトン交換部41を
作製し、約600℃に加熱して回折格子層だけの分極を
反転させ、さらにプロトン交換法によって光導波路42
を作製する方法も試みられている。
When lithium tantalate (LiTaO 3 ) is used for the crystal substrate 21, a periodic proton exchange section 41 is produced by a proton exchange method instead of Ti diffusion and heated to about 600 ° C. to form a diffraction grating layer. Polarization of the optical waveguide 42 by the proton exchange method.
A method of producing a is also being tried.

【0006】[0006]

【発明が解決しようとする課題】上記図2の方法には、
常光23に対する屈折率温度係数と、異常光の屈折率の
温度係数が大きく異なるため、0.1℃以下の温度制御
が必要になるという問題があった。また、図3に示すチ
ェレンコフ放射を用いる方法は、第二高調波のビーム形
状が32のように三日月型となり、極めて波面収差が大
きく、これを回折限界まで絞り込むことはほとんど不可
能であった。
The above method of FIG. 2 includes:
Since the temperature coefficient of the refractive index for the ordinary light 23 and the temperature coefficient of the refractive index of the extraordinary light are largely different, there is a problem that the temperature control of 0.1 ° C. or less is required. Further, in the method using the Cherenkov radiation shown in FIG. 3, the beam shape of the second harmonic wave is crescent like 32, and the wavefront aberration is extremely large, and it is almost impossible to narrow it down to the diffraction limit.

【0007】一方、図4の方法は第二高調波24がコリ
メート光であるためチェレンコフ放射光に比較して集光
が極めて容易になるものの、分極反転格子を形成するT
i拡散部分とTi拡散されていない部分、あるいはプロ
トン交換した部分とプロトン交換されていない部分の屈
折率が異なるため、その境界部のフレネル反射損等によ
り基本波が損失を受け、効率が低下するという問題があ
った。
On the other hand, in the method of FIG. 4, since the second harmonic wave 24 is collimated light, it is extremely easy to collect light as compared with Cherenkov radiation, but T which forms a polarization inversion grating is used.
Since the i-diffused portion and the Ti-non-diffused portion or the proton-exchanged portion and the non-proton-exchanged portion have different refractive indexes, the fundamental wave is lost due to Fresnel reflection loss at the boundary portion and the efficiency is reduced. There was a problem.

【0008】また、分極反転格子をTiを拡散したり、
プロトン交換したりして作製するため、分極反転格子の
断面形状がTi拡散層やプロトン交換層の形状に依存
し、矩形断面の分極反転格子を作製することが本質的に
困難である。Ti拡散法で作製した分極反転格子の断面
形状は略三角形であり、プロトン交換法で作製した分極
反転格子の断面形状は略半円形であるため、理想的な矩
形断面の分極反転格子を持つSHG素子本来の効率で第
二高調波が発生できていないことが問題であった。
In addition, Ti is diffused in the polarization inversion lattice,
Since it is produced by proton exchange, the cross-sectional shape of the polarization inversion lattice depends on the shape of the Ti diffusion layer or the proton exchange layer, and it is essentially difficult to produce the polarization inversion lattice of rectangular cross section. Since the cross-sectional shape of the domain-inverted lattice produced by the Ti diffusion method is substantially triangular and the cross-sectional shape of the domain-inverted lattice produced by the proton exchange method is approximately semi-circular, the SHG having the domain-inverted lattice of an ideal rectangular section is provided. The problem was that the second harmonic could not be generated due to the original efficiency of the device.

【0009】本発明の目的は上記図4に示した第二高調
波発生素子の改良に係り、とくに光導波路の屈折率を一
様にして基本波や第二高調波に対するフレネル損失を低
め、さらに、分極反転格子の断面を矩形化して効率を高
めた、波面収差が小さく集光が容易な導波路型第二高調
波発生素子とその製造方法を提供することにある。
The object of the present invention relates to the improvement of the second harmonic generating element shown in FIG. 4, and in particular, the refractive index of the optical waveguide is made uniform to reduce the Fresnel loss for the fundamental wave and the second harmonic, and It is an object of the present invention to provide a waveguide-type second harmonic generation element having a rectangular cross section of a domain-inverted grating to improve efficiency, small wavefront aberration, and easy to collect light, and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、強誘電体光学基板と、該基板より屈折率が高く分極
反転域を周期的に配置した強誘電体光導波層から成る第
二高調波発生素子において、上記光導波層のキュリ−点
を上記基板のキュリ−点より低くし、上記基板の光導波
層側の面に分極方向が反転する矩形の分極反転部を周期
的に設け、上記分極反転部上に上記光導波層の分極反転
域を設けるようにする。
In order to solve the above-mentioned problems, a second embodiment of the present invention comprises a ferroelectric optical substrate and a ferroelectric optical waveguide layer having a refractive index higher than that of the substrate and periodically arranging domain inversion regions. In the harmonic generating element, the Curie point of the optical waveguide layer is set lower than the Curie point of the substrate, and a rectangular polarization inversion portion whose polarization direction is inverted is periodically provided on the surface of the substrate on the optical waveguide layer side. A polarization inversion region of the optical waveguide layer is provided on the polarization inversion part.

【0011】このため、上記基板および上記光導波層を
をニオブ酸リチウムとし、上記光導波層を基板に比べて
リチウムのニオブに対する比率を低めた組成比とするよ
うにする。また、上記基板をマグネシウムをドープした
ニオブ酸リチウムとし、上記光導波層をニオブ酸リチウ
ムとするようにする。または、上記基板および上記光導
波層をマグネシウムをドープしたニオブ酸リチウムと
し、上記光導波層を基板に比べてマグネシウムのドープ
比率を低めた組成比とするようにする。
Therefore, the substrate and the optical waveguide layer are made of lithium niobate, and the optical waveguide layer has a composition ratio in which the ratio of lithium to niobium is lower than that of the substrate. Further, the substrate is made of magnesium-doped lithium niobate, and the optical waveguide layer is made of lithium niobate. Alternatively, the substrate and the optical waveguide layer are made of magnesium-doped lithium niobate, and the optical waveguide layer has a composition ratio in which the doping ratio of magnesium is lower than that of the substrate.

【0012】また、分極反転部を周期的に設けた基板上
の光導波層を、強誘電体金属酸化物の原料粉末をフラッ
クス存在下で加熱溶融した溶融体を準備する工程と、前
記溶融体の温度を結晶析出温度に降下し、前記基板の分
極反転された表面に接触して金属酸化膜を液相エピタキ
シャル成長させる工程と、次いで上記金属酸化膜のキュ
リ−点近傍の温度で熱処理する工程とにより形成するよ
うにする。また、分極反転部を周期的に設けた基板上の
光導波層を、強誘電体金属酸化物の原料粉末をフラック
ス存在下で加熱溶融した溶融体を準備する工程と、前記
溶融体をキュリ−点以上の結晶析出温度にて前記基板の
分極反転された表面に接触して金属酸化膜を液相エピタ
キシャル成長させるようにする。
Further, a step of preparing a melt by heating and melting an optical waveguide layer on a substrate on which a domain-inverted portion is periodically provided in the presence of a flux of a raw material powder of a ferroelectric metal oxide; Lowering the temperature to the crystal precipitation temperature, contacting the domain-inverted surface of the substrate to perform liquid phase epitaxial growth of the metal oxide film, and then performing a heat treatment at a temperature near the Curie point of the metal oxide film. To be formed by. Further, a step of preparing a melt obtained by heating and melting an optical waveguide layer on a substrate provided with periodically domain-inverted parts in the presence of a flux of a raw material powder of a ferroelectric metal oxide, and curing the melt. At the crystal precipitation temperature above the point, the metal oxide film is brought into liquid phase epitaxial growth by contacting the polarization-inverted surface of the substrate.

【0013】さらに上記フラックスを、五酸化バナジウ
ム(V25)、または三酸化ボロン(B23)、または
フッ化リチウム(LiF)、またはフッ化カリウム(K
F)、または三酸化ボロン(B23)と、三酸化モリブ
デン(MoO3)、または三酸化ボロン(B23)と三
酸化タングステン(WO3)の混合物とするようにす
る。
Further, the above flux is added to vanadium pentoxide (V 2 O 5 ), boron trioxide (B 2 O 3 ), lithium fluoride (LiF), or potassium fluoride (K).
F) or boron trioxide (B 2 O 3 ) and molybdenum trioxide (MoO 3 ) or a mixture of boron trioxide (B 2 O 3 ) and tungsten trioxide (WO 3 ).

【0014】[0014]

【作用】上記エピタキシャル膜を均一に成長させること
により、屈折率が均一な光導波層を基板上に形成するこ
とができ、これにより、光導波層内の分極反転域におけ
る基本波と第2高調波のフレネル反射損失が低減され
る。また、上記光導波層の屈折率を基板より高めること
により光を光導波層内に閉じ込めることができる。ま
た、上記光導波層のキュリ−点を上記基板のキュリ−点
より低めることにより、基板上に周期的に設けた分極反
転部の分極方向が光導波層内に転写されて矩形の分極反
転域が形成される。この結果、光導波層内で発生する第
2高調波の位相バラツキが低減され第2高調波変換効率
が向上する。
By uniformly growing the above-mentioned epitaxial film, an optical waveguide layer having a uniform refractive index can be formed on the substrate, whereby the fundamental wave and the second harmonic in the domain inversion region in the optical waveguide layer can be formed. The Fresnel reflection loss of the waves is reduced. Further, the light can be confined in the optical waveguide layer by increasing the refractive index of the optical waveguide layer higher than that of the substrate. Further, by lowering the Curie point of the optical waveguide layer from the Curie point of the substrate, the polarization direction of the polarization inversion portion periodically provided on the substrate is transferred into the optical waveguide layer to form a rectangular polarization inversion region. Is formed. As a result, the phase variation of the second harmonic generated in the optical waveguide layer is reduced, and the second harmonic conversion efficiency is improved.

【0015】また、上記基板および上記光導波層ををニ
オブ酸リチウムとし、上記光導波層を基板に比べてリチ
ウムのニオブに対する比率を低めた組成比、または、上
記基板をマグネシウムをドープしたニオブ酸リチウム、
上記光導波層をニオブ酸リチウムとし、または、上記基
板および上記光導波層をマグネシウムをドープしたニオ
ブ酸リチウムとし、上記光導波層を基板に比べてマグネ
シウムのドープ比率を低めた組成比とすることにより、
光導波層のキュリ−点が基板のキュリ−点より低められ
る。
The substrate and the optical waveguide layer are made of lithium niobate, and the optical waveguide layer has a composition ratio in which the ratio of lithium to niobium is lower than that of the substrate, or the substrate is magnesium-doped niobate. lithium,
The optical waveguide layer is made of lithium niobate, or the substrate and the optical waveguide layer are made of magnesium-doped lithium niobate, and the optical waveguide layer has a composition ratio in which the doping ratio of magnesium is lower than that of the substrate. Due to
The Curie point of the optical waveguide layer is lower than that of the substrate.

【0016】また、上記基板上の光導波層は、強誘電体
金属酸化物の原料粉末をフラックス存在下で加熱溶融し
た溶融体を結晶析出温度にて分極反転部を周期的に設け
た基板面に接触して金属酸化膜を液相エピタキシャル成
長させ、次いで上記金属酸化膜のキュリ−点近傍におけ
る熱処理により形成される。また、上記基板上の光導波
層は、強誘電体金属酸化物の原料粉末をフラックス存在
下で加熱溶融した溶融体をキュリ−点以上の結晶析出温
度にて分極反転部を周期的に設けた基板面に接触して金
属酸化膜を液相エピタキシャル成長さることにより形成
される。
The optical waveguide layer on the substrate is a substrate surface in which a polarization inversion portion is periodically provided at a crystal precipitation temperature of a melt obtained by heating and melting a raw material powder of a ferroelectric metal oxide in the presence of flux. To form a metal oxide film by liquid phase epitaxial growth, and then perform heat treatment in the vicinity of the Curie point of the metal oxide film. In the optical waveguide layer on the substrate, a polarization inversion portion is periodically provided at a crystal precipitation temperature of a Curie point or higher in a melt obtained by heating and melting a raw material powder of a ferroelectric metal oxide in the presence of a flux. It is formed by liquid phase epitaxial growth of a metal oxide film in contact with the substrate surface.

【0017】[0017]

【実施例】【Example】

〔実施例 1〕以下本発明の実施例1を図1、5、6に
より説明する。図1は第二高調波発生素子の断面図、図
5はその動作説明図、図6はその製造工程図である。本
発明では第二高調波発生素子の周期的分極反転格子断面
形状を矩形化して、効率を高めることを目的としてい
る。また、本実施例では基板51の+c面上に光導波層
52を形成する。
[Embodiment 1] Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a cross-sectional view of the second harmonic generation element, FIG. 5 is an operation explanatory view thereof, and FIG. 6 is a manufacturing process drawing thereof. An object of the present invention is to increase the efficiency by making the cross sectional shape of the periodically poled grating of the second harmonic generation element rectangular. Further, in this embodiment, the optical waveguide layer 52 is formed on the + c surface of the substrate 51.

【0018】このため図1(a)に示すような構造を考
える。基板51の+c面上に光導波層52を設け、光導
波層52内には自発分極が上向きの部分54と下向きの
部分(分極反転域)55を周期的に配置する。なお、5
3はクラッド層で通常は空気層である。56は上記分極
反転域55を形成するために基板内に設けた分極反転部
であり、基板51に対する分極方向は反転している。Λ
は上記55の周期である。
Therefore, consider a structure as shown in FIG. An optical waveguide layer 52 is provided on the + c surface of the substrate 51, and in the optical waveguide layer 52, spontaneous polarization upward portions 54 and downward polarization portions (polarization inversion regions) 55 are periodically arranged. 5
3 is a clad layer, which is usually an air layer. Reference numeral 56 denotes a polarization reversal portion provided in the substrate to form the polarization reversal region 55, and the polarization direction with respect to the substrate 51 is reversed. Λ
Is the period of 55.

【0019】基板51と光導波層52が例えばLiNb
3のような空間群R3Cの強誘電体であると、光導波
層52内の屈折率nは自発分極の向きによらず一定にな
るので(M.Didomenco Jr.著、Journal of Applied Phys
ics誌、Vol.40,No.2,pp720〜734参照)、光導波層52
に入射される基本波(波長λ)は自発分極部54と55
の界面でフレネル反射しなくなる。すなわち、基本波の
反射損失を防止することができる。
The substrate 51 and the optical waveguide layer 52 are made of, for example, LiNb.
With a ferroelectric substance having a space group R3C such as O 3 , the refractive index n in the optical waveguide layer 52 is constant regardless of the direction of spontaneous polarization (M. Didomenco Jr., Journal of Applied Phys.
ics magazine, Vol.40, No.2, pp720-734), optical waveguide layer 52
The fundamental wave (wavelength λ) incident on the
No Fresnel reflection occurs at the interface. That is, the reflection loss of the fundamental wave can be prevented.

【0020】図1(b)はこのような屈折率の一様性を
示す図である。上記光導波層52は液相エピタキシャル
成長法やスパッタリング法などの気相成長法、またはエ
ピタキシャル・グロ−ス・バイ・メルティングなどの固
相成長法を用いて形成することができる。この結果、キ
ュリ-点が基板51より低い光導波層52を形成するこ
とができ、これにより自発分極部55の形状を矩形に形
成することができるのである。
FIG. 1B is a diagram showing such uniformity of the refractive index. The optical waveguide layer 52 can be formed by a vapor phase growth method such as a liquid phase epitaxial growth method or a sputtering method, or a solid phase growth method such as an epitaxial growth by melting method. As a result, the optical waveguide layer 52 having a Curie point lower than that of the substrate 51 can be formed, and thus the spontaneous polarization portion 55 can be formed in a rectangular shape.

【0021】次ぎに、上記自発分極部55の形状を矩形
に形成する方法について説明する。本発明では基板51
上に分極反転部56を設けてから光導波層52を形成す
る。光導波層52をそのキュリ-点よりわずかに低い温
度で熱処理すると光導波層52の自発分極は基板51に
比べ小さくなる。したがって、光導波層52は基板51
の分極反転部56面から垂直方向の電界を受けることに
なる。一方、単分域結晶にその自発分極と逆向きの電界
を加えると、まず表面に逆向きの分域の芽が発生し、電
界から分域壁を維持するエネルギ−に打ち勝つだけのエ
ネルギ−が供給されてその芽は電界の方向に沿って伸び
てゆき、結晶の端に達することがしられている(川辺和
夫の著書「強誘電体」の第8章参照)。
Next, a method for forming the spontaneous polarization portion 55 into a rectangular shape will be described. In the present invention, the substrate 51
The polarization inverting portion 56 is provided on the optical waveguide layer 52 and then the optical waveguide layer 52 is formed. When the optical waveguide layer 52 is heat-treated at a temperature slightly lower than the Curie point, the spontaneous polarization of the optical waveguide layer 52 becomes smaller than that of the substrate 51. Therefore, the optical waveguide layer 52 is formed on the substrate 51.
An electric field in the vertical direction will be received from the surface of the domain-inverted portion 56. On the other hand, when an electric field in the opposite direction to the spontaneous polarization is applied to a single-domain crystal, first, buds in the opposite domain are generated on the surface, and the energy for maintaining the domain wall from the electric field is sufficient to overcome the energy. It is known that the supplied buds grow along the direction of the electric field and reach the edge of the crystal (see Chapter 8 in "Ferroelectrics" by Kazuo Kawabe).

【0022】したがって、本発明では基板51上の分極
反転部56が上記分域の芽に相当すし、そこから光導波
層52内に反転電界がかかるので、分極反転部56上の
分極方向は基板51に対して分極方向が反転し、他の部
分では基板51と同じ分極方向を有するようになる。以
上により、図1(a)に示すような矩形断面の周期的分
極反転格子を有する光導波層52を形成することができ
る。
Therefore, in the present invention, the polarization inversion portion 56 on the substrate 51 corresponds to the bud of the above domain, and an inversion electric field is applied from there to the optical waveguide layer 52. Therefore, the polarization direction on the polarization inversion portion 56 is the substrate. The polarization direction is reversed with respect to 51, and the other portions have the same polarization direction as the substrate 51. As described above, it is possible to form the optical waveguide layer 52 having the periodically poled grating having the rectangular cross section as shown in FIG.

【0023】上記熱処理温度は光導波層52のキュリ−
点より高く、基板51のキュリ−点より十分低い温度で
も良い。この場合は基板の分域は維持され、光導波層は
常誘電層になり自発分極は消滅しているので熱処理後の
冷却時に矩形断面の周期的分極反転格子が形成される。
The heat treatment temperature is set to the temperature of the optical waveguide layer 52
The temperature may be higher than the point and sufficiently lower than the Curie point of the substrate 51. In this case, the domain of the substrate is maintained, the optical waveguide layer becomes a paraelectric layer, and spontaneous polarization disappears, so that a periodically poled lattice having a rectangular cross section is formed during cooling after the heat treatment.

【0024】上記本発明の光導波層52は材料の組合せ
により作製することができる(B.C.Grabmaier著、Journ
al of Crystal Growth誌、Vol.110(1991),
pp339〜347参照)。例えば、基板51にはマグ
ネシウムが5モル%ド−プされたLiNbO3を用い、
光導波層52にはコングルエント組成のLiNbO3
用いるようにする。上記基板51用のLiNbO3のキ
ュリ−点は約1225℃である。
The above-mentioned optical waveguide layer 52 of the present invention can be produced by a combination of materials (BC Grabmaier, Journal.
al of Crystal Growth magazine, Vol. 110 (1991),
See pp 339-347). For example, LiNbO 3 containing 5 mol% of magnesium is used for the substrate 51,
LiNbO 3 having a congruent composition is used for the optical waveguide layer 52. The Curie point of LiNbO 3 for the substrate 51 is about 1225 ° C.

【0025】また、リチウムのニオブに対する比率を変
化するとキュリ−点を例えばノンド−プ(無添加)のL
iNbO3では1150℃から1075℃もしくはそれ
以上の範囲に低めることができ、また、市販の上記コン
グルエント組成材料のキュリ−点は約1150℃なの
で、これらを光導波層52用に用いるようにする。な
お、上記基板51用LiNbO3の屈折率は光導波層5
2用のコングルエント組成のLiNbO3より低く、例
えば波長6328Åに対する異常光屈折率はそれぞれ、
2.192、2.200である。
When the ratio of lithium to niobium is changed, the Curie point is changed to, for example, non-doped (non-added) L.
iNbO 3 can be lowered to a range of 1150 ° C. to 1075 ° C. or higher, and the Curie point of the above-mentioned commercially available congruent composition material is about 1150 ° C., so that these are used for the optical waveguide layer 52. The refractive index of LiNbO 3 for the substrate 51 is the optical waveguide layer 5
2 is lower than LiNbO 3 having a congruent composition for 2 and, for example, the extraordinary light refractive index for a wavelength of 6328Å
2.192 and 2.200.

【0026】図1(c)は同図(a)に第二高調波の発
生性能を表す係数dを記入した図である。また、光導波
層に閉じ込められた導波光は基板51の非線形性の影響
をほとんど受けないので、図1(c)を図1(d)のよ
うに近似することができる。
FIG. 1 (c) is a diagram in which the coefficient d representing the generation performance of the second harmonic is entered in FIG. 1 (a). Further, since the guided light confined in the optical waveguide layer is hardly affected by the non-linearity of the substrate 51, FIG. 1 (c) can be approximated as shown in FIG. 1 (d).

【0027】図5は上記本発明による第二高調波発生素
子の上面図と断面図である。基板51は表面が+c面で
ある5mol%MgOドープのZcutLiNbO3
結晶、光導波層52は通常自発分極は上向きのLiNb
3単結晶薄膜である。また分極反転部56と分極部分
55の非線形光学系数はともに下向きである。上記光導
波層52上にリッジ型の光導波路18を形成する。レ−
ザ11の出射光(基本波)を光学系12により基板表面
に対して垂直方向に偏光して集光し入射する。
FIG. 5 is a top view and a sectional view of the second harmonic generating element according to the present invention. The substrate 51 is a 5 mol% MgO-doped ZcutLiNbO 3 single crystal whose surface is the + c plane, and the optical waveguide layer 52 is usually LiNb whose spontaneous polarization is upward.
It is an O 3 single crystal thin film. Further, the nonlinear optics of the polarization inversion portion 56 and the polarization portion 55 are both downward. The ridge type optical waveguide 18 is formed on the optical waveguide layer 52. Ray
The outgoing light (fundamental wave) of the beam 11 is polarized by the optical system 12 in the direction perpendicular to the surface of the substrate and is condensed and incident.

【0028】第二高調波は光導波路18内で発生し、同
様に基板表面に垂直方向に偏光している。基本波と第二
高調波はともに光導波路18内に閉じ込められて伝搬す
る。なお参考のため、上記第二高調波の的発生効率の理
論について本実施例欄の末尾に記載した。
The second harmonic is generated in the optical waveguide 18, and similarly polarized in the direction perpendicular to the substrate surface. Both the fundamental wave and the second harmonic wave are confined in the optical waveguide 18 and propagate. For reference, the theory of the target generation efficiency of the second harmonic is described at the end of this Example section.

【0029】図6は液相エピタキシャル成長法と熱処理
による上記第二高調波発生素子の製造方法の工程図であ
る。まず、図6(a)に示す5mol%MgOドープL
iNbO3の基板51の表面の+c面を基本波長λの1
/10程度にまで研磨してから、アセトン、イソプロピ
ールアルコール、純水中で超音波洗浄し乾燥する。次い
で同図(b)のように、上記+c面上に30ÅのTi膜
81をスパッタリング成膜する。
FIG. 6 is a process diagram of the method for manufacturing the second harmonic generating element by the liquid phase epitaxial growth method and heat treatment. First, 5 mol% MgO-doped L shown in FIG.
The + c plane on the surface of the substrate 51 of iNbO 3 has a fundamental wavelength λ of 1
After polishing to about / 10, ultrasonic cleaning in acetone, isopropyl alcohol, and pure water and drying are performed. Next, as shown in FIG. 6B, a 30Å Ti film 81 is formed on the + c surface by sputtering.

【0030】次いで同図(c)のように、Ti膜81上
にホトレジスト82をスピンナーで塗布し、これに分極
反転部56が窓あけされたホトマスクを用いてホトレジ
スト82のパターニングを行う(図6(c))。次い
で、上記ホトレジスト82をマスクにしてCF3Clガ
スを用いたRIEによりTi81をパターニングし、ホ
トレジスト82を除去する(図6(e))。なお、上記
ホトマスクのパターン周期を2.5から3.5μmまで
0.1μmずつ変えて11種類を作製した。
Next, as shown in FIG. 6C, a photoresist 82 is applied on the Ti film 81 by a spinner, and the photoresist 82 is patterned by using a photoresist having a domain-inverted portion 56 as a window (FIG. 6). (C)). Next, using the photoresist 82 as a mask, the Ti 81 is patterned by RIE using CF 3 Cl gas, and the photoresist 82 is removed (FIG. 6E). Eleven kinds were prepared by changing the pattern period of the photomask from 2.5 to 3.5 μm by 0.1 μm.

【0031】次いで、上記基板を電気炉に入れ、約80
℃の温水のバブラー中を通して水蒸気を含ませたArの
雰囲気下において、約1100℃で約10分熱処理す
る。また、冷却時には雰囲気を水蒸気を含ませたO2
変えた。これにより図6(f)に示すように基板51の
+c表面に分域反転部56が形成される。
Then, the above-mentioned substrate is put into an electric furnace, and about 80
Heat treatment is performed at about 1100 ° C. for about 10 minutes in an Ar atmosphere containing water vapor through a bubbler of warm water at 0 ° C. At the time of cooling, the atmosphere was changed to O 2 containing water vapor. As a result, the domain inversion portion 56 is formed on the + c surface of the substrate 51 as shown in FIG.

【0032】次いで、上記基板51の+c面に、液相エ
ピタキシャル結晶成長法により単分域のLiNbO3
結晶薄膜の光導波層52を成長させる。上記エピタキシ
ャル成長時の溶融体は、原料として50モル%の炭酸リ
チウムLi2CO3、10モル%の五酸化ニオブNb
25、40モル%の五酸化バナジウムV25の各粉末を
秤量、混合した後、白金るつぼに入れて900℃で溶解
し、電気炉内で空気雰囲気下において1200℃の温度
で10時間維持し、均一に作製する。
Then, an optical waveguide layer 52 of a single-domain LiNbO 3 single crystal thin film is grown on the + c surface of the substrate 51 by a liquid phase epitaxial crystal growth method. The melt during the epitaxial growth was made of 50 mol% lithium carbonate Li 2 CO 3 as a raw material and 10 mol% niobium pentoxide Nb.
2 O 5 and 40 mol% of vanadium pentoxide V 2 O 5 powders were weighed and mixed, put into a platinum crucible and melted at 900 ° C., and heated at 1200 ° C. in an electric furnace at a temperature of 1200 ° C. Maintain for time and make uniform.

【0033】次いでこの溶融体を30℃/hの冷却速度
で930℃まで冷却し、その中に同図(f)の基板を2
分30秒接触させると、同図(g)の2.5μmのLi
NbO3薄膜の光導波層52が成長する。このサンプル
を10枚製作した。次いで基板51を電気炉中で30℃
/hの冷却速度で室温に徐冷する。
Next, this melt was cooled to 930 ° C. at a cooling rate of 30 ° C./h, and the substrate of FIG.
When contacted for 30 minutes, 2.5 μm Li of the same figure (g)
An optical waveguide layer 52 of NbO 3 thin film grows. Ten sheets of this sample were manufactured. Next, the substrate 51 is placed in an electric furnace at 30 ° C.
Slowly cool to room temperature at a cooling rate of / h.

【0034】光導波層52の表面を硝酸:ふっ酸=1:
2のエッチング液によりエッチングしてエッチング状態
の違いから光導波層52の分域を観察したところ、分極
ピッチΛにかかわらず分極反転部55形成前の基板51
に対して分極方向が反転している単分域膜が形成されて
いることが判明した。なお、上記光導波層52のエピタ
キシャル成長におけるフラックス材料には上記五酸化バ
ナジウム(V25)のほか、3酸化ボロン(B23)、
フッ化リチウム(LiF)、フッ化カリウム(KF)、
3酸化ボロン(B23)および3酸化モリブデン(Mo
3)、3酸化ボロン(B23)および3酸化タングス
テン(WO3)等を用いても良い。
Nitric acid: hydrofluoric acid = 1: 1 on the surface of the optical waveguide layer 52.
When the domain of the optical waveguide layer 52 was observed from the difference in the etching state by etching with the etching solution of No. 2, the substrate 51 before the polarization inversion portion 55 was formed regardless of the polarization pitch Λ.
It was found that a single domain film in which the polarization direction was reversed was formed. In addition to vanadium pentoxide (V 2 O 5 ), boron trioxide (B 2 O 3 ) is used as a flux material in the epitaxial growth of the optical waveguide layer 52.
Lithium fluoride (LiF), potassium fluoride (KF),
Boron trioxide (B 2 O 3 ) and molybdenum trioxide (Mo
O 3 ), boron trioxide (B 2 O 3 ) and tungsten trioxide (WO 3 ) may be used.

【0035】次いで同図(g)の基板51を電気炉に入
れ、約80℃の温水のバブラー中を通して水蒸気を含ま
せたArの雰囲気下におき、約1150℃で約10分熱
処理した。また、冷却時には雰囲気を水蒸気を含ませた
2に変えた。この光導波層52(単結晶薄膜)と基板
51の分域を上記のエッチング液でエッチングして観察
したところ、周期Λにかかわず分極部54と同55の方
向は対応する基板51の分極方向と同一であり、その界
面は基板51面に対してほぼ垂直であった。
Then, the substrate 51 shown in FIG. 9 (g) was placed in an electric furnace, passed through a bubbler of warm water at about 80 ° C., placed in an atmosphere of Ar containing water vapor, and heat-treated at about 1150 ° C. for about 10 minutes. At the time of cooling, the atmosphere was changed to O 2 containing water vapor. When the domains of the optical waveguide layer 52 (single crystal thin film) and the substrate 51 were etched and observed with the above-mentioned etching solution, the polarization directions of the polarization portions 54 and 55 were irrespective of the period Λ. And its interface was almost perpendicular to the surface of the substrate 51.

【0036】ところで、50モル%の炭酸リチウムLi
2CO3,25モル%の5酸化ニオブNb25,25モル
%の5酸化バナジウムV25よりなる溶融体から110
0℃の温度でLiNbO3薄膜を成長させ、熱処理を行
なわずに光導波層52(単結晶薄膜)と基板51の分域
を上記のエッチング液で観察したところ、周期Λにかか
わらず分極部54と同55の方向は対応する基板51の
分極方向と同一であり、その界面は基板51面に対して
ほぼ垂直であった。このように熱処理を行なわずに基板
の分域を薄膜に転写できたのはLiNbO3薄膜が常誘
電相で成長したためであり、成長後の室温まで除冷する
間のキュリ−点を通過するときに分極の転写が行なわれ
ているからである。また、上記基板51をオゾン雰囲気
内でアニ−ルして光導波層52の酸素の欠損を補った
後、EPMAを用いて光導波層52(LiNbO3
膜)内のニオブ量を調べたところ市販のコングルエント
LiNbO3基板と同量であった。
By the way, 50 mol% of lithium carbonate Li
110 from a melt consisting of 2 CO 3 , 25 mol% niobium pentoxide Nb 2 O 5 , 25 mol% vanadium pentoxide V 2 O 5.
When the LiNbO 3 thin film was grown at a temperature of 0 ° C. and the domain of the optical waveguide layer 52 (single crystal thin film) and the substrate 51 was observed with the above etching solution without heat treatment, the polarization part 54 was observed regardless of the period Λ. The same direction 55 is the same as the polarization direction of the corresponding substrate 51, and its interface is substantially perpendicular to the surface of the substrate 51. The reason why the domain of the substrate could be transferred to the thin film without performing heat treatment was that the LiNbO 3 thin film grew in the paraelectric phase, and when passing through the Curie point during cooling to room temperature after growth. This is because the polarization is transferred to. Further, after the substrate 51 was annealed in an ozone atmosphere to compensate the oxygen deficiency of the optical waveguide layer 52, the amount of niobium in the optical waveguide layer 52 (LiNbO 3 thin film) was investigated by using EPMA. The same amount as that of the congruent LiNbO 3 substrate.

【0037】最後にエッチング、EPMA評価していな
いサンプルについてチャンネル部を作製する。まず、チ
ャンネル部が光遮蔽部となっているホトマスクによりホ
トレジスト82を図6(i)のようにパターニングし
て、次にこのホトレジストをマスクとしてイオンミリン
グにより、光導波層52を2μmエッチングする。チャ
ンネル幅は3μmである。次いでホトレジスト82を除
去すると図6(j)が得られる。
Finally, a channel portion is prepared for a sample that has not been evaluated by etching or EPMA. First, the photoresist 82 is patterned as shown in FIG. 6I using a photomask having a channel portion as a light shielding portion, and then the optical waveguide layer 52 is etched by 2 μm by ion milling using this photoresist as a mask. The channel width is 3 μm. Then, the photoresist 82 is removed to obtain FIG. 6 (j).

【0038】なお、上記イオンミリング装置はプラズマ
室が円錐状の空洞真空容器の外周に複数の永久磁石を配
した構造であり、またプラズマ生成室で生成したイオン
が、加速電極、減速電極、接地電極の三枚組の電極によ
って引きだされる構造であるため、イオンの空間密度分
布が一様であり、かつ指向性も極めて高く、極めて高精
度にエッチングすることができる。
The ion milling apparatus has a structure in which a plurality of permanent magnets are arranged on the outer periphery of a hollow vacuum chamber having a conical plasma chamber, and the ions generated in the plasma generating chamber are accelerating electrodes, decelerating electrodes, and ground. Since the structure is extracted by three electrodes, the spatial density distribution of ions is uniform, the directivity is extremely high, and etching can be performed with extremely high accuracy.

【0039】上記の工程により作製した光導波路に、波
長λ=830nmのTi−Sレーザ光をプリズムカップ
ラを介して基板表面に対して垂直に偏光入射したとこ
ろ、基板表面に対して垂直方向に電場の主成分を持つ一
本のTMモードが励振され、その実効屈折率N(ω)=
2.1686であった。また、λ=415nmの色素レ
ーザ光で同様の測定を行ったところ二本のモードが励振
され、低次モードの実効屈折率はN(2ω)=2.30
16であった。
When Ti—S laser light having a wavelength λ = 830 nm was polarized and incident on the substrate surface through the prism coupler in a direction perpendicular to the substrate surface, an electric field was generated in the direction perpendicular to the substrate surface. A single TM mode having the main component of is excited and its effective refractive index N (ω) =
It was 2.1686. Further, when the same measurement was performed with a dye laser beam of λ = 415 nm, two modes were excited, and the effective refractive index of the low-order mode was N (2ω) = 2.30.
It was 16.

【0040】また、カットバック法により830nmの
光に対する光伝搬損失を測定したところ、1dB/cm
という良好な値を得た。この理由の第一は液相エピタキ
シャル成長により高品質の薄膜が成長できたためであ
り、第二には指向性の高いイオンミリング装置を用いた
エッチングによりチャンネル部の側壁が極めて高精度に
加工できたことに基づいている。
The optical propagation loss for light of 830 nm was measured by the cutback method and found to be 1 dB / cm.
That is a good value. The first reason for this is that a high-quality thin film could be grown by liquid phase epitaxial growth, and the second reason was that the sidewall of the channel part could be processed with extremely high precision by etching using an ion milling device with high directivity. Is based on.

【0041】数11により、M=1の場合の分極反転周
期Λを求めると約3.1μmであるから、Λ=3.1μ
mの試料を光導波路長=10mm、垂直長=5mmで切
断し、垂直辺を研磨して第二高調波発生実験を行った。
上記実験においては、対物レンズ12によりTi−Sレ
ーザ光11をチャンネル部端面に集光し、試料をペルチ
ェ素子を接続した銅ブロック上に乗せ、熱電対でその温
度をモニタし、まず温度25℃にて第二高調波の発生効
率が最大になるようにレーザ光源の波長を設定した。
When the polarization inversion period Λ in the case of M = 1 is calculated from Equation 11, it is about 3.1 μm, so Λ = 3.1 μ
A sample of m was cut with an optical waveguide length of 10 mm and a vertical length of 5 mm, and the vertical side was polished to perform a second harmonic generation experiment.
In the above experiment, the Ti-S laser light 11 was focused on the end face of the channel portion by the objective lens 12, the sample was placed on the copper block to which the Peltier element was connected, and its temperature was monitored by the thermocouple. The wavelength of the laser light source was set so that the generation efficiency of the second harmonic was maximized.

【0042】その結果、基本波入力40mWにて4mW
の第二高調波出力が得られ、フレネル反射損失を考慮し
た効率は11.8%であった。この値は式(18)から
計算される理論値40%の約1/3であるが、従来例に
比べると充分に高い値である。また上記の結果より推定
すると、出力200mWの大出力半導体レーザを結合効
率50%で光導波路へ結合すると第二高調波の発生効率
は約30%となり、30mWの第二高調波出力が得ら
れ、光磁気型光ディスクや相変化型光ディスクの書き込
み、再生用の光源として十分使用できることになる。
As a result, 4 mW at a fundamental wave input of 40 mW
The second harmonic output of was obtained, and the efficiency considering Fresnel reflection loss was 11.8%. This value is about 1/3 of the theoretical value of 40% calculated from the equation (18), but it is a sufficiently high value as compared with the conventional example. Further, estimating from the above results, when a high power semiconductor laser with an output of 200 mW is coupled to the optical waveguide with a coupling efficiency of 50%, the generation efficiency of the second harmonic becomes about 30%, and the second harmonic output of 30 mW is obtained. It can be sufficiently used as a light source for writing and reproducing on a magneto-optical disc or a phase change optical disc.

【0043】〔実施例 2〕実施例1においては基板5
1の+c面上に光導波層52を形成した。しかし、−c
面上に形成することもできる。また、基板51上の分極
反転部を電子線照射により形成することもでき、同様に
良好な性能を得ることができる。本実施例では化学量論
比組成のzcutLiNbO3単結晶の基板51の−c
面上に、通常自発分極が下向きのコングルエント組成に
比べてリチウムの少ないLiNbO3単結晶薄膜の光導
波層52を形成する。したがって、基板51の下面が+
c面になる。
Example 2 The substrate 5 in Example 1
The optical waveguide layer 52 was formed on the + c plane of 1. However, -c
It can also be formed on the surface. Further, the domain-inverted portion on the substrate 51 can be formed by electron beam irradiation, and similarly good performance can be obtained. In this embodiment, the −c of the zcutLiNbO 3 single crystal substrate 51 having a stoichiometric composition is used.
An optical waveguide layer 52 of a LiNbO 3 single crystal thin film containing less lithium than the congruent composition in which spontaneous polarization is normally downward is formed on the surface. Therefore, the lower surface of the substrate 51 is +
It becomes c-plane.

【0044】図7は上記第二高調波発生素子の製造工程
図である。まず、基板51の表面に分極反転部65を形
成する。基板51の両面をレーザ光に対して波長λの1
/10程度まで研磨してアセトン、イソプロピールアル
コール、純水中で超音波洗浄後乾燥し、図7(b)に示
すように、+c面(下面)にCr膜91を2000Åの
厚みにスパッタリング成膜する。
FIG. 7 is a manufacturing process drawing of the second harmonic generating element. First, the domain-inverted portion 65 is formed on the surface of the substrate 51. Both sides of the substrate 51 have a wavelength λ of 1 with respect to the laser light.
After polishing to about / 10, ultrasonic cleaning in acetone, isopropyl alcohol, and pure water, followed by drying, and as shown in FIG. 7 (b), a Cr film 91 is formed on the + c surface (lower surface) to a thickness of 2000 Å by sputtering. To film.

【0045】次いで室温下にてCr膜91を接地し、半
導体製造プロセス用の電子ビ−ム描画装置を用い、加速
電圧25kV、電子流速度2×109電子/秒にて−c
面に電子ビ−ムを格子パタ−ン状に照射し、同図(c)
のように−c表面にパタ−ン周期Λを0.1μmづつ変
えた2.5から3.5μmまでの11種類の分域反転域
65形成した(第38回応用物理学関係連合会講演予稿
集(1991年秋季)11p−M−8(p953)参
照)。
Then, the Cr film 91 is grounded at room temperature, and an electron beam drawing apparatus for a semiconductor manufacturing process is used to obtain an acceleration voltage of 25 kV and an electron flow velocity of 2 × 10 9 electrons / sec.
The surface is irradiated with an electron beam in the shape of a lattice pattern, as shown in FIG.
As shown in Fig. 11, 11 kinds of domain inversion domains 65 from 2.5 to 3.5 µm were formed on the surface of -c by changing the pattern period Λ by 0.1 µm. Collection (Autumn 1991) 11p-M-8 (p953)).

【0046】次に硝酸第二セリウムアンモニウム液によ
りCr膜91を同図(d)のようにエッチング除去し、
基板の−c面に、液相エピタキシャル結晶成長法で単分
域のLiNbO3単結晶薄膜を以下のようにして成長さ
せた。上記エピタキシャル成長時の溶融体は、48モル
%の炭酸リチウムLi2CO3、12モル%の五酸化ニオ
ブNb25、40モル%の五酸化バナジウムV25の各
粉末を秤量、混合した後、白金るつぼに入れて900℃
で溶解し、電気炉内で空気雰囲気下において1200℃
の温度で10時間維持して均一に作製する。
Next, the Cr film 91 is removed by etching with a ceric ammonium nitrate solution as shown in FIG.
A single-domain LiNbO 3 single crystal thin film was grown on the −c plane of the substrate by the liquid phase epitaxial crystal growth method as follows. The melt during the epitaxial growth was measured by mixing powders of 48 mol% of lithium carbonate Li 2 CO 3 , 12 mol% of niobium pentoxide Nb 2 O 5 and 40 mol% of vanadium pentoxide V 2 O 5 . Then, put it in a platinum crucible at 900 ℃
Melted in an electric furnace in an air atmosphere at 1200 ° C
It is maintained at the temperature of 10 hours for uniform production.

【0047】次いでこの溶融体を30℃/hの冷却速度
で940℃に冷却してこれに基板51を3分間接触さ
せ、2.2μmのLiNbO3薄膜を成長させ、溶融体
を分離し、電気炉中で30℃/hの冷却速度室温まで徐
冷して光導波層66を形成した。なお、作成したサンプ
ルは10枚である。上記また、光導波層66における分
域を硝酸:ふっ酸=1:2のエッチング液でエッチング
してエッチング状態の違いからから観察したところ、パ
タ−ン周期Λに係りなく分極方向が分極反転域65形成
前の基板51と同一な単分極膜が形成されることがわか
った。
Next, this melt was cooled to 940 ° C. at a cooling rate of 30 ° C./h, and the substrate 51 was brought into contact with this for 3 minutes to grow a 2.2 μm LiNbO 3 thin film, and the melt was separated, and electricity was applied. The optical waveguide layer 66 was formed by gradually cooling to a room temperature in the furnace at a cooling rate of 30 ° C./h. Note that the number of prepared samples is 10. Further, when the domain in the optical waveguide layer 66 is etched with an etching solution of nitric acid: hydrofluoric acid = 1: 2 and observed from the difference in etching state, the polarization direction is a domain inversion region regardless of the pattern period Λ. It was found that the same monopolar film as the substrate 51 before the formation of 65 was formed.

【0048】なお、上記溶融体のフラックス材料として
は上記五酸化バナジウム(V25)のほか、3酸化ボロ
ン(B23)、フッ化リチウム(LiF)、フッ化カリ
ウム(KF)、3酸化ボロン(B23)および3酸化モ
リブデン(MoO3)、3酸化ボロン(B23)及び3
酸化タングステン(WO3)等を用いても良い。次い
で、上記基板51を電気炉に入れ、約80℃の温水のバ
ブラー中を通して水蒸気を含ませたArの雰囲気下で約
1070℃で約10分熱処理し、O2を含む水蒸気雰囲
気中で冷却した。
In addition to vanadium pentoxide (V 2 O 5 ) as the flux material of the melt, boron trioxide (B 2 O 3 ), lithium fluoride (LiF), potassium fluoride (KF), Boron trioxide (B 2 O 3 ) and molybdenum trioxide (MoO 3 ), boron trioxide (B 2 O 3 ) and 3
Tungsten oxide (WO 3 ) or the like may be used. Next, the substrate 51 was put in an electric furnace, passed through a bubbler of warm water at about 80 ° C., heat-treated at about 1070 ° C. for about 10 minutes in an atmosphere of Ar containing steam, and cooled in a steam atmosphere containing O 2 . .

【0049】この基板の分域を上記のエッチング液でエ
ッチングして観察したところ、パタ−ン周期Λに係りな
く分極方向が基板51と同一な分極反転域67が形成さ
れ、各分極反転域67の界面は基板界面にほぼ垂直であ
ることがわかった。ところで、46モル%の炭酸リチウ
ムLi2CO3,24モル%の5酸化ニオブNb25,3
0モル%の5酸化バナジウムV25よりなる溶融体から
1100℃の温度でLiNbO3薄膜を成長させ、熱処
理を行なわずに光導波層52(単結晶薄膜)と基板51
の分域を上記のエッチング液で観察したところ、周期Λ
にかかわらず分極部54と同55の方向は対応する基板
51の分極方向と同一であり、その界面は基板51面に
対してほぼ垂直であった。このように熱処理を行なわず
に基板の分域を薄膜に転写できたのはLiNbO3薄膜
が常誘電相で成長したためであり、成長後の室温まで除
冷する間のキュリ−点を通過するときに分極の転写が行
なわれているからである。次いで、この基板をオゾン雰
囲気内でアニ−ルして光導波層66の酸素欠損を補い、
EPMAを用いて光導波層(LiNbO3薄膜)66中
のニオブ量を調べたところ市販のコングルエントLiN
bO3基板の約1.05倍であった。最後に光導波層6
6中に光導波路をエッチング、EPMA評価していない
サンプルについて作製する。
When the domain of this substrate was etched by the above etching solution and observed, a polarization inversion region 67 whose polarization direction was the same as that of the substrate 51 was formed regardless of the pattern period Λ, and each polarization inversion region 67 was formed. It was found that the interface of was almost perpendicular to the substrate interface. By the way, 46 mol% lithium carbonate Li 2 CO 3 , 24 mol% niobium pentoxide Nb 2 O 5 , 3
A LiNbO 3 thin film was grown at a temperature of 1100 ° C. from a melt composed of 0 mol% vanadium pentoxide V 2 O 5, and the optical waveguide layer 52 (single crystal thin film) and the substrate 51 were subjected to no heat treatment.
When the domain of is observed with the above etching solution, the period Λ
Regardless of this, the directions of the polarization parts 54 and 55 are the same as the polarization direction of the corresponding substrate 51, and the interface thereof is substantially perpendicular to the surface of the substrate 51. The reason why the domain of the substrate could be transferred to the thin film without performing heat treatment was that the LiNbO 3 thin film grew in the paraelectric phase, and when passing through the Curie point during cooling to room temperature after growth. This is because the polarization is transferred to. Then, this substrate is annealed in an ozone atmosphere to compensate the oxygen deficiency of the optical waveguide layer 66,
When the amount of niobium in the optical waveguide layer (LiNbO 3 thin film) 66 was investigated using EPMA, a commercially available congruent LiN
It was about 1.05 times that of the bO 3 substrate. Finally, the optical waveguide layer 6
An optical waveguide is etched in 6 and a sample not evaluated by EPMA is prepared.

【0050】まず同図(f)に示すように、光導波路を
遮光するホトマスクを用いてホトレジストをパターニン
グし、このホトレジストをマスクとしてイオンミリング
により幅3μmの光導波層66を1.8μmエッチング
してホトレジストを除去し、同図(g)のような光導波
路を作製した。
First, as shown in FIG. 6F, the photoresist is patterned using a photomask that shields the optical waveguide, and the optical waveguide layer 66 having a width of 3 μm is etched by 1.8 μm by ion milling using the photoresist as a mask. The photoresist was removed and an optical waveguide as shown in FIG.

【0051】上記のようにして作製した光導波路にλ=
830nmのTi−Sレーザ光を基板表面と垂直方向に
偏光させてプリズムカップラを介して入射したところ、
基板の表面と垂直な方向に電場の主成分を持つ一本のT
Mモードが励振され、その実効屈折率N(ω)=2.1
688であった。また、カットバック法により830n
mの光に対する光伝搬損失を測定したところ、1dB/
cmという良好な値を得た。また、λ=415nmの色
素レーザ光を入射して同様の測定を行ったところ、二本
のモードが励振され、低次モードの実効屈折率は、N
(2ω)=2.3018であった。
In the optical waveguide manufactured as described above, λ =
When 830 nm Ti-S laser light was polarized in a direction perpendicular to the substrate surface and was incident through a prism coupler,
One T that has the main component of the electric field in the direction perpendicular to the surface of the substrate
The M mode is excited and its effective refractive index N (ω) = 2.1
It was 688. In addition, 830n by the cutback method
When the optical propagation loss for m light is measured, it is 1 dB /
A good value of cm was obtained. Further, when the same measurement was carried out by injecting a dye laser beam of λ = 415 nm, two modes were excited and the effective refractive index of the low order mode was N.
(2ω) = 2.3018.

【0052】式(11)より求めた分極反転周期ΛはM
=1の場合、約3.1μmであるから、このΛの試料を
光導波路長=10mm、垂直な方向の長さを5mmに切
りだし、5mmの辺を研磨して第二高調波発生実験を行
った。上記試料をペルチェ素子に接続した銅ブロック上
に乗せて熱電対で温度をモニタし、温度を25℃にして
対物レンズによりTi−Sレーザ光を光導波路端面に集
光し、第二高調波の発生効率が最大になるようにした。
その結果、基本波入力40mWにて3.8mWの第二高
調波出力がえられた。
The polarization inversion period Λ obtained from the equation (11) is M
In case of = 1, it is about 3.1 μm. Therefore, the sample of Λ is cut into the optical waveguide length = 10 mm, the length in the vertical direction is cut to 5 mm, and the side of 5 mm is polished to perform the second harmonic generation experiment. went. The sample is placed on a copper block connected to a Peltier device, the temperature is monitored with a thermocouple, the temperature is set to 25 ° C., the Ti-S laser light is focused on the end face of the optical waveguide by the objective lens, and the second harmonic The generation efficiency is maximized.
As a result, a second harmonic output of 3.8 mW was obtained with a fundamental wave input of 40 mW.

【0053】〔参考式〕図1(d)において、基板面に
垂直な方向(z方向)に偏光したTM波を入射光とし、
その伝搬方向をx方向とすると、入射光電場のz成分
は、式(1)で表される。
[Reference Formula] In FIG. 1D, TM wave polarized in a direction (z direction) perpendicular to the substrate surface is used as incident light,
Assuming that the propagation direction is the x direction, the z component of the incident optical electric field is represented by Expression (1).

【数1】 同様に光導波路内の第二高調波も基板と垂直方向に偏光
したTM波であるとすると、その電場のz成分は式
(2)で表される。
[Equation 1] Similarly, assuming that the second harmonic wave in the optical waveguide is also a TM wave polarized in the direction perpendicular to the substrate, the z component of the electric field is expressed by equation (2).

【数2】 [Equation 2]

【0054】第二高調波を発生させる非線形分極は式
(3)で表される。
The non-linear polarization for generating the second harmonic is expressed by the equation (3).

【数3】 一方、非線形分極を考慮したMaxwellの方程式
は、式(4)で表される。
[Equation 3] On the other hand, Maxwell's equation that takes nonlinear polarization into consideration is represented by equation (4).

【数4】 [Equation 4]

【0055】式(3)を式(4)に代入し、式(5)の
波動方程式、並びに式(6)の近似を用いると式(7)
が得られる。
Substituting equation (3) into equation (4) and using the wave equation of equation (5) and the approximation of equation (6), equation (7)
Is obtained.

【数5】 [Equation 5]

【数6】 [Equation 6]

【数7】 式(7)に式(8)を乗じ、Z=−∞からZ=∞まで積
分すると、基本波から第二高調波へのパワー移行を支配
する式(9)が得られる。
[Equation 7] By multiplying Equation (7) by Equation (8) and integrating from Z = −∞ to Z = ∞, Equation (9) governing the power transfer from the fundamental wave to the second harmonic is obtained.

【数8】 [Equation 8]

【数9】 [Equation 9]

【0056】図1では光導波路内の各分極域の非線形光
学係数d333は周期的に向きを変えているので、式(1
0)のようにフーリエ級数に展開できる。
In FIG. 1, since the nonlinear optical coefficient d 333 of each polarization region in the optical waveguide changes its direction periodically, the expression (1
It can be expanded to Fourier series like 0).

【数10】 上記周期Λは位相整合条件を満足させるように式(1
1)のように決定する。
[Equation 10] The period Λ is expressed by equation (1) so as to satisfy the phase matching condition.
Determine as in 1).

【数11】 これにより基本波と第二高調波の位相整合が良好に行な
われ、式(9)は式(12)のようなる。
[Equation 11] As a result, the phase matching of the fundamental wave and the second harmonic is satisfactorily performed, and the equation (9) becomes the equation (12).

【数12】 [Equation 12]

【0057】式(12)をx=0からx=lまで積分し
(ただし、基本波のパワーは殆ど変化せず一定とみな
す)、x=0で第二高調波の振幅がゼロであるという境
界条件を用いると、基本波から第二高調波への変換効率
ηは式(13)のようになる。
Equation (12) is integrated from x = 0 to x = 1 (however, it is assumed that the power of the fundamental wave is almost unchanged and constant), and the amplitude of the second harmonic wave is zero when x = 0. When the boundary condition is used, the conversion efficiency η from the fundamental wave to the second harmonic becomes as shown in Expression (13).

【数13】 [Equation 13]

【0058】[0058]

【発明の効果】本発明により、基板上に屈折率が基板よ
り高く、また屈折率が一様な光導波路を形成して光導波
路内の光の散乱を低めることができ、さらに上記光導波
路内に矩形の自発分極反転域を周期的に形成して第二高
調波の位相整合性を向することができるので、第二高調
波の変換効率が高く、波面収差の低い優れた第二高調波
発生素子とその製造方法を提供することができる。
According to the present invention, an optical waveguide having a refractive index higher than that of the substrate and a uniform refractive index can be formed on the substrate to reduce light scattering in the optical waveguide. Since a rectangular spontaneous polarization inversion region can be periodically formed in the direction of the phase matching property of the second harmonic, the excellent second harmonic with high conversion efficiency of the second harmonic and low wavefront aberration can be obtained. It is possible to provide a generating element and a manufacturing method thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第二高調波発生素子の各種断面図
である。
FIG. 1 is various sectional views of a second harmonic generation element according to the present invention.

【図2】従来の温度位相整合法を用いた第二高調波発生
素子の斜視図である。
FIG. 2 is a perspective view of a second harmonic generation element using a conventional temperature phase matching method.

【図3】従来のチェレンコフ輻射を用いた第二高調波発
生素子の斜視図である。
FIG. 3 is a perspective view of a second harmonic generation element using conventional Cherenkov radiation.

【図4】従来の分極反転を用いた第二高調波発生素子の
斜視図である。
FIG. 4 is a perspective view of a conventional second harmonic generation element using polarization inversion.

【図5】本発明の第二高調波発生素子を用いた光源の構
成図である。
FIG. 5 is a configuration diagram of a light source using the second harmonic generation element of the present invention.

【図6】本発明の第二高調波発生素子の製造工程図であ
る。
FIG. 6 is a manufacturing process diagram of a second harmonic generation element of the present invention.

【図7】本発明の第二高調波発生素子の他の製造工程図
である。
FIG. 7 is another manufacturing process diagram of the second harmonic generation element of the present invention.

【符号の説明】[Explanation of symbols]

11…レ−ザ、21、51…基板、52,66…光導波
層、55、67…分極反転域、56、65…分極反転
部、81…Ti膜、82…ホトレジスト、91…Cr
層。
11 ... Laser, 21, 51 ... Substrate, 52, 66 ... Optical waveguide layer, 55, 67 ... Polarization inversion region, 56, 65 ... Polarization inversion part, 81 ... Ti film, 82 ... Photoresist, 91 ... Cr
layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川本 和民 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 伊藤 康平 埼玉県熊谷市三ケ尻5200番地 日立金属株 式会社磁性材料研究所内 (72)発明者 黒沢 久夫 埼玉県熊谷市三ケ尻5200番地 日立金属株 式会社磁性材料研究所内 (72)発明者 佐藤 正純 埼玉県熊谷市三ケ尻5200番地 日立金属株 式会社磁性材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazutomi Kawamoto 292 Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa, Ltd.Institute of Industrial Science and Technology, Hitachi, Ltd. Formula company Magnetic Materials Research Laboratory (72) Inventor Hisao Kurosawa 5200 Sankejiri, Kumagaya, Saitama Prefecture Hitachi Metals Co., Ltd.Formula Magnetic Materials Research Laboratory (72) Inventor Masazumi Sato 5200 Mikageri, Kumagaya, Saitama Hitachi Metals Co., Ltd. In the laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 強誘電体光学基板と、該基板より屈折率
が高く分極反転域を周期的に配置した強誘電体光導波層
から成る第二高調波発生素子において、上記光導波層の
キュリ−点を上記基板のキュリ−点より低くしたことを
特徴とする導波路型第二高調波発生素子。
1. A second harmonic generation device comprising a ferroelectric optical substrate and a ferroelectric optical waveguide layer having a refractive index higher than that of the substrate and periodically arranging domain inversion regions. A waveguide type second harmonic generation element, wherein the − point is lower than the Curie point of the substrate.
【請求項2】 請求項1において、上記基板の光導波層
側の面に、分極方向が反転する分極反転部を周期的に設
け、上記分極反転部上に上記光導波層の分極反転域を設
けたことを特徴とする導波路型第二高調波発生素子。
2. The polarization reversal part for reversing the polarization direction is periodically provided on the surface of the substrate on the optical waveguide layer side, and the polarization reversal region of the optical waveguide layer is provided on the polarization reversal part. A waveguide-type second harmonic generation element characterized by being provided.
【請求項3】 請求項1または2において、上記基板お
よび上記光導波層ををニオブ酸リチウムとし、上記光導
波層を基板に比べてリチウムのニオブに対する比率を低
めた組成比としたことを特徴とする導波路型第二高調波
発生素子。
3. The substrate according to claim 1 or 2, wherein the substrate and the optical waveguide layer are made of lithium niobate, and the optical waveguide layer has a composition ratio in which the ratio of lithium to niobium is lower than that of the substrate. And a waveguide type second harmonic generation element.
【請求項4】 請求項1または2において、上記基板を
マグネシウムをドープしたニオブ酸リチウムとし、上記
光導波層をニオブ酸リチウムとしたことを特徴とする導
波路型第二高調波発生素子。
4. The waveguide type second harmonic wave generating element according to claim 1, wherein the substrate is made of magnesium-doped lithium niobate, and the optical waveguide layer is made of lithium niobate.
【請求項5】 請求項1または2において、上記基板お
よび上記光導波層をマグネシウムをドープしたニオブ酸
リチウムとし、上記光導波層を基板に比べてマグネシウ
ムのドープ比率を低めた組成比としことを特徴とする導
波路型第二高調波発生素子。
5. The composition according to claim 1, wherein the substrate and the optical waveguide layer are made of magnesium-doped lithium niobate, and the optical waveguide layer has a composition ratio in which the magnesium doping ratio is lower than that of the substrate. Characteristic Waveguide type second harmonic generation element.
【請求項6】 強誘電体光学基板と、該基板より屈折率
が高く分極反転域を周期的に配置した強誘電体光導波層
からなる第二高調波発生素子の製造方法において、上記
基板に分極反転部を周期的に設け、この上の光導波層
を、強誘電体金属酸化物の原料粉末をフラックス存在下
で加熱溶融した溶融体を準備する工程と、前記溶融体の
温度を結晶析出温度に降下し、前記基板の分極反転され
た表面に接触して金属酸化膜を液相エピタキシャル成長
させる工程と、次いで上記金属酸化膜のキュリ−点近傍
の温度で熱処理する工程とにより形成するようにしたこ
とを特徴とする導波路型第二高調波発生素子の製造方
法。
6. A method of manufacturing a second harmonic generation device comprising a ferroelectric optical substrate and a ferroelectric optical waveguide layer having a refractive index higher than that of the substrate and periodically arranging domain inversion regions, A step of periodically providing a polarization inversion portion and preparing a melt obtained by heating and melting the optical waveguide layer on the raw material powder of the ferroelectric metal oxide in the presence of flux, and crystallizing the temperature of the melt. It is formed by a step of lowering the temperature and contacting the polarization-inverted surface of the substrate to grow a metal oxide film by liquid phase epitaxial growth, and then performing a heat treatment at a temperature near the Curie point of the metal oxide film. A method of manufacturing a waveguide type second harmonic wave generating element, characterized in that.
【請求項7】 強誘電体光学基板と、該基板より屈折率
が高く分極反転域を周期的に配置した強誘電体光導波層
からなる第二高調波発生素子の製造方法において、上記
基板に分極反転部を周期的に設け、この上の光導波層
を、強誘電体金属酸化物の原料粉末をフラックス存在下
で加熱溶融した溶融体を準備する工程と、前記溶融体の
温度をキュリ−点以上の結晶析出温度に降下して前記基
板の分極反転された表面に接触して金属酸化膜を液相エ
ピタキシャル成長させる工程により形成するようにした
ことを特徴とする導波路型第二高調波発生素子の製造方
法。
7. A method of manufacturing a second harmonic generation element comprising a ferroelectric optical substrate and a ferroelectric optical waveguide layer having a refractive index higher than that of the substrate and periodically arranged domain inversion regions, A step of periodically providing a polarization inversion portion and preparing a melt obtained by heating and melting the optical waveguide layer on the raw material powder of the ferroelectric metal oxide in the presence of flux, and setting the temperature of the melt to Waveguide-type second harmonic generation, characterized in that it is formed by a step of lowering the crystal precipitation temperature above the point and contacting the polarization-inverted surface of the substrate to perform liquid phase epitaxial growth of the metal oxide film. Device manufacturing method.
【請求項8】 請求項6または7において、上記フラッ
クスを五酸化バナジウム(V25)、または三酸化ボロ
ン(B23)、またはフッ化リチウム(LiF)、また
はフッ化カリウム(KF)、または三酸化ボロン(B2
3)と、三酸化モリブデン(MoO3)、または三酸化
ボロン(B23)と三酸化タングステン(WO3)の混
合物としたことを特徴とする導波路型第二高調波発生素
子の製造方法。
8. The method according to claim 6, wherein the flux is vanadium pentoxide (V 2 O 5 ), boron trioxide (B 2 O 3 ), lithium fluoride (LiF), or potassium fluoride (KF). ), Or boron trioxide (B 2
O 3 ) and molybdenum trioxide (MoO 3 ), or a mixture of boron trioxide (B 2 O 3 ) and tungsten trioxide (WO 3 ), which is a waveguide type second harmonic generation device. Production method.
JP22056492A 1992-08-20 1992-08-20 Waveguide type second higher harmonic generating element and its production Pending JPH0667233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22056492A JPH0667233A (en) 1992-08-20 1992-08-20 Waveguide type second higher harmonic generating element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22056492A JPH0667233A (en) 1992-08-20 1992-08-20 Waveguide type second higher harmonic generating element and its production

Publications (1)

Publication Number Publication Date
JPH0667233A true JPH0667233A (en) 1994-03-11

Family

ID=16752970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22056492A Pending JPH0667233A (en) 1992-08-20 1992-08-20 Waveguide type second higher harmonic generating element and its production

Country Status (1)

Country Link
JP (1) JPH0667233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0981068A2 (en) * 1998-08-19 2000-02-23 Ngk Insulators, Ltd. Method for producing an optical waveguide and optical waveguide produced according to the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0981068A2 (en) * 1998-08-19 2000-02-23 Ngk Insulators, Ltd. Method for producing an optical waveguide and optical waveguide produced according to the method
EP0981068A3 (en) * 1998-08-19 2001-04-18 Ngk Insulators, Ltd. Method for producing an optical waveguide and optical waveguide produced according to the method
US6654529B1 (en) 1998-08-19 2003-11-25 Ngk Insulators, Ltd. Ferroelectric domain inverted waveguide structure and a method for producing a ferroelectric domain inverted waveguide structure

Similar Documents

Publication Publication Date Title
US5652674A (en) Method for manufacturing domain-inverted region, optical wavelength conversion device utilizing such domain-inverted region and method for fabricating such device
US5193023A (en) Method of controlling the domain of a nonlinear ferroelectric optics substrate
Chen et al. Guided-wave electro-optic beam deflector using domain reversal in LiTaO/sub 3
US5359452A (en) Lithium tantalate monocrystal, monocrystal substrate, and photo element
JP3059080B2 (en) Method for manufacturing domain-inverted region, optical wavelength conversion element and short wavelength light source using the same
US5274727A (en) Second harmonic generator and method of fabrication thereof
US5521750A (en) Process for forming proton exchange layer and wavelength converting element
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
JPH1172809A (en) Optical wavelength conversion element and its production, optical generator using this element and optical pickup, diffraction element as well as production of plural polarization inversion part
JP2004295064A (en) Method for manufacturing ferroelectric optical nonlinear micro grid with two-dimensional periodic area inversion
Gupta et al. Second‐harmonic generation in bulk and waveguided LiTaO3 with domain inversion induced by electron beam scanning
JP3050333B2 (en) Method for manufacturing second harmonic generation element
EP0863117B1 (en) A process for forming a microstructure in a substrate of a ferroelectric single crystal
JP4081398B2 (en) Optical wavelength conversion element
JPH0667233A (en) Waveguide type second higher harmonic generating element and its production
JPH05173213A (en) Guidewave type second harmonic generating element
JPH06174908A (en) Production of waveguide type diffraction grating
JPH0517295A (en) Lithium niobate single crystal thin film subjected to domain inversion treatment
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JPH04335329A (en) Production of second harmonic generating element having dielectric polarization inversion grating
JP3398144B2 (en) Method for manufacturing domain-inverted region
JPH06230443A (en) Waveguide type second higher harmonic generating element and its production
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JP3429502B2 (en) Method for manufacturing domain-inverted region
JPH05313219A (en) Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element