JPH05173213A - Guidewave type second harmonic generating element - Google Patents

Guidewave type second harmonic generating element

Info

Publication number
JPH05173213A
JPH05173213A JP3342693A JP34269391A JPH05173213A JP H05173213 A JPH05173213 A JP H05173213A JP 3342693 A JP3342693 A JP 3342693A JP 34269391 A JP34269391 A JP 34269391A JP H05173213 A JPH05173213 A JP H05173213A
Authority
JP
Japan
Prior art keywords
optical
substrate
waveguide layer
optical waveguide
harmonic generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3342693A
Other languages
Japanese (ja)
Inventor
Kazutami Kawamoto
和民 川本
Akitomo Itou
顕知 伊藤
Hiroshi Kaede
弘志 楓
Kohei Ito
康平 伊藤
Satoshi Makio
諭 牧尾
Masazumi Sato
正純 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP3342693A priority Critical patent/JPH05173213A/en
Publication of JPH05173213A publication Critical patent/JPH05173213A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Abstract

PURPOSE:To enable generation of the second harmonic where the efficiency is high, the wave aberration is small, and the converging is easy by periodically inverting the nonlinear optical coefficients of both one part of a substrate and a an optical wave guide layer. CONSTITUTION:In an optical element consisting of an optical substrate 14 and an optical wave guide layer 16 whose refraction factor is larger than that of the substrate 14, the nonlinear optical coefficients of both the optical substrate 14 and the optical waveguide layer 16 are periodically inverted. For example, in the optical element consisting of ZcutLibO3 monocrystal substrate 14 of 5 mol% MgO dope where the surface is +C, and LiNbO3 monocrystal substrate 16 of 1mol% MgO dope, the spontaneous polarization is normally faced upward while it is faced downward in the parts 15, 17 where the polarization is inverted. The sign of the nonlinear optical coefficient coincides with the direction of the spontaneous polarization in the case of the ferroelectric substance crystal of the space group R3c of LiNbO3, LiTaO3 or the like. Thus, the nonlinear optical coefficients of the substrate 14 and the light guide layer 16 are also periodically inverted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導波路型の第二高調波
発生素子とその作製方法、および上記第二高調波発生素
子を用いたバルク型光ヘッドと集積化光ヘッド、ならび
に上記光ヘッドを用いた光ディスク装置およびレーザビ
ームプリンタ等の、光情報処理機器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type second harmonic wave generating element, a method for manufacturing the same, a bulk type optical head and an integrated optical head using the second harmonic wave generating element, and the above-mentioned optical element. The present invention relates to an optical information processing device such as an optical disk device using a head and a laser beam printer.

【0002】[0002]

【従来の技術】近年、小形軽量の青色光源として、波長
約800nmの半導体レーザ光を導波路型の第二高調波
発生素子で半分の約400nmに変換したものが注目さ
れている。例えば、早い時期に提案されたものに、図2
に示すように、ニオブ酸リチウム(以下LiNbO3
記す)の単結晶21の表面にチタン(Ti)を熱拡散する
ことにより形成した光導波路22の一端に、基本波23(パ
ワーP1)を入射させる方式がある。さらに、例えば特
開昭61−18934公報に記載されているように、L
iNbO3単結晶基板上に、プロトン交換法(LiNb
3のLiイオンとプロトンを一部置換して光導波路を
形成する方法)により光導波路を形成し、上記光導波路
の一端面に基本波を入射し、チェレンコフ放射により発
生した第二高調波を取り出す方式も提案されている。こ
れを図3に示す。さらに最近では、例えばエレクトロニ
クス・レターズ25,11(1989年)の第731頁
〜第732頁(Electronics Letters,25,11)で論じ
られているように、分極反転を用いて位相整合を行う方
法が提案された。すなわち図4に示すように、LiNb
3結晶基板21上にTi拡散によって回折格子41を作製
し、約1100℃に加熱して回折格子層だけの分極を反
転させ、その後プロトン交換法によって光導波路42を作
製し、基本波23を入射し第二高調波24を取り出すもので
ある。結晶基板21としてタンタル酸リチウム(以下Li
TaO3と記す)を用いる場合には、Ti拡散の替わり
にプロトン交換法によって回折格子41を作製し、約60
0℃に加熱して回折格子層だけの分極を反転させ、さら
にプロトン交換法によって光導波路42を作製する方法も
試みられている。
2. Description of the Related Art In recent years, as a compact and lightweight blue light source, attention has been paid to a semiconductor laser beam having a wavelength of about 800 nm which is converted to a half of about 400 nm by a waveguide type second harmonic generation element. For example, the one that was proposed early on,
As shown in, a fundamental wave 23 (power P 1 ) is applied to one end of an optical waveguide 22 formed by thermally diffusing titanium (Ti) on the surface of a single crystal 21 of lithium niobate (hereinafter referred to as LiNbO 3 ). There is a method to make it incident. Further, as described in, for example, Japanese Patent Laid-Open No. 61-18934, L
On the iNbO 3 single crystal substrate, a proton exchange method (LiNb 3
A method of forming an optical waveguide by partially substituting Li ions and protons of O 3 ) to form an optical waveguide, injecting a fundamental wave into one end face of the optical waveguide, and generating a second harmonic generated by Cherenkov radiation. The method of taking out is also proposed. This is shown in FIG. More recently, a method for performing phase matching using polarization reversal has been proposed, as discussed in, for example, Electronics Letters 25, 11 (1989), pages 731 to 732 (Electronics Letters, 25, 11). was suggested. That is, as shown in FIG.
A diffraction grating 41 is formed on the O 3 crystal substrate 21 by diffusion of Ti, heated to about 1100 ° C. to invert the polarization of only the diffraction grating layer, and then an optical waveguide 42 is formed by a proton exchange method to generate a fundamental wave 23. It is incident and the second harmonic wave 24 is taken out. Lithium tantalate (hereinafter Li
In the case of using TaO 3 ), a diffraction grating 41 is produced by a proton exchange method instead of Ti diffusion, and the diffusion rate is about 60.
A method has also been attempted in which the polarization of only the diffraction grating layer is inverted by heating to 0 ° C., and the optical waveguide 42 is manufactured by the proton exchange method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術には、つぎに記すような問題があった。図2に示
すような方法は、基本波23としてz方向に偏光した常光
線、第二高調波24としてy方向に偏光した異常光線を用
い位相整合を行うものであるが、常光の屈折率の温度係
数と、異常光の屈折率の温度係数が大きく異なるため、
0.1℃以下の温度制御が必要であった。
However, the above-mentioned prior art has the following problems. The method shown in FIG. 2 is to perform phase matching using an ordinary ray polarized in the z direction as the fundamental wave 23 and an extraordinary ray polarized in the y direction as the second harmonic wave 24. Since the temperature coefficient and the temperature coefficient of the refractive index of extraordinary light differ greatly,
It was necessary to control the temperature below 0.1 ° C.

【0004】一方、図3に示すチェレンコフ放射を用い
る方法は、第二高調波のビーム形状が32のように三日月
型となり、極めて波面収差が大きく、これを回折限界ま
で絞り込むことは、ほとんど不可能である。
On the other hand, in the method using the Cherenkov radiation shown in FIG. 3, the beam shape of the second harmonic wave is crescent like 32, and the wavefront aberration is extremely large, and it is almost impossible to narrow it down to the diffraction limit. Is.

【0005】上記2例に対して新しく提案された図4に
示す分極反転を用いて位相整合を行う方法は、第二高調
波24がコリメートされた光であるため、チェレンコフ放
射光に比較して集光が極めて容易であるという利点を持
つ。しかし、分極犯転格子形成のためにTi拡散した部
分とTi拡散されていない部分、あるいは、プロトン交
換した部分とプロトン交換されていない部分とで屈折率
が異なるため、その境界部のフレネル反射損等で基本波
が損失を受け、効率が低下することは避けられない。ま
た、分極反転格子をTiを拡散したりプロトン交換して
作製するため、分極反転格子の断面形状がTi拡散層や
プロトン交換層の形状に依存し、このため矩形断面の分
極反転格子を作製することが本質的に困難である。Ti
拡散法で作製した分極反転格子の断面形状は略三角形で
あり、プロトン交換法で作製した分極反転格子の断面形
状は略半円形である。このため理想的な矩形断面の分極
反転格子を持つSHG素子本来の効率で第二高調波が発
生できていない。
The newly proposed method for phase matching using polarization inversion shown in FIG. 4 for the above two examples is compared with Cherenkov radiated light because the second harmonic wave 24 is collimated light. It has the advantage that it is extremely easy to collect light. However, since the Ti diffused portion and the Ti non-diffused portion, or the proton-exchanged portion and the non-proton-exchanged portion have different refractive indexes for forming the polarization violation lattice, the Fresnel reflection loss at the boundary portion is different. It is inevitable that the fundamental wave suffers a loss due to such factors as a decrease in efficiency. Further, since the polarization inversion lattice is produced by diffusing Ti or exchanging protons, the cross-sectional shape of the polarization inversion lattice depends on the shape of the Ti diffusion layer or the proton exchange layer, and therefore, the polarization inversion lattice of rectangular cross section is produced. Is inherently difficult. Ti
The cross-sectional shape of the domain-inverted lattice produced by the diffusion method is substantially triangular, and the cross-sectional shape of the domain-inverted lattice produced by the proton exchange method is approximately semicircular. For this reason, the second harmonic cannot be generated with the original efficiency of the SHG element having an ideal polarization inversion grating with a rectangular cross section.

【0006】本発明の第一の目的は、高効率で、かつ波
面収差が小さく集光が容易な第二高調波が発生できる導
波路形の第二高調波発生素子を得ることにある。
A first object of the present invention is to obtain a waveguide type second harmonic generating element which is highly efficient and has a small wavefront aberration and can easily generate a second harmonic.

【0007】本発明の第二の目的は、上記第二高調波発
生素子の製造方法を得ることにある。
A second object of the present invention is to obtain a method for manufacturing the above second harmonic wave generating element.

【0008】本発明の第三の目的は、上記第二高調波発
生素子を用いた可視光発生用光源、およびそれを用いた
光ヘッド、ならびに前記光ヘッドを用いた光情報記録再
生装置を得ることにある。
A third object of the present invention is to obtain a visible light generating light source using the above second harmonic generating element, an optical head using the same, and an optical information recording / reproducing apparatus using the optical head. Especially.

【0009】[0009]

【課題を解決するための手段】本発明の第一の目的は、
光学基板と、該基板より屈折率の高い光導波層から成る
光素子において、前記基板の一部および光導波層両者の
非線形光学係数が周期的に反転せしめられている第二高
調波発生素子により、また、前記光学基板はMgO:L
iNbO3であり、光導波層がLiNbO3又は、基板よ
りマグネシウムのドープ量が少ないMgO:LiNbO
3である第二高調波発生素子により、また、前記光学基
板は、LiTaO3であり、光導波層がタンタルニオブ
酸リチウムである第二高調波発生素子によって達成され
る。
The first object of the present invention is to:
In an optical element comprising an optical substrate and an optical waveguide layer having a higher refractive index than the substrate, a second harmonic generation element in which the nonlinear optical coefficients of both the part of the substrate and the optical waveguide layer are periodically inverted The optical substrate is MgO: L
iNbO 3 and the optical waveguide layer is LiNbO 3 or MgO: LiNbO in which the doping amount of magnesium is smaller than that of the substrate.
By a 3 second harmonic generation device, also, the optical substrate is a LiTaO 3, the optical waveguide layer is achieved by the second harmonic generation element is tantalum lithium niobate.

【0010】本発明の第二の目的は、予め周期的に分極
反転したMgO:LiNbO3もしくはLiTaO3基板
を準備し、光導波層を構成する強誘電体金属酸化物の原
料粉末をフラックス存在下で加熱溶融することにより溶
融体を準備する工程と、前記分極反転した基板の表面を
前記溶融体に接触させ、前記溶融体の温度を結晶析出温
度に降下し、前記基板上に請求項1もしくは3記載の光
導波層を構成する金属酸化膜を液相エピタキシャル成長
させる工程を有する第二高調波発生素子の製造方法、ま
た、前記第二高調波発生素子の製造方法において、用い
るフラックスがバナジウム酸リチウム(LiVO3)、
もしくはホウ酸リチウム(Li224)、もしくはフ
ッ化リチウム(LiF)、もしくはフッ化カリウム(K
F)である第二高調波発生素子の製造方法によって達成
される。
A second object of the present invention is to prepare a MgO: LiNbO 3 or LiTaO 3 substrate in which the polarization is periodically inverted beforehand, and to prepare the raw material powder of the ferroelectric metal oxide constituting the optical waveguide layer in the presence of flux. 2. A step of preparing a melt by heating and melting with a step of: bringing the surface of the substrate whose polarization has been inverted into contact with the melt, lowering the temperature of the melt to a crystal precipitation temperature, and depositing on the substrate. 3. The method for producing a second harmonic generating element, comprising the step of liquid phase epitaxially growing a metal oxide film constituting the optical waveguide layer according to 3, and the flux used in the method for producing a second harmonic generating element is lithium vanadate. (LiVO 3 ),
Alternatively, lithium borate (Li 2 B 2 O 4 ), lithium fluoride (LiF), or potassium fluoride (K
This is achieved by the method of manufacturing the second harmonic generation element of F).

【0011】本発明の第三の目的は、前記第二高調発生
素子と、波長780nmから1100nmの近赤外半導
体レーザ光源と、レーザ光源から出射するレーザ光を導
波路端面に集光するレンズ系からなる可視光発生用光源
によって、また、前記可視光発生用光源と、光源から出
射する光を光記録媒体の記録、再生面上に集光する集光
手段と、上記光記録媒体の記録、再生面からの反射光を
受光し検出する手段を備えた光ヘッドによって、かつま
た、光記録媒体を回転駆動する回転駆動制御手段と、上
記光記録媒体の半径方向に駆動して光情報の記録、再生
を行う光ヘッドと、該光ヘッドを搭載して走査、駆動す
るアクチュエータとを備えた光情報記録再生装置におい
て、上記アクチュエータに搭載する光ヘッドが、前記光
ヘッドである光情報記録再生装置によって達成される。
A third object of the present invention is to provide the second harmonic generation element, a near-infrared semiconductor laser light source having a wavelength of 780 nm to 1100 nm, and a lens system for converging laser light emitted from the laser light source on the end face of the waveguide. A visible light generating light source, and a visible light generating light source, a light collecting means for collecting light emitted from the light source on an optical recording medium, a recording surface of the optical recording medium, and recording of the optical recording medium, An optical head having a means for receiving and detecting the reflected light from the reproducing surface, and also a rotation drive control means for rotationally driving the optical recording medium, and optical information recording by being driven in the radial direction of the optical recording medium. In an optical information recording / reproducing apparatus including an optical head for reproducing, and an actuator for mounting and scanning the optical head, the optical head mounted on the actuator is an optical information recording device that is the optical head. It is achieved by the recording and reproducing apparatus.

【0012】[0012]

【作用】本発明は、つぎに示すような作用により、高い
効率の小形で、波面収差の小さい第二高調波を発生可能
な第二高調波発生素子を提供する。
The present invention provides a second harmonic generating element capable of generating a second harmonic having a small wavefront aberration and a small size with high efficiency by the following operations.

【0013】図5(a)に示すような三層構造の光導波
路を考える。
Consider an optical waveguide having a three-layer structure as shown in FIG.

【0014】51は基板、56は前記基板内で分極が反転さ
れている部分、52は光導波層で分極の方向が周期Λで反
転させられている。すなわち、54は分極が上向き、55は
分極が下向きの部分である。53はクラッド層で通常は空
気層である。基板51ならびに光導波層52が例えばLiN
bO3のような空間群R3Cの強誘電体の場合、M.Di
domenco Jr.らの文献、ジャーナル・オブ・アプライ
ド・フィジクス(Journal of Applied Physics)Vo
l.40,No.2,pp720〜734によると、その屈折
率nは自発分極の向きによらない。したがって、屈折率
という観点からすれば、図5(a)のような構造はすべ
て入射光波長λに対し図5(b)のようになる。一方、
上記文献によれば第二高調波の発生性能を表す係数d
は、自発分極に比例する。したがって図5(a)のよう
な構造についてみると、(a)と同じく周期Λを持つ構
造(図5(c))となる。特に光導波層に閉じ込められ
た導波光について考えると、基板層の非線形効果はほと
んど無視できるので、充分良い精度で図5(c)の構造
は図5(d)の構造で近似できる。入射光として図5
(d)の座標系における基板に垂直な方向(z方向)に
偏光したTM波を考え、その伝搬方向をx方向とする
と、その電場のz成分は、数1で表される。
Reference numeral 51 is a substrate, 56 is a portion in which the polarization is inverted in the substrate, and 52 is an optical waveguide layer in which the polarization direction is inverted with a period Λ. That is, 54 is a portion whose polarization is upward and 55 is a portion whose polarization is downward. 53 is a clad layer, usually an air layer. The substrate 51 and the optical waveguide layer 52 are made of, for example, LiN.
In the case of a ferroelectric of the space group R3C such as bO 3 , M. Di
domenco Jr. Et al., Journal of Applied Physics Vo
According to L.40, No.2, pp720-734, the refractive index n does not depend on the direction of spontaneous polarization. Therefore, from the viewpoint of the refractive index, the structure as shown in FIG. 5A is as shown in FIG. 5B for the incident light wavelength λ. on the other hand,
According to the above-mentioned document, the coefficient d representing the generation performance of the second harmonic wave
Is proportional to the spontaneous polarization. Therefore, looking at the structure as shown in FIG. 5A, the structure has the same period Λ as that of FIG. 5A (FIG. 5C). Considering the guided light confined in the optical waveguide layer in particular, since the nonlinear effect of the substrate layer can be almost ignored, the structure of FIG. 5C can be approximated with the structure of FIG. 5D with sufficient accuracy. Figure 5 as incident light
When the TM wave polarized in the direction (z direction) perpendicular to the substrate in the coordinate system of (d) is considered and its propagation direction is the x direction, the z component of the electric field is represented by Formula 1.

【0015】[0015]

【数1】 [Equation 1]

【0016】全く同様に、第二高調波も基板と垂直方向
に偏光したTM波であるとすると、その電場のz成分は
数2で表される。
Similarly, assuming that the second harmonic is also a TM wave polarized in the direction perpendicular to the substrate, the z component of the electric field is expressed by equation 2.

【0017】[0017]

【数2】 [Equation 2]

【0018】第二高調波を発生させる非線形分極は数3
で表される。
The non-linear polarization for generating the second harmonic is expressed by Equation 3
It is represented by.

【0019】[0019]

【数3】 [Equation 3]

【0020】一方、非線形分極を考慮したMaxwel
lの方程式は、数4で表される。
On the other hand, Maxwell considering nonlinear polarization
The equation of l is expressed by the equation 4.

【0021】[0021]

【数4】 [Equation 4]

【0022】数3を数4へ代入し、数5で表される波動
方程式、
Substituting equation 3 into equation 4, the wave equation expressed by equation 5,

【0023】[0023]

【数5】 [Equation 5]

【0024】並びに数6で表される近似And the approximation expressed by the equation (6)

【0025】[0025]

【数6】 [Equation 6]

【0026】を用いると数7を得る。By using, Equation 7 is obtained.

【0027】[0027]

【数7】 [Equation 7]

【0028】数7に数8を乗じ、Z=−∞からZ=∞ま
で積分すると、基本波から第二高調波へのパワー移行を
支配する数9を得る。
By multiplying Eq. 7 by Eq. 8 and integrating from Z =-. Infin. To Z = .infin., Eq. 9 that governs the power transfer from the fundamental wave to the second harmonic is obtained.

【0029】[0029]

【数8】 [Equation 8]

【0030】[0030]

【数9】 [Equation 9]

【0031】図5の場合、非線形光学係数d333は周期
的に向きを変えているので、数10のようにフーリエ級
数に展開できる。
In the case of FIG. 5, since the non-linear optical coefficient d 333 changes its direction periodically, it can be expanded into a Fourier series as shown in Eq.

【0032】[0032]

【数10】 [Equation 10]

【0033】上記周期Λは、位相整合条件を満足させる
ように数11のように決定する。
The above-mentioned period Λ is determined as shown in equation 11 so as to satisfy the phase matching condition.

【0034】[0034]

【数11】 [Equation 11]

【0035】これにより、基本波と第二高調波の位相整
合は容易になされ、数9は数12のように表される。
As a result, the phase matching of the fundamental wave and the second harmonic wave is easily performed, and the equation 9 is expressed as the equation 12.

【0036】[0036]

【数12】 [Equation 12]

【0037】数12をx=0からx=lまで積分し(た
だし、基本波のパワーは殆ど変化せず一定とみなす)、
x=0で第二高調波の振幅がゼロであるという境界条件
を用いると、基本波から第二高調波への変換効率ηは数
13で表される。
[Mathematical formula-see original document] Integrating Expression 12 from x = 0 to x = 1 (however, it is assumed that the power of the fundamental wave is almost unchanged and constant),
If the boundary condition that x = 0 and the amplitude of the second harmonic is zero is used, the conversion efficiency η from the fundamental wave to the second harmonic is expressed by Equation 13.

【0038】[0038]

【数13】 [Equation 13]

【0039】以上により本発明によれば、 (1)分極反転格子の周期を数11を満足するように選
ぶだけで、分極が反転した図5(c)のような構造にお
いて容易に基本波と第二高調波の位相整合が実現でき、
高い効率の第二高調波発生素子が構成できる。
As described above, according to the present invention, (1) by simply selecting the period of the polarization inversion grating so as to satisfy Eq. 11, it is possible to easily obtain the fundamental wave in the structure in which the polarization is inverted as shown in FIG. Phase matching of the second harmonic can be realized,
A highly efficient second harmonic generation element can be constructed.

【0040】(2)発生する第二高調波がコリメートさ
れた導波光であるため、出射した第二高調波の波面収差
が小さく、回折限界まで光を絞り込める。
(2) Since the generated second harmonic is collimated guided light, the wavefront aberration of the emitted second harmonic is small, and the light can be narrowed down to the diffraction limit.

【0041】(3)導波光の進行方向に関して屈折率が
一様であるため、光の散乱が小さい。上記各特性を有す
る、高性能の第二高調波発生素子を構成できる。
(3) Since the refractive index is uniform in the traveling direction of the guided light, light scattering is small. A high-performance second harmonic generation element having the above-mentioned characteristics can be configured.

【0042】[0042]

【実施例】次に本発明の実施例を図面と共に説明する。
図1は本発明による第二高調波発生素子の一実施例を示
す構成図で(a)は平面図、(b)は断面図、図5は本
発明素子の動作説明図、図6は本発明の第二実施例を示
す図、図7は本発明の第二実施例の動作説明図、図8
(a)〜(f)は上記第二高調波発生素子の製造工程を
それぞれ示す図、図9は本発明の第二実施例の第二高調
波発生素子の製造工程をそれぞれを示す図、図10はは
本発明の第二高調波発生素子を搭載した追記型光ヘッド
の概略図、図11は本発明の第二高調波発生素子を搭載
した光磁気型光ヘッドの概略図、図12は本発明の第二
高調波発生素子を搭載した光情報記録再生装置の概略図
である。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 is a configuration diagram showing an embodiment of a second harmonic generation element according to the present invention, (a) is a plan view, (b) is a sectional view, FIG. 5 is an operation explanatory view of the element of the present invention, and FIG. 6 is a book. FIG. 7 is a diagram showing a second embodiment of the invention, FIG. 7 is an operation explanatory diagram of the second embodiment of the invention, and FIG.
(A) ~ (f) is a diagram showing the manufacturing process of the second harmonic generation device, respectively, FIG. 9 is a diagram showing the manufacturing process of the second harmonic generation device of the second embodiment of the present invention, respectively 10 is a schematic view of a write-once type optical head equipped with the second harmonic generation element of the present invention, FIG. 11 is a schematic view of a magneto-optical type optical head equipped with the second harmonic generation element of the present invention, and FIG. FIG. 3 is a schematic view of an optical information recording / reproducing apparatus equipped with the second harmonic generation element of the present invention.

【0043】第一実施例 図1において、14は表面が+c面である5mol%Mg
OドープのZcutLiNbO3単結晶基板、16は1m
ol%MgOドープLiNbO3単結晶薄膜で、通常自
発分極は上向きである。15、17は分極が反転された部分
で、この部分では分極は下向きである。M.Didom
enico Jr.らの文献、ジャーナル・オブ・アプ
ライド・フィジクス(Journal of Appl
ied Physics) Vol.40,No.2,
720頁から734頁によると、非線形光学係数の符号
は、LiNbO3またはLiTaO3等の空間群R3cの
強誘電体結晶の場合自発分極の向きと一致する。従っ
て、本実施例の基板並びに光導波層の非線形光学係数も
周期的に反転されていると言える。18はリッジ型の光導
波部であり、基本波、第二高調波ともこの部分に閉じ込
められて伝搬する。13は入射基本波で結晶表面に垂直方
向に偏光している。19は分極反転回折格子部17により発
生せしめられた第二高調波で、やはり結晶表面に垂直な
方向に偏光している。
First Example In FIG. 1, 14 is 5 mol% Mg whose surface is + c plane.
O-doped ZcutLiNbO 3 single crystal substrate, 16 is 1 m
In the ol% MgO-doped LiNbO 3 single crystal thin film, the spontaneous polarization is usually upward. 15 and 17 are the parts where the polarization is inverted, and the polarization is downward in this part. M. Didom
enico Jr. Et al., Journal of Applied Physics (Journal of Appl)
ied Physics) Vol. 40, No. Two
According to pages 720 to 734, the sign of the nonlinear optical coefficient coincides with the direction of spontaneous polarization in the case of a ferroelectric crystal of the space group R3c such as LiNbO 3 or LiTaO 3 . Therefore, it can be said that the nonlinear optical coefficients of the substrate and the optical waveguide layer of this example are also periodically inverted. Reference numeral 18 denotes a ridge-type optical waveguide section, in which both the fundamental wave and the second harmonic wave are confined and propagated. Reference numeral 13 is the incident fundamental wave, which is polarized in the direction perpendicular to the crystal surface. Reference numeral 19 denotes the second harmonic generated by the polarization inversion diffraction grating portion 17, which is also polarized in the direction perpendicular to the crystal surface.

【0044】次に、液相エピタキシャル成長法を用いた
上記第二高調波発生素子の製造方法を図8を用いて説明
する。
Next, a method of manufacturing the above second harmonic generating element using the liquid phase epitaxial growth method will be described with reference to FIG.

【0045】まず表面に周期的に分極反転を行った5m
ol%MgOドープLiNbO3基板を用意する。基板
表面への分極反転格子の形成は次のように行った。+c
面を使用レーザ光波長λの1/10程度まで研磨した基
板をアセトン、イソプロピールアルコール、純水中で超
音波洗浄し、これを乾燥させた後+c面にTi81を30
Åスパッタリングで成膜した。Ti81膜上にホトレジス
ト82をスピンナーで塗布し、分極反転17を行う部分が窓
あけされたホトマスクを用い、通常のホトリソグラフィ
技術によりホトレジスト82のパターニングを行った。パ
ターニングしたホトレジスト82をマスクとして、CF3
Clガスを用いたRIEによりTi81をパターニング
し、次にホトレジスト82を除去した。ホトマスクのパタ
ーン周期は、2.5から3.5μmまで0.1μmずつ
異なるもの11種類のものを作製した。次に上記基板を
電気炉に入れ、約80℃の温水のバブラー中を通して水
蒸気を含ませたArの雰囲気下において、約1100℃
で約10分熱処理した。冷却時には雰囲気を水蒸気を含
ませたO2に変えた。これにより基板表面に分域反転域1
5が形成された。
First, the surface was periodically poled at 5 m.
An ol% MgO-doped LiNbO 3 substrate is prepared. The domain-inverted lattice was formed on the surface of the substrate as follows. + C
The substrate whose surface has been polished to about 1/10 of the laser light wavelength λ is ultrasonically cleaned in acetone, isopropyl alcohol, and pure water, and then dried.
Å The film was formed by sputtering. Photoresist 82 was applied on the Ti 81 film by a spinner, and the photoresist 82 was patterned by a normal photolithography technique using a photomask in which a portion where polarization inversion 17 was performed was opened. Using the patterned photoresist 82 as a mask, CF 3
The Ti 81 was patterned by RIE using Cl gas, and then the photoresist 82 was removed. Eleven kinds of photomasks each having a pattern period different from 2.5 to 3.5 μm by 0.1 μm were manufactured. Next, the above substrate was placed in an electric furnace and passed through a bubbler of warm water at about 80 ° C. in an atmosphere of Ar containing water vapor at about 1100 ° C.
And heat treated for about 10 minutes. During cooling, the atmosphere was changed to O 2 containing water vapor. As a result, the domain inversion area 1
5 formed.

【0046】次に、上記のように用意された基板の+c
面に、液相エピタキシャル結晶成長法で基板の分域を転
写したMgOドープLiNbO3単結晶薄膜を成長させ
る。これは以下のように行った。まずエピタキシャル成
長時の溶融体の調整を行った。光導波層材料である1m
ol%MgOドープLiNbO3が20mol%、フラ
ックス材料の硼酸リチウムLi224が80mol%
となるように、原料として炭酸リチウムLi2CO3、硼
酸H3BO3、五酸化ニオブNb25、酸化マグネシウム
MgOの各粉末を秤量し、これらの混合物を乳鉢でよく
混合したのち白金るつぼに入れて、電気炉内で空気雰囲
気下において1200℃の温度で5時間加熱し、均一の
溶融体を作製した。この溶融体を800℃まで60℃/
hの冷却速度で冷却し、+c面が周期的に分極反転され
た上記5mol%MgOドープのZcutLiNbO3
単結晶基板を上記溶融体中に所定時間接触させ、図8
(f)のように、基板上に1mol%MgOドープLi
NbO3薄膜2を2.5μm成長させた。ついで溶融体
と基板とを分離し、基板を電気炉中で室温まで30℃/
hの冷却速度で徐冷した。EPMAによってMgの含有
率を調べたところ、ほぼ1mol%であった。また、成
長させた単結晶薄膜における分域を、硝酸:ふっ酸=
1:2のエッチング液でエッチングしエッチング状態の
違いからから観察したところ、分極の方向は下地基板の
分極と同一であって、また薄膜における分域の界面は基
板と薄膜との界面に対してほぼ垂直であった。すなわち
断面形状がほぼ矩形の分極反転格子が形成できた。な
お、上記フラックス材料の添加量は70から90mol
%の範囲が望ましい。また、接触時間は薄膜の膜厚によ
って異なるが、膜厚が0.5から3μmであれば10か
ら30分である。また、フラックス材料としては上記硼
酸リチウムのほか、フッ化リチウムLiF、フッ化カリ
ウムKF、バナジウム酸リチウムLiVO3等を用いて
も良い。
Next, + c of the substrate prepared as described above
On the surface, a MgO-doped LiNbO 3 single crystal thin film in which a domain of the substrate is transferred is grown by a liquid phase epitaxial crystal growth method. This was done as follows. First, the melt was adjusted during epitaxial growth. Optical waveguide material 1m
20 mol% of MgO-doped LiNbO 3 and 80 mol% of lithium borate Li 2 B 2 O 4 as a flux material
As a raw material, powders of lithium carbonate Li 2 CO 3 , boric acid H 3 BO 3 , niobium pentoxide Nb 2 O 5 and magnesium oxide MgO were weighed and mixed well in a mortar and then platinum crucible. And heated in an electric furnace at a temperature of 1200 ° C. for 5 hours in an electric furnace to prepare a uniform melt. This melt up to 800 ℃ 60 ℃ /
The 5 mol% MgO-doped ZcutLiNbO 3 in which the + c plane was periodically poled at a cooling rate of h
The single crystal substrate is contacted with the melt for a predetermined time,
As shown in (f), 1 mol% MgO-doped Li on the substrate
The NbO 3 thin film 2 was grown to 2.5 μm. Then, the melt and the substrate are separated, and the substrate is heated to room temperature in an electric furnace at 30 ° C /
It was gradually cooled at a cooling rate of h. When the content of Mg was examined by EPMA, it was about 1 mol%. In addition, the domain in the grown single crystal thin film is defined as nitric acid: hydrofluoric acid =
Observed from the difference in etching state after etching with a 1: 2 etching solution, the direction of polarization was the same as the polarization of the underlying substrate, and the domain boundaries in the thin film were relative to the interface between the substrate and the thin film. It was almost vertical. That is, a polarization inversion grating having a substantially rectangular cross section could be formed. The amount of the flux material added is 70 to 90 mol.
The range of% is desirable. The contact time varies depending on the film thickness of the thin film, but is 10 to 30 minutes when the film thickness is 0.5 to 3 μm. In addition to the above lithium borate, lithium fluoride LiF, potassium fluoride KF, lithium vanadate LiVO 3 or the like may be used as the flux material.

【0047】その後、図8(f)のように作製した薄膜
をオゾン雰囲気内でアニールし、酸素の欠損を補った。
Then, the thin film produced as shown in FIG. 8 (f) was annealed in an ozone atmosphere to compensate for oxygen deficiency.

【0048】最後に、チャンネル部を作製した。まずチ
ャンネル部のみが光遮蔽部となっているホトマスクを用
いて、ホトレジストをパターニングし、次にこのホトレ
ジストをマスクとして、イオンミリングにより、薄膜を
2μmエッチングした。チャンネル幅は3μmである。
その後ホトレジストを除去してチャンネル部を作製し
た。本工程で使用したイオンミリング装置は、プラズマ
室が円錐状の空洞真空容器の外周に複数の永久磁石を配
した構造であり、また、プラズマ生成室で生成したイオ
ンが、加速電極、減速電極、接地電極の三枚組の電極に
よって引きだされる構造である。このため、イオンの空
間密度分布が一様であり、かつ指向性も極めて高く、極
めて高精度のエッチングが可能である。
Finally, a channel part was prepared. First, the photoresist was patterned using a photoresist having only the channel portion as a light shielding portion, and then the thin film was etched by 2 μm by ion milling using this photoresist as a mask. The channel width is 3 μm.
Then, the photoresist was removed to produce a channel part. The ion milling device used in this step has a structure in which a plasma chamber has a plurality of permanent magnets arranged on the outer periphery of a conical hollow vacuum container, and ions generated in the plasma generation chamber are an acceleration electrode, a deceleration electrode, It is a structure that is drawn out by three electrodes of a ground electrode. Therefore, the spatial density distribution of ions is uniform, the directivity is extremely high, and etching with extremely high precision is possible.

【0049】この作製された1mol%MgOドープL
iNbO3チャンネル薄膜に、波長を830nmにチュ
ーニングしたTi−Sレーザ光を基板表面と垂直な方向
に偏光させ、プリズムカップラを用いて入射させたとこ
ろ、基板の表面と垂直な方向に電場の主成分を持つ一本
のTMモードが励振され、その実効屈折率N(ω)=
2.1686であった。一方波長を415nmにチュー
ニングした色素レーザで同様の測定を行うと、二本のモ
ードが励振され、低次モードの実効屈折率は、N(2
ω)=2.3016であった。またカットバック法によ
り830nmの光に対する光伝搬損失を測定したとこ
ろ、1dB/cmという良好な値を得た。この理由は、
まず第一に液相エピタキシャル成長により化学量論的組
成にきわてて近い高品質の薄膜が成長できたこと、第二
に指向性の高いイオンミリング装置を用いたエッチング
が行えるため、チャンネル部の側壁が極めて高精度に加
工できたことである。
This prepared 1 mol% MgO-doped L
When the Ti-S laser light tuned to a wavelength of 830 nm was polarized in the iNbO 3 channel thin film in the direction perpendicular to the substrate surface and was made incident using a prism coupler, the main component of the electric field was in the direction perpendicular to the substrate surface. Is excited, and its effective refractive index N (ω) =
It was 2.1686. On the other hand, when the same measurement is performed with a dye laser whose wavelength is tuned to 415 nm, two modes are excited and the effective refractive index of the lower mode is N (2
ω) = 2.3016. Further, when the light propagation loss for light of 830 nm was measured by the cutback method, a good value of 1 dB / cm was obtained. The reason for this is
First of all, liquid phase epitaxial growth allowed the growth of high-quality thin films that were close to the stoichiometric composition, and second, because etching could be performed using a highly directional ion milling device, the sidewall of the channel section Was able to be processed with extremely high precision.

【0050】数11により分極反転周期を求めると(M
=1の場合)約3.1μmであるから、3.1μmの周
期を持つ試料をチャンネル部に平行な方向の長さを10
mm、垂直な方向の長さを5mmとなるように切断し、
5mmの辺を研磨して第二高調波発生実験を行った。レ
ーザ光源としてTi−Sレーザを用い、対物レンズによ
りチャンネル部端面に光を集光した。また試料はペルチ
ェ素子に接続した銅ブロック上に乗せ、熱電対で温度を
モニタした。まず温度を25℃にして第二高調波の発生
効率を測定した。レーザ光源の波長を変えて効率が最大
になる波長を探した。その結果、40mWの基本波入力
時で得られた第二高調波出力は4mWであり、フレネル
反射損失を考慮した効率は11.8%である。これは数
18から計算される理論値40%に対しては約1/3で
あるが、従来例に比べると充分に高い効率が得られた。
今後出力200mWの大出力半導体レーザを結合効率5
0%で光導波路へ結合すれば効率は約30%となり、3
0mWの第二高調波出力が得られて光磁気型光ディスク
や相変化型光ディスクの書き込み、再生用の光源として
使用できる。
When the polarization inversion period is calculated by the equation 11, (M
= 1) is about 3.1 μm, so that a sample having a period of 3.1 μm has a length of 10 in the direction parallel to the channel portion.
mm, cut to a vertical length of 5 mm,
A 5 mm side was polished and a second harmonic generation experiment was conducted. A Ti-S laser was used as a laser light source, and light was condensed on the end surface of the channel portion by an objective lens. The sample was placed on a copper block connected to a Peltier device, and the temperature was monitored with a thermocouple. First, the temperature was set to 25 ° C. and the generation efficiency of the second harmonic was measured. The wavelength of the laser light source was changed to find the wavelength that maximized the efficiency. As a result, the second harmonic output obtained when a fundamental wave of 40 mW was input was 4 mW, and the efficiency considering Fresnel reflection loss was 11.8%. This is about 1/3 of the theoretical value of 40% calculated from the equation 18, but a sufficiently high efficiency was obtained as compared with the conventional example.
Coupling efficiency of a high power semiconductor laser with an output of 200 mW in the future 5
If it is coupled to the optical waveguide at 0%, the efficiency will be about 30%.
A second harmonic wave output of 0 mW is obtained and can be used as a light source for writing and reproducing on a magneto-optical disc or a phase change optical disc.

【0051】第二実施例 次に、基板としてタンタル酸リチウム(以下LiTaO
3と略称する)単結晶基板、光導波層としてタンタルニ
オブ酸リチウムをもちいた第二の実施例を示す。
Second Example Next, lithium tantalate (hereinafter referred to as LiTaO) was used as a substrate.
A second embodiment using a single crystal substrate and lithium tantalum niobate as an optical waveguide layer will be shown.

【0052】図6において、64は表面が+c面であるZ
cutのタンタル酸リチウム単結晶基板、66はタンタル
ニオブ酸リチウム薄膜でその化学式は化1で表される。
ただし、TaとNbの組成比xは0と0.1の間であ
り、自発分極の向きは通常上向きである。65は分極が反
転された部分であり、この部分の自発分極の向きは下向
きである。68はリッジ型の光導波部であり、基本波、第
二高調波ともこの部分に閉じ込められて伝搬する。13は
入射基本波であり、結晶表面に垂直方向に偏光してい
る。69は光導波部で発生せしめられた第二高調波で、や
はり結晶表面と垂直な方向に偏光している。
In FIG. 6, reference numeral 64 is Z whose surface is the + c plane.
A cut lithium tantalate single crystal substrate, 66 is a lithium tantalum niobate thin film, the chemical formula of which is represented by Chemical Formula 1.
However, the composition ratio x of Ta and Nb is between 0 and 0.1, and the direction of spontaneous polarization is usually upward. Reference numeral 65 is a portion where the polarization is inverted, and the direction of spontaneous polarization in this portion is downward. Reference numeral 68 denotes a ridge-type optical waveguide section, in which both the fundamental wave and the second harmonic wave are confined and propagated. Reference numeral 13 is the incident fundamental wave, which is polarized in the direction perpendicular to the crystal surface. 69 is the second harmonic generated in the optical waveguide, which is also polarized in the direction perpendicular to the crystal surface.

【0053】次に、液相エピタキシャル成長法を用いた
上記第二高調波発生素子の製造方法を説明する。
Next, a method of manufacturing the second harmonic wave generating element using the liquid phase epitaxial growth method will be described.

【0054】まず表面が周期的に分極反転されたLiT
aO3単結晶基板を以下のようにして用意した。図9
(b)に示すように、上記薄膜上にCr膜91を100n
mスパッタリングで成膜し、分極反転を行う部分が窓あ
けされたホトマスクを用い、通常のホトリソグラフィ技
術により、ホトレジスト92のパターニングを図9(c)
のごとく行い、エッチングを行ってCr膜をパターニン
グし、その後ホトレジストを除去した。ホトマスクのパ
ターン周期は、2.5から3.5μmまで0.1μmず
つ異なるもの11種類のものを作製した。次に、石英容
器に安息香酸の粉末を入れて加熱、溶融させ、その中に
上記基板を浸漬してプロトン交換を行った。この時の処
理温度を200℃、処理時間を15分とした。その後、
エタノール中で十分に超音波洗浄をしたのちCrを除去
し、上記試料を白金の容器中にLiTaO3の粉末とと
もに入れ、熱処理を行った。この時の熱処理温度は58
0℃であり、熱処理時間は15分である。これにより、
図9(e)のように、基板表面に分域反転域65が形成さ
れた。
First, LiT whose surface is periodically poled
An aO 3 single crystal substrate was prepared as follows. Figure 9
As shown in (b), a Cr film 91 of 100 n is formed on the thin film.
Patterning of the photoresist 92 is performed by ordinary photolithography using a photomask formed by m-sputtering and having a window in which a portion for polarization reversal is opened, as shown in FIG. 9C.
Then, etching was performed to pattern the Cr film, and then the photoresist was removed. Eleven kinds of photomasks each having a pattern period different from 2.5 to 3.5 μm by 0.1 μm were manufactured. Next, benzoic acid powder was placed in a quartz container, heated and melted, and the substrate was immersed in the powder to perform proton exchange. At this time, the processing temperature was 200 ° C. and the processing time was 15 minutes. afterwards,
After thorough ultrasonic cleaning in ethanol, Cr was removed, and the above sample was put in a platinum container together with LiTaO 3 powder and heat treated. The heat treatment temperature at this time is 58
The temperature is 0 ° C., and the heat treatment time is 15 minutes. This allows
As shown in FIG. 9E, the domain inversion area 65 was formed on the substrate surface.

【0055】次に、上記の用意した基板の+c面に、液
相エピタキシャル結晶成長法で基板の分域を転写したタ
ンタルニオブ酸リチウム単結晶薄膜を以下のように成長
させた。すなわち、まずエピタキシャル成長時の溶融体
の調整を行った。光導波層材料であるタンタルニオブ酸
リチウムが20mol%、フラックス材料の硼酸リチウ
ムLi224が80mol%となるように、原料とし
て炭酸リチウムLi2CO3、硼酸H3BO3、五酸化ニオ
ブNb25、五酸化タンタルTa25の各粉末を秤量
し、これらの混合物を乳鉢でよく混合したのち白金るつ
ぼに入れて電気炉に入れ、空気雰囲気下において120
0℃の温度で3時間加熱して均一の溶融体を作製した。
この溶融体を1000℃まで60℃/hの冷却速度で冷
却し、上記の表面を周期的に分極反転させたZcutL
iTaO3単結晶基板を上記溶融体に所定時間接触さ
せ、上記基板上に上記基板の分域を転写させてタンタル
ニオブ酸リチウム薄膜86を5μm成長させた。ついで溶
融体と基板とを分離し、基板を電気炉中で室温まで30
℃/hの冷却速度で徐冷した。EPMAによってNbと
Taの組成比を調べたところ、ほぼ1対9であった。ま
た、成長させた単結晶薄膜における分域を、硝酸:ふっ
酸=1:2のエッチング液でエッチングしエッチング状
態の違いからから観察したところ、分極の方向は下地基
板の分極と同一であって、また薄膜における分域の界面
は基板と薄膜との界面に対してほぼ垂直であった。すな
わち断面形状がほぼ矩形の分極反転格子が形成できた。
なお、上記フラックス材料の添加量は70から90mo
l%の範囲が望ましい。また、接触時間は薄膜の膜厚に
よって異なるが、膜厚が0.5から5μmであれば10
から50分である。また、フラックス材料としては上記
硼酸リチウムのほか、フッ化リチウムLiF、フッ化カ
リウムKF、バナジウム酸リチウムLiVO3等を用い
ても良い。
Next, a lithium tantalum niobate single crystal thin film, in which the domain of the substrate was transferred, was grown on the + c surface of the prepared substrate by the liquid phase epitaxial crystal growth method as follows. That is, first, the melt was adjusted during epitaxial growth. Lithium carbonate Li 2 CO 3 , boric acid H 3 BO 3 , pentoxide so that the lithium tantalum niobate which is the optical waveguide layer material is 20 mol% and the lithium borate Li 2 B 2 O 4 which is the flux material is 80 mol%. Powders of niobium Nb 2 O 5 and tantalum pentoxide Ta 2 O 5 were weighed and mixed well in a mortar, and then put in a platinum crucible and put in an electric furnace.
A uniform melt was prepared by heating at a temperature of 0 ° C. for 3 hours.
This melt was cooled to 1000 ° C. at a cooling rate of 60 ° C./h, and ZcutL in which the above surface was periodically poled
An iTaO 3 single crystal substrate was brought into contact with the melt for a predetermined time, and a domain of the substrate was transferred onto the substrate to grow a lithium tantalum niobate thin film 86 to a thickness of 5 μm. The melt and the substrate are then separated and the substrate is brought to room temperature in an electric furnace for 30 minutes.
It was gradually cooled at a cooling rate of ° C / h. When the composition ratio of Nb and Ta was examined by EPMA, it was about 1: 9. Further, when the domains in the grown single crystal thin film were etched with an etching solution of nitric acid: hydrofluoric acid = 1: 2 and observed from the difference in etching state, the direction of polarization was the same as that of the underlying substrate. The domain interface of the thin film was almost perpendicular to the interface between the substrate and the thin film. That is, a polarization inversion grating having a substantially rectangular cross section could be formed.
The addition amount of the above flux material is 70 to 90 mo
A range of 1% is desirable. The contact time varies depending on the film thickness of the thin film, but if the film thickness is 0.5 to 5 μm, the contact time is 10
From 50 minutes. In addition to the above lithium borate, lithium fluoride LiF, potassium fluoride KF, lithium vanadate LiVO 3 or the like may be used as the flux material.

【0056】その後、作製した薄膜をオゾン雰囲気内で
アニールし、酸素の欠損を補った。
After that, the produced thin film was annealed in an ozone atmosphere to compensate for oxygen deficiency.

【0057】最後に、チャンネル部を作製した。まず、
チャンネル部のみが光遮蔽部となっているホトマスクを
用いて、ホトレジストをパターニングし、次にこのホト
レジストをマスクとして、イオンミリングにより、薄膜
を4μmエッチングした。チャンネル幅は3μmであ
る。その後ホトレジストを除去してチャンネル部を作製
した。
Finally, a channel part was prepared. First,
The photoresist was patterned using a photoresist having only the channel portion as a light shielding portion, and then the thin film was etched by 4 μm by ion milling using this photoresist as a mask. The channel width is 3 μm. Then, the photoresist was removed to produce a channel part.

【0058】第三実施例 図10に示す第三実施例は、上記第一実施例又は第二実
施例の導波路型第二高調波発生素子を搭載した、小形可
視光光源を用いる光ディスク用ヘッドである。11は高出
力(約100mW、波長λ=840nm)半導体レー
ザ、13は半導体レーザ光を光導波路端面に集束するレン
ズ、101は第一実施例又は第二実施例の導波路型第二高
調波発生素子であり、102は偏光ビームスプリッタであ
る。レーザ光は上記偏光ビームスプリッタ102を透過
し、コリメートレンズ系103に入射する。104は直線偏光
を円偏光に変えるλ/4波長版であり、105はレーザ光
を光ディスク106上に集光する対物レンズである。光デ
ィスク106の反射光は偏光ビームスプリッタ102で反射さ
れ、集束レンズ108で集光されたのち、ハーフミラー109
で二つに分割され、二分割ホトセンサ110及び四分割ホ
トセンサ111上に導かれ、トラッキング信号、フォーカ
シング信号及び再生信号の検出が行われる。
Third Embodiment A third embodiment shown in FIG. 10 is a head for an optical disk using a small visible light source equipped with the waveguide type second harmonic generation element of the first embodiment or the second embodiment. Is. 11 is a high-power (about 100 mW, wavelength λ = 840 nm) semiconductor laser, 13 is a lens that focuses the semiconductor laser light on the end face of the optical waveguide, 101 is the waveguide type second harmonic generation of the first or second embodiment. Reference numeral 102 is an element, and 102 is a polarization beam splitter. The laser light passes through the polarization beam splitter 102 and enters the collimator lens system 103. Reference numeral 104 is a λ / 4 wavelength plate that converts linearly polarized light into circularly polarized light, and 105 is an objective lens that focuses laser light on the optical disk 106. The reflected light from the optical disk 106 is reflected by the polarization beam splitter 102, condensed by the focusing lens 108, and then the half mirror 109.
Is divided into two and guided to the two-division photo sensor 110 and the four-division photo sensor 111, and the tracking signal, the focusing signal and the reproduction signal are detected.

【0059】第四実施例 図11に示す第四実施例は、上記第一実施例又は第二実
施例の導波路型第二高調波発生素子を搭載した、小形可
視光光源を用いる光磁気ディスク用ヘッドである。図に
おいて、11、13及び101は上記第三実施例の図10と同
様の高出力半導体レーザ、集束レンズ及び導波路型第二
高調波発生素子で、203はビーム成形用のレンズ系であ
り、レーザ光はこれを通って平行光に成形される。202
はビーム成形用プリズムの機能を兼ねた偏光ビームスプ
リッタであり、レーザ光はこれを通過後反射ミラー205
で立ち上げられ、対物レンズ105で光ディスク面206上に
集光される。207は書き込み消去の際に用いる磁場を与
えるための磁気コイルである。光ディスク面206の反射
光は偏光ビームスプリッタ202で反射され、1/2波長
版204を通り集束レンズ207で集光され、偏光ビームスプ
リッタ102で二つの光束に分割され、二分割ホトセンサ1
00及び四分割ホトセンサ111上に導かれて、トラッキン
グ信号、フォーカシング信号及び再生信号の検出が行わ
れる。
Fourth Embodiment A fourth embodiment shown in FIG. 11 is a magneto-optical disk using a small visible light source equipped with the waveguide type second harmonic generation element of the first embodiment or the second embodiment. Is the head. In the figure, 11, 13 and 101 are high power semiconductor lasers, focusing lenses and waveguide type second harmonic generating elements similar to those of FIG. 10 of the third embodiment, and 203 is a lens system for beam shaping. The laser light passes through this and is shaped into parallel light. 202
Is a polarizing beam splitter that also functions as a beam shaping prism.
It is launched by and is focused on the optical disc surface 206 by the objective lens 105. Reference numeral 207 is a magnetic coil for applying a magnetic field used for writing and erasing. The reflected light from the optical disc surface 206 is reflected by the polarization beam splitter 202, passes through the half-wave plate 204, is condensed by the focusing lens 207, and is split into two light beams by the polarization beam splitter 102.
The tracking signal, the focusing signal, and the reproduction signal are detected by being guided to the 00 and four-division photosensors 111.

【0060】また、光学系を変更すれば、再生専用型光
ディスクまたは相変化型書き換え型光ディスクに対して
も、導波路型波長変換素子101を適用することができ
る。
If the optical system is changed, the waveguide wavelength conversion element 101 can be applied to a read-only type optical disc or a phase change type rewritable optical disc.

【0061】第5実施例 第12図は上記第3実施例に示す光ヘッドを、従来の光
情報記録再生装置に応用した場合の光情報記録再生装置
304の概略を示す図である。本実施例の特徴は、アクチ
ュエ−タ302上に光ヘッド301が搭載され、光学系の構成
が簡素化された点である。本装置の動作原理は従来装置
と同じである。すなわち、光記録媒体305は、回転制御
手段でコントロ−ルされたモ−タ303により回転する。
上記回転する光記録媒体305の半径方向にアクチュエ−
タ302に搭載された光ヘッド301が、走査制御手段により
走査駆動し、それと同期して光記録媒体からの光情報30
6が光ヘッド301内で電気信号に変換され、必要な信号処
理手段で処理されるものである。
Fifth Embodiment FIG. 12 shows an optical information recording / reproducing apparatus in which the optical head shown in the third embodiment is applied to a conventional optical information recording / reproducing apparatus.
It is a figure which shows the outline of 304. The feature of this embodiment is that the optical head 301 is mounted on the actuator 302 and the configuration of the optical system is simplified. The operating principle of this device is the same as the conventional device. That is, the optical recording medium 305 is rotated by the motor 303 controlled by the rotation control means.
Actuator in the radial direction of the rotating optical recording medium 305.
The optical head 301 mounted on the optical disk 302 is driven to scan by the scanning control means, and in synchronization therewith, the optical information 30 from the optical recording medium is transmitted.
6 is converted into an electric signal in the optical head 301 and processed by a necessary signal processing means.

【0062】この光情報記録・再生装置は、光ヘッドに
よりレ−ザ光を0.5μmという従来の半分のスポット径
に集束できるため、記録密度を従来ヘッドの4倍にする
ことができ、また、搭載している導波路形波長変換素子
の重量がきわめて小さいため、アクセス時間は従来のも
のと変わらないという特徴を持っている。
In this optical information recording / reproducing apparatus, since the laser light can be focused by the optical head to a spot diameter of 0.5 μm, which is half that of the conventional one, the recording density can be made four times that of the conventional head. Since the weight of the waveguide type wavelength conversion element mounted is extremely small, the access time is the same as that of the conventional one.

【0063】[0063]

【発明の効果】上記のように本発明による導波路形第二
高調波発生素子は、自発分極をもつ基板と該基板より屈
折率が高い光導波層からなる導波路形第二高調波発生素
子において、上記基板および上記光導波層の自発分極が
周期的に反転していることにより位相整合が容易で、し
かも上記光導波層の屈折率が一様で、かつ、分極反転格
子の断面形状を矩形にしたことにより高効率の導波路形
波長変換素子を作製することができる。また、上記素子
を半導体レ−ザおよび集束レンズと組合せることによ
り、小型で軽量な可視光光源を構成することができる。
さらに、上記光源を従来の光情報記録・再生装置に組込
むことにより、記録密度が4倍であってアクセス時間が
従来装置と同等の光情報記録・再生装置を構成すること
ができる。
As described above, the waveguide type second harmonic wave generating element according to the present invention comprises a substrate having spontaneous polarization and an optical waveguide layer having a refractive index higher than that of the substrate. In the above, since the spontaneous polarization of the substrate and the optical waveguide layer is periodically inverted, phase matching is easy, the refractive index of the optical waveguide layer is uniform, and the cross-sectional shape of the polarization inversion grating is By making it rectangular, a highly efficient waveguide type wavelength conversion element can be manufactured. Further, by combining the above element with a semiconductor laser and a focusing lens, a small and lightweight visible light source can be constructed.
Further, by incorporating the above light source into the conventional optical information recording / reproducing apparatus, an optical information recording / reproducing apparatus having a recording density of 4 times and an access time equivalent to that of the conventional apparatus can be constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による可視光発生用光源の一実施例を示
す構成図で、(a)は平面図、(b)は断面図である。
FIG. 1 is a configuration diagram showing an embodiment of a light source for generating visible light according to the present invention, in which (a) is a plan view and (b) is a sectional view.

【図2】温度位相整合法を用いた従来の第二高調波発生
素子を示す図である。
FIG. 2 is a diagram showing a conventional second harmonic generation element using a temperature phase matching method.

【図3】チェレンコフ輻射を用いた従来の第二高調波発
生素子を示す図である。
FIG. 3 is a diagram showing a conventional second harmonic generation element using Cherenkov radiation.

【図4】分極反転を用いた従来の第二高調波発生素子を
示す図である。
FIG. 4 is a diagram showing a conventional second harmonic generation element using polarization inversion.

【図5】(a)〜(d)はそれぞれ本発明素子による第
二高調波発生原理の説明図である。
5 (a) to 5 (d) are explanatory views of the principle of second harmonic generation by the device of the present invention.

【図6】本発明による可視光発生用光源の第二の実施例
を示す構成図で、(a)は平面図、(b)は断面図であ
る。
6A and 6B are configuration diagrams showing a second embodiment of the light source for generating visible light according to the present invention, FIG. 6A is a plan view and FIG. 6B is a sectional view.

【図7】(a)〜(d)は本発明の第二の実施例の素子
による第二高調波発生原理の説明図である。
7 (a) to 7 (d) are explanatory views of the second harmonic generation principle by the element of the second embodiment of the present invention.

【図8】(a)〜(f)は上記第二高調波による可視光
発生用光源の製造工程をそれぞれ示す図である。
8A to 8F are views showing respective manufacturing steps of the light source for generating visible light by the second harmonic.

【図9】(a)〜(f)は上記第二の実施例の第二高調
波による可視光発生用光源の製造工程をそれぞれ示す図
である。
9 (a) to 9 (f) are views showing a manufacturing process of a light source for generating visible light by the second harmonic of the second embodiment.

【図10】本発明の第二高調波発生素子を搭載した追記
型光ヘッドの概略図である。
FIG. 10 is a schematic view of a write-once type optical head equipped with the second harmonic generation element of the present invention.

【図11】本発明の第二高調波発生素子を搭載した光磁
気型光ヘッドの概略図である。
FIG. 11 is a schematic view of a magneto-optical head equipped with the second harmonic generation element of the present invention.

【図12】本発明の第二高調波発生素子を搭載した光情
報記録再生装置の構成図である。
FIG. 12 is a configuration diagram of an optical information recording / reproducing apparatus equipped with a second harmonic generation element of the present invention.

【符号の説明】[Explanation of symbols]

14…基板(LiNbO3) 64…基板(LiTaO3) 17…薄膜中で分極が反転されている部分 31,42…プロトン交換チャンネル型光導波路 51,71…自発分極をもつ基板 52,72…光導波層 105…収束レンズ系 301…光ヘッド 106,206,305…光記録媒体14 ... Substrate (LiNbO 3 ) 64 ... Substrate (LiTaO 3 ) 17 ... Inverted polarization portion of thin film 31, 42 ... Proton exchange channel type optical waveguide 51, 71 ... Substrate with spontaneous polarization 52, 72 ... Optical Wave layer 105 ... Converging lens system 301 ... Optical head 106, 206, 305 ... Optical recording medium

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楓 弘志 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 伊藤 康平 東京都千代田区丸ノ内二丁目1番2号日立 金属株式会社内 (72)発明者 牧尾 諭 東京都千代田区丸ノ内二丁目1番2号日立 金属株式会社内 (72)発明者 佐藤 正純 東京都千代田区丸ノ内二丁目1番2号日立 金属株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroshi Kaede Inventor Hiroshi Kaede 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa, Ltd., Institute of Industrial Science, Hitachi, Ltd. (72) Kohei Ito 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Within Hitachi Metals Co., Ltd. (72) Inventor Satoshi Makio 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Within Hitachi Metals Co., Ltd. (72) Masazumi Sato 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Hitachi Metals Co., Ltd. Within

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】光学基板と、該基板より屈折率の高い光導
波層から成る第二高調波発生素子において、前記基板の
一部および光導波層両者の非線形光学係数が周期的に反
転せしめられていることを特徴とする第二高調波発生素
1. A second harmonic generation element comprising an optical substrate and an optical waveguide layer having a refractive index higher than that of the substrate, wherein nonlinear optical coefficients of both the optical waveguide layer and a part of the substrate are periodically inverted. Second harmonic generation element characterized by
【請求項2】請求項1の光素子において、光導波層にお
ける非線形光学係数の周期的反転境界線が、前記基板と
前記光導波層との境界線となす角度が75゜〜105゜
であることを特徴とする請求項1記載の第二高調波発生
素子
2. The optical device according to claim 1, wherein the boundary line between the periodic inversion of the nonlinear optical coefficient in the optical waveguide layer and the boundary line between the substrate and the optical waveguide layer is 75 ° to 105 °. The second harmonic generation element according to claim 1, characterized in that
【請求項3】請求項1もしくは2記載の基板は、マグネ
シウムがドープされたニオブ酸リチウムであり、光導波
層がニオブ酸リチウム、又は基板よりマグネシウムのド
ープ量が少ないニオブ酸リチウムであることを特徴とす
る請求項1もしくは2記載の第二高調波発生素子。
3. The substrate according to claim 1, wherein the optical waveguide layer is lithium niobate doped with magnesium, or the optical waveguide layer is lithium niobate having a smaller amount of magnesium doped than the substrate. The second harmonic generation element according to claim 1 or 2, which is characterized.
【請求項4】請求項1もしくは2記載の基板は、タンタ
ル酸リチウムであり、光導波層がタンタルニオブ酸リチ
ウム(組成式を化1に示す)であることを特徴とする請
求項1もしくは2記載の第二高調波発生素子。 【化1】
4. The substrate according to claim 1 or 2 is lithium tantalate, and the optical waveguide layer is lithium tantalum niobate (compositional formula is shown in Chemical formula 1). The second harmonic generation element described. [Chemical 1]
【請求項5】請求項1もしくは2記載の基板が予め周期
的に分極反転された基板であり、この基板上に光導波層
を作製する方法が、光導波層を構成する強誘電体金属酸
化物の原料粉末をフラックス存在下で加熱溶融すること
により溶融体を準備する工程と、前記基板の分極反転さ
れた表面を前記溶融体に接触させ、前記溶融体の温度を
結晶析出温度に降下し、前記基板上に請求項1もしくは
4記載の光導波層を構成する金属酸化膜を液相エピタキ
シャル成長させる工程を有することを特徴とする請求項
1もしくは2記載の第二高調波発生素子の製造方法。
5. The substrate according to claim 1 or 2 is a substrate in which the polarization is periodically inverted beforehand, and a method of forming an optical waveguide layer on the substrate is a ferroelectric metal oxide forming the optical waveguide layer. A step of preparing a melt by heating and melting a raw material powder of a product in the presence of a flux, bringing the surface of the substrate whose polarization has been inverted into contact with the melt, and lowering the temperature of the melt to a crystal precipitation temperature. 3. A method of manufacturing a second harmonic generation element according to claim 1 or 2, further comprising a step of liquid phase epitaxially growing a metal oxide film forming the optical waveguide layer according to claim 1 or 4 on the substrate. ..
【請求項6】請求項5記載の第二高調波発生素子の製造
方法において、用いるフラックスがバナジウム酸リチウ
ム(LiVO3)、もしくはホウ酸リチウム(Li22
4)、もしくはフッ化リチウム(LiF)、もしくは
フッ化カリウム(KF)であることを特徴とする請求項
1もしくは2記載の第二高調波発生素子の製造方法。
6. The method for manufacturing a second harmonic generation element according to claim 5, wherein the flux used is lithium vanadate (LiVO 3 ) or lithium borate (Li 2 B 2).
O 4 ), lithium fluoride (LiF), or potassium fluoride (KF), The manufacturing method of the second harmonic generation element according to claim 1 or 2 characterized by things.
【請求項7】請求項1もしくは請求項2記載の第二高調
発生素子と、波長780nmから1100nmの近赤外
半導体レーザ光源と、該レーザ光源から出射するレーザ
光を導波路端面に集光するレンズ系からなる可視光発生
用光源。
7. A second harmonic generation element according to claim 1 or 2, a near infrared semiconductor laser light source having a wavelength of 780 nm to 1100 nm, and a laser beam emitted from the laser light source is condensed on an end face of a waveguide. Visible light source consisting of a lens system.
【請求項8】上記請求項7記載の可視光発生用光源と、
該光源から出射する光を光記録媒体の記録、再生面上に
集光する集光手段と、上記光記録媒体の記録、再生面か
らの反射光を受光し検出する手段を備えた光ヘッド
8. A light source for generating visible light according to claim 7,
An optical head provided with a condensing means for condensing the light emitted from the light source on the recording / reproducing surface of the optical recording medium, and means for receiving and detecting the reflected light from the recording / reproducing surface of the optical recording medium.
【請求項9】光記録媒体を回転駆動する回転駆動制御手
段と、上記光記録媒体の半径方向に所定間隔をへだてて
駆動する光情報の記録、再生を行う光ヘッドと、該光ヘ
ッドを搭載して走査、駆動するアクチュエータとを備え
た光情報記録再生装置において、上記アクチュエータに
搭載する光ヘッドは、請求項8記載の光ヘッドであるこ
とを特徴とする光情報記録再生装置。
9. A rotation drive control means for rotationally driving an optical recording medium, an optical head for recording and reproducing optical information which is driven at predetermined intervals in a radial direction of the optical recording medium, and the optical head is mounted. 9. An optical information recording / reproducing apparatus provided with an actuator for scanning and driving the optical information recording / reproducing apparatus, wherein the optical head mounted on the actuator is the optical head according to claim 8.
JP3342693A 1991-12-25 1991-12-25 Guidewave type second harmonic generating element Pending JPH05173213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3342693A JPH05173213A (en) 1991-12-25 1991-12-25 Guidewave type second harmonic generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342693A JPH05173213A (en) 1991-12-25 1991-12-25 Guidewave type second harmonic generating element

Publications (1)

Publication Number Publication Date
JPH05173213A true JPH05173213A (en) 1993-07-13

Family

ID=18355768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342693A Pending JPH05173213A (en) 1991-12-25 1991-12-25 Guidewave type second harmonic generating element

Country Status (1)

Country Link
JP (1) JPH05173213A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737117A (en) * 1995-04-10 1998-04-07 Ngk Insulators, Ltd. Second harmonic generation element and a process for producing the same
US6181462B1 (en) 1998-05-27 2001-01-30 Ngk Insulators, Ltd. Second harmonic wave-generation device
JP2002099009A (en) * 1994-08-31 2002-04-05 Matsushita Electric Ind Co Ltd Manufacturing method of polarization inversion region and optical wavelength conversion element using the same
US6654529B1 (en) 1998-08-19 2003-11-25 Ngk Insulators, Ltd. Ferroelectric domain inverted waveguide structure and a method for producing a ferroelectric domain inverted waveguide structure
WO2007066747A1 (en) * 2005-12-09 2007-06-14 Matsushita Electric Industrial Co., Ltd. Fiber laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002099009A (en) * 1994-08-31 2002-04-05 Matsushita Electric Ind Co Ltd Manufacturing method of polarization inversion region and optical wavelength conversion element using the same
US5737117A (en) * 1995-04-10 1998-04-07 Ngk Insulators, Ltd. Second harmonic generation element and a process for producing the same
US6181462B1 (en) 1998-05-27 2001-01-30 Ngk Insulators, Ltd. Second harmonic wave-generation device
US6654529B1 (en) 1998-08-19 2003-11-25 Ngk Insulators, Ltd. Ferroelectric domain inverted waveguide structure and a method for producing a ferroelectric domain inverted waveguide structure
WO2007066747A1 (en) * 2005-12-09 2007-06-14 Matsushita Electric Industrial Co., Ltd. Fiber laser

Similar Documents

Publication Publication Date Title
Chen et al. Guided-wave electro-optic beam deflector using domain reversal in LiTaO/sub 3
US5854870A (en) Short-wavelength laser light source
CN110568694B (en) Frequency converter based on ridge-type lithium niobate single crystal thin film waveguide integrated periodic domain inversion structure and preparation method thereof
US5274727A (en) Second harmonic generator and method of fabrication thereof
JP3059080B2 (en) Method for manufacturing domain-inverted region, optical wavelength conversion element and short wavelength light source using the same
US5191624A (en) Optical information storing apparatus and method for production of optical deflector
JPH05173213A (en) Guidewave type second harmonic generating element
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
JPH1172809A (en) Optical wavelength conversion element and its production, optical generator using this element and optical pickup, diffraction element as well as production of plural polarization inversion part
JP3050333B2 (en) Method for manufacturing second harmonic generation element
JP4084460B2 (en) Optical waveguide, optical wavelength conversion element, short wavelength light generator and optical pickup using the optical waveguide
JP2851935B2 (en) Collinear optical deflector, method of manufacturing the same, optical deflector, optical integrated head, and optical information recording / reproducing device
JPH05257184A (en) Waveguide resonance type shg light source and its manufacture
EP0454071B1 (en) Wavelength conversion by quasi phase matching and the manufacture and use of optical articles therefor
EP0452828B1 (en) Optical waveguide device and optical second harmonic generator using the same
JPH0517295A (en) Lithium niobate single crystal thin film subjected to domain inversion treatment
JPH06174908A (en) Production of waveguide type diffraction grating
JP3086239B2 (en) Proton exchange optical waveguide, method of manufacturing the same, and optical deflector using this waveguide
JPH04335329A (en) Production of second harmonic generating element having dielectric polarization inversion grating
JPH03287141A (en) Waveguide type wavelength converting element
JPH0667233A (en) Waveguide type second higher harmonic generating element and its production
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JPH0667234A (en) Waveguide internal resonance type shg light source
JPH052201A (en) Second harmonic wave generating element and production thereof