JPH0667114A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPH0667114A
JPH0667114A JP4218841A JP21884192A JPH0667114A JP H0667114 A JPH0667114 A JP H0667114A JP 4218841 A JP4218841 A JP 4218841A JP 21884192 A JP21884192 A JP 21884192A JP H0667114 A JPH0667114 A JP H0667114A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
solid
state image
semiconductor substrate
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4218841A
Other languages
Japanese (ja)
Inventor
Tamotsu Yamamoto
保 山本
Soichiro Hikita
聡一郎 匹田
Masahiro Tanaka
昌弘 田中
Kazuo Ozaki
一男 尾▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4218841A priority Critical patent/JPH0667114A/en
Publication of JPH0667114A publication Critical patent/JPH0667114A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To provide the solid-state image pickup element with which the detection signals obtd. by the connected solid-state image pickup elements with each other, are the detection signals not delaying with time by laminating the ends of semiconductor substrates forming the plural solid-state image pickup elements to each other thereby forming the long-sized solid-state image pickup element. CONSTITUTION:The end of the compd. semiconductor substrate 3B is etched to a shape having a projecting part and this compd. semiconductor substrate 3B is stuck onto a supporting substrate 11 so that the end of the compd. semiconductor substrate 3A and the etched end of the compd. semiconductor substrate 3B overlap on each other. The photoelectric conversion parts formed at the ends of the respective compd. semiconductor substrates 3A, 3B are removed by etching. The photoelectric conversion part 1A-1, 1B-1 formed at the ends of the compd. semiconductor substrates 3A, 3B are prevented from being damaged by cutting if the substrates are formed in such a manner and, therefore, the photoelectric conversion part 1A-1, 1A-2..., 1B-1, 1B-2... which are not damaged are formed on one straight line. IR images free from the time lag are obtd. in spite of scanning by a mirror.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体撮像素子に係り、特
に複数の光電変換部を有する長尺寸法の固体撮像素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device, and more particularly to a long-sized solid-state image pickup device having a plurality of photoelectric conversion units.

【0002】近年、検知すべき対象物を分解能を高めて
検知することが益々要望されているため、或いはミラー
等の煩雑な走査手段を設ける必要を無くすため、複数の
光電変換部を有する固体撮像素子を、直線的に長尺寸法
で配置した固体撮像素子が要求されている。
In recent years, it has been increasingly desired to detect an object to be detected with a high resolution, or in order to eliminate the need for providing a complicated scanning means such as a mirror, a solid-state image pickup device having a plurality of photoelectric conversion sections is provided. There is a demand for a solid-state image sensor in which elements are linearly arranged in a long dimension.

【0003】[0003]

【従来の技術】従来、所定の直径を有する水銀・カドミ
ウム・テルル(HgCdTe)のような化合物半導体基板に、
或いは所定の直径のCdTe基板上にHgCdTe結晶を設けた化
合物半導体基板に前記HgCdTe基板と、或いはHgCdTe結晶
に対して逆伝導型の不純物原子を所定パターンに導入し
てpn接合部より成る光電変換部を設ける。
2. Description of the Related Art Conventionally, a compound semiconductor substrate such as mercury, cadmium, tellurium (HgCdTe) having a predetermined diameter has been used.
Alternatively, the compound semiconductor substrate having a HgCdTe crystal provided on a CdTe substrate having a predetermined diameter is used as the HgCdTe substrate, or a photoelectric conversion unit including a pn junction by introducing impurity atoms of a reverse conductivity type with respect to the HgCdTe crystal in a predetermined pattern. To provide.

【0004】そしてこの化合物半導体基板の直径より長
い寸法の固体撮像素子を形成する場合は、この化合物半
導体基板より複数の光電変換部を有する固体撮像素子
を、長方形に切り出し、この長方形に切り出した半導体
基板を直線状に整列して配置する方法が採られている。
When forming a solid-state image pickup device having a size longer than the diameter of this compound semiconductor substrate, a solid-state image pickup device having a plurality of photoelectric conversion portions is cut out from this compound semiconductor substrate into a rectangular shape, and the semiconductor cut out into the rectangular shape is cut out. A method of arranging the substrates in a straight line is adopted.

【0005】然し、化合物半導体基板より複数の固体撮
像素子を切り出すと、その切り出した端部の化合物半導
体基板の箇所は、切り出す際に応力が掛かって欠陥が発
生し易いので、従来は図5の平面図に示すように、切断
した化合物半導体基板3A,3Bの端部同士が、互い違いに
なるように図示しないサファイア基板等に接着剤で貼着
して配置する。
However, when a plurality of solid-state image pickup devices are cut out from a compound semiconductor substrate, stress is easily applied to the cut-out end portion of the compound semiconductor substrate at the time of cutting, and defects are likely to occur. As shown in the plan view, the cut ends of the compound semiconductor substrates 3A and 3B are attached to an unillustrated sapphire substrate or the like with an adhesive so that the ends thereof are staggered.

【0006】そして該化合物半導体基板3A,3B 端部に形
成された光電変換部1A-1、1B-1は、切断の際に発生する
欠陥が有るために、エッチング等の手段を用いて除去す
ることで、使用しないようにして長尺寸法の固体撮像素
子2を得ている。
Since the photoelectric conversion parts 1A-1 and 1B-1 formed at the end portions of the compound semiconductor substrates 3A and 3B have defects that occur during cutting, they are removed by means of etching or the like. As a result, the long-sized solid-state imaging device 2 is obtained without being used.

【0007】[0007]

【発明が解決しようとする課題】ところで、このように
切断した化合物半導体基板3A,3B の端部同士を互い違い
に設置した構造では、各々の基板3A,3B に形成した光電
変換部1A-1,1A-2,1A-3…と1B-1,1B-2,1B-3…が一直線上
に配置されておらず、該光電変換部1A-1,1A-2,1A-3…と
1B-1,1B-2,1B-3…に入射した光より得られた検知信号
を、ミラー等の光学系で矢印Aのように走査すると、こ
の走査された検知信号は、化合物半導体基板3A,3B の各
々に列状に配置された各々の列の光電変換部1A-1,1A-2,
1A-3…と1B-1,1B-2,1B-3…で得られる検知信号の間で、
時間的な遅延現象が生じるように成り、検知対象物を時
間的に精度良く検知して撮像できないことになる。
By the way, in the structure in which the ends of the thus cut compound semiconductor substrates 3A, 3B are placed alternately, the photoelectric conversion parts 1A-1, 1A-1, 3B formed on the respective substrates 3A, 3B are arranged. 1A-2, 1A-3 ... and 1B-1, 1B-2, 1B-3 ... are not arranged on a straight line, and the photoelectric conversion units 1A-1, 1A-2, 1A-3.
When a detection signal obtained from the light incident on 1B-1, 1B-2, 1B-3 ... Is scanned by an optical system such as a mirror as shown by an arrow A, the scanned detection signal is detected by the compound semiconductor substrate 3A. , 3B arranged in a row in each of the photoelectric conversion units 1A-1, 1A-2,
Between the detection signals obtained at 1A-3 ... and 1B-1,1B-2,1B-3 ...
As a result, a time delay phenomenon occurs, and the detection target object cannot be detected with high accuracy in terms of time.

【0008】本発明は上記した問題点を解決し、接続し
た固体撮像素子同士で得られる検知信号が、時間的に遅
延しないような検知信号となるような固体撮像素子の提
供を目的とするものである。
An object of the present invention is to solve the above problems and to provide a solid-state image pickup device in which a detection signal obtained between connected solid-state image pickup devices becomes a detection signal which is not delayed in time. Is.

【0009】[0009]

【課題を解決するための手段】本発明の固体撮像素子
は、請求項1に示すように複数の光電変換部を有する固
体撮像素子を接続して長尺寸法の固体撮像素子を形成す
る場合に於いて、前記複数の固体撮像素子を形成した半
導体基板の端部同士を互いに積層して形成することを特
徴とする。
According to the solid-state image pickup device of the present invention, when a solid-state image pickup device having a plurality of photoelectric conversion parts is connected to form a long-sized solid-state image pickup device as described in claim 1. In this case, the semiconductor substrate on which the plurality of solid-state imaging devices are formed is formed by laminating the end portions of each other.

【0010】また請求項2に示すように、前記半導体基
板長さと、厚さを適宜変化させ、積層した半導体基板の
光電変換部を、該撮像素子に入射光を集光する集光レン
ズの焦点面と合致させたことを特徴とする。
Further, as described in claim 2, the length and thickness of the semiconductor substrate are appropriately changed, and the photoelectric conversion portion of the stacked semiconductor substrates is provided with a focus of a condenser lens for condensing incident light on the image pickup device. Characterized by matching with the surface.

【0011】また請求項3に示すように、前記固体撮像
素子を形成した半導体基板を積層する際に、屈折率調整
部材を前記半導体基板と集光レンズの間に設けて、前記
集光レンズの焦点面と積層した固体撮像素子の光電変換
部とを合致させたことを特徴とする。
Further, as described in claim 3, when stacking the semiconductor substrates on which the solid-state imaging device is formed, a refractive index adjusting member is provided between the semiconductor substrate and the condenser lens so that the condenser lens is It is characterized in that the focal plane and the photoelectric conversion section of the stacked solid-state imaging device are matched.

【0012】[0012]

【作用】本発明の固体撮像素子は、光電変換部を形成し
た半導体基板を切断し、該半導体基板の端部同士が重な
るように配置し、半導体基板の端部に形成された光電変
換部をエッチングで除去して、このエッチングした部分
を入射光が透過して下部の半導体基板の光電変換部に到
達するようにする。
In the solid-state imaging device of the present invention, the semiconductor substrate on which the photoelectric conversion section is formed is cut and arranged so that the ends of the semiconductor substrate overlap with each other, and the photoelectric conversion section formed at the end of the semiconductor substrate is removed. It is removed by etching so that incident light is transmitted through this etched portion and reaches the photoelectric conversion portion of the lower semiconductor substrate.

【0013】また上記のように光電変換部を形成した半
導体基板を単に端部に於いて重ね合わせるだけでは、該
光電変換部が集光レンズの焦点面に合致しない恐れがあ
るので、光電変換部を形成して切断する半導体基板の厚
さと長さを、適宜所定の寸法に調節して切断し、配列さ
れる光電変換部を、集光レンズの焦点面に沿うように階
段状に重ね合わせて配置する。
Further, if the semiconductor substrates on which the photoelectric conversion portions are formed as described above are simply overlapped at the end portions, the photoelectric conversion portions may not match the focal plane of the condenser lens. The thickness and length of the semiconductor substrate to be formed and cut are adjusted to predetermined dimensions as appropriate and cut, and the photoelectric conversion units arranged are stacked stepwise along the focal plane of the condenser lens. Deploy.

【0014】図4に集光レンズの中心Oより半径方向の
位置に対して、該集光レンズに入射する光線の波長と、
焦点面の関係を示す。図4で縦軸は像の高さを規格化し
た値を示し、像の高さが10mmであるので、1.00の値が10
mmに該当する。横軸は集光レンズの中心Oより水平方向
の位置を示し、曲線a,b,c,d,e,fは、該集光レンズに波
長8000nm,9000nm,10000nm,11000nm, 12000nm,13000nmの
各々の光が入射した場合の焦点を結んだ曲線で焦点面を
示している。
FIG. 4 shows the wavelength of the light beam incident on the condenser lens with respect to the position in the radial direction from the center O of the condenser lens,
The relationship of the focal planes is shown. In Fig. 4, the vertical axis indicates the value obtained by standardizing the image height. Since the image height is 10 mm, the value of 1.00 is 10
It corresponds to mm. The horizontal axis indicates the position in the horizontal direction from the center O of the condenser lens, and the curves a, b, c, d, e, f show the condenser lens at wavelengths of 8000 nm, 9000 nm, 10000 nm, 11000 nm, 12000 nm, 13000 nm, respectively. The focal plane is indicated by a curve that connects the focal points when the light enters.

【0015】このように集光レンズに入射する光は、そ
の波長によって集光レンズを透過した入射光が結像する
焦点の位置を結んだ焦点面が異なるので、入射する赤外
線の波長に応じて、焦点面の位置、形状を確認して、こ
の焦点面に合致するように固体撮像素子の光電変換部を
階段状に積層する。
As described above, the light incident on the condenser lens has different focal planes connecting the positions of the focal points where the incident light transmitted through the condenser lens forms an image, depending on the wavelength of the light. The position and shape of the focal plane are confirmed, and the photoelectric conversion units of the solid-state imaging device are stacked stepwise so as to match the focal plane.

【0016】また光電変換部を形成した半導体基板の一
方に屈折率調整部材を設置し、積層した基板に形成した
各々の光電変換部が集光レンズの焦点面に合致するよう
にする。
Further, a refractive index adjusting member is provided on one side of the semiconductor substrate on which the photoelectric conversion section is formed so that each photoelectric conversion section formed on the stacked substrates matches the focal plane of the condenser lens.

【0017】[0017]

【実施例】以下、図面を用いて本発明の実施例につき詳
細に説明する。図1(a)は本発明の固体撮像素子の平面
図、図1(b)は本発明の固体撮像素子の断面図である。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 (a) is a plan view of the solid-state image sensor of the present invention, and FIG. 1 (b) is a sectional view of the solid-state image sensor of the present invention.

【0018】図1(a)および図1(b)に示すように、p 型の
HgCdTe結晶を表面に気相成長法で形成したCdTe基板より
なる化合物半導体基板3Aの前記p 型のHgCdTe結晶に、30
μm×30μm の寸法で、かつ50μm のピッチでn 型の不
純物原子を導入して、光電変換部1A-1,1A-2,1A-3 …を
設け、固体撮像素子2Aを形成する。
As shown in FIGS. 1 (a) and 1 (b), the p-type
The p-type HgCdTe crystal of the compound semiconductor substrate 3A made of a CdTe substrate formed on the surface of the HgCdTe crystal by vapor phase epitaxy
The photoelectric conversion units 1A-1, 1A-2, 1A-3 ... Are provided by introducing n-type impurity atoms at a pitch of 50 μm with a size of μm × 30 μm to form the solid-state image pickup device 2A.

【0019】またp 型のHgCdTe結晶を表面に気相成長法
で形成したCdTe基板よりなる化合物半導体基板3Bの前記
p 型のHgCdTe結晶に、30μm ×30μm の寸法で、かつ50
μmのピッチでn 型の不純物原子を導入して、光電変換
部1B-1,1B-2,1B-3 …を設け、固体撮像素子2Bを形成す
る。
The compound semiconductor substrate 3B made of a CdTe substrate on the surface of which a p-type HgCdTe crystal is formed by vapor phase epitaxy is used.
A p-type HgCdTe crystal with dimensions of 30 μm × 30 μm and 50
Introducing n-type impurity atoms at a pitch of μm to provide photoelectric conversion units 1B-1, 1B-2, 1B-3 ..., And to form a solid-state imaging device 2B.

【0020】上記した各化合物半導体基板3A,3B は直径
が3インチのCdTe基板より長方形状に切断したものとす
る。このような化合物半導体基板3Bの端部を選択的に突
出部を有する形状にエッチングして、該基板3Bを石英よ
りなる支持基板11上に接着剤を用いて貼着し、化合物半
導体基板3Aの端部と、エッチングした化合物半導体基板
3Bの端部が互いに重なるようにする。
Each of the compound semiconductor substrates 3A and 3B described above is cut into a rectangular shape from a CdTe substrate having a diameter of 3 inches. Such an end portion of the compound semiconductor substrate 3B is selectively etched into a shape having a protruding portion, and the substrate 3B is attached to the supporting substrate 11 made of quartz with an adhesive to remove the compound semiconductor substrate 3A. Edge and etched compound semiconductor substrate
Make the ends of 3B overlap each other.

【0021】そして、上記化合物半導体基板3Aは端部に
形成した光電変換部1A-1より50μmの距離で切断するよ
うにし、また上記化合物半導体基板3Bは端部に形成した
光電変換部1B-2より50μm の距離で切断するようにす
る。
Then, the compound semiconductor substrate 3A is cut at a distance of 50 μm from the photoelectric conversion section 1A-1 formed at the end portion, and the compound semiconductor substrate 3B is cut at the photoelectric conversion section 1B-2 formed at the end portion. Try to cut at a distance of 50 μm.

【0022】そして各々の化合物半導体基板3Aと3Bの端
部に形成され、点線で示した光電変換部はエッチングで
除去するようにする。このようにすると、上記化合物半
導体基板3Aと3Bの端部に形成された光電変換部1A-1と1B
-1は切断による損傷が入らない状態であるので、一直線
上に損傷が入らない光電変換部1A-1,1A-2 …と1B-1,1B-
2 …が形成されるので、ミラーによって矢印A方向に走
査しても時間的なずれの無い赤外線画像が得られる。
Then, the photoelectric conversion portions formed by the dotted lines and formed at the end portions of the respective compound semiconductor substrates 3A and 3B are removed by etching. In this way, the photoelectric conversion parts 1A-1 and 1B formed at the ends of the compound semiconductor substrates 3A and 3B are formed.
-1 is the state where no damage is caused by cutting, so the photoelectric conversion units 1A-1, 1A-2 ... and 1B-1, 1B- where damage is not in a straight line
2 is formed, an infrared image with no time lag can be obtained even if the mirror scans in the direction of arrow A.

【0023】本発明の第2実施例を図2に示す。前記し
た図4に示すように、集光レンズに入射する光は、その
波長によって集光レンズを透過した入射光が結像する焦
点の位置を結んだ焦点面が異なるので、入射する赤外線
の波長に応じて、集光レンズの焦点面の形状を確認す
る。
A second embodiment of the present invention is shown in FIG. As shown in FIG. 4, the light incident on the condenser lens has different focal planes that connect the focal points where the incident light transmitted through the condenser lens forms an image, depending on the wavelength of the light. Check the shape of the focal plane of the condensing lens according to.

【0024】そして図2に於けるように、焦点面12の形
状に沿った形状の階段状の石英等よりなる支持基板11を
加工し、その階段状の支持基板11上に所定の固体撮像素
子の光電変換部1を形成した化合物半導体基板3を、前
記光電変換部1が焦点面12の形状に沿うように化合物半
導体基板3の厚さと長さを調節し、この厚さと長さを調
節した化合物半導体基板3を階段状の支持基板11上に接
着剤を用いて接着する。
Then, as shown in FIG. 2, a supporting substrate 11 made of quartz or the like having a step shape along the shape of the focal plane 12 is processed, and a predetermined solid-state image pickup device is formed on the step supporting substrate 11. In the compound semiconductor substrate 3 having the photoelectric conversion part 1 formed therein, the thickness and the length of the compound semiconductor substrate 3 are adjusted so that the photoelectric conversion part 1 follows the shape of the focal plane 12, and the thickness and the length are adjusted. The compound semiconductor substrate 3 is bonded onto the stepped support substrate 11 using an adhesive.

【0025】なお、図2では光電変換部1を1個だけ示
したが、この光電変換部をピッチを狭くして複数個、前
記焦点面12の形状に沿うように配置しても良い。本発明
の第3実施例を図3に示す。第3実施例は第1実施例を
更に改良したもので、前記した図1(b)に示すように、光
電変換部1A-1,1A-2,1A-3…を形成した化合物半導体基板
3Aと、光電変換部1B-1,1B-2,1B-3…を形成した化合物半
導体基板3Bの厚さが厚くなると、上記した光電変換部1A
-1,1A-2,1A-3…と、光電変換部1B-1,1B-2,1B-3…は、集
光レンズの焦点面に合致しなくなる。
Although only one photoelectric conversion unit 1 is shown in FIG. 2, a plurality of photoelectric conversion units may be arranged at a narrow pitch so as to follow the shape of the focal plane 12. A third embodiment of the present invention is shown in FIG. The third embodiment is a further improvement of the first embodiment, and as shown in FIG. 1 (b), a compound semiconductor substrate having photoelectric conversion parts 1A-1, 1A-2, 1A-3 ...
When the thickness of the compound semiconductor substrate 3B on which 3A and the photoelectric conversion parts 1B-1, 1B-2, 1B-3 ...
-1,1A-2,1A-3 ... and the photoelectric conversion units 1B-1,1B-2,1B-3 ... do not match the focal plane of the condenser lens.

【0026】そのため、光電変換部1A-2,1A-3 …と、光
電変換部1B-1,1B-2,1B-3…の総てが集光レンズの焦点面
に合致するように、光電変換部1A-2,1A-3 …上にゲルマ
ニウムより成る屈折率調整部材13を設置する。
Therefore, the photoelectric conversion units 1A-2, 1A-3, ... And the photoelectric conversion units 1B-1, 1B-2, 1B-3 ,. A refractive index adjusting member 13 made of germanium is installed on the conversion units 1A-2, 1A-3 ....

【0027】この光電変換部1A-2,1A-3 …と、光電変換
部1B-1,1B-2,1B-3…は、CdTe基板上にHgCdTe層を形成
し、このHgCdTe層に光電変換部1A-2,1A-3 …と、光電変
換部1B-1,1B-2,1B-3…を形成するものとする。
The photoelectric conversion units 1A-2, 1A-3, ... And the photoelectric conversion units 1B-1, 1B-2, 1B-3, ... Form an HgCdTe layer on a CdTe substrate, and the HgCdTe layer is photoelectrically converted. The parts 1A-2, 1A-3, ... And the photoelectric conversion parts 1B-1, 1B-2, 1B-3 ,.

【0028】この屈折率調整部材13は屈折率が4のゲル
マニウム基板を用い、光電変換部1A-2,1A-3,1A-4上の該
屈折率調整部材13の厚さt1は1067μm とし、光電変化部
1A-1上はCdTe基板が存在するので、そのCdTe基板の透過
率を考慮して屈折率調整部材13の厚さt2は470.5 μm と
する。
The refractive index adjusting member 13 uses a germanium substrate having a refractive index of 4, and the thickness t 1 of the refractive index adjusting member 13 on the photoelectric conversion parts 1A-2, 1A-3, 1A-4 is 1067 μm. , Photoelectric conversion part
Since the CdTe substrate exists on 1A-1, the thickness t 2 of the refractive index adjusting member 13 is set to 470.5 μm in consideration of the transmittance of the CdTe substrate.

【0029】このようにすると光電変換部1A-1,1A-2,1A
-3…と、光電変換部1B-1,1B-2,1B-3…は、光電変換部1A
-1,1A-2,1A-3…上に屈折率調整部材13が配置されている
ので光電変換部1A-1,1A-2,1A-3…と、光電変換部1B-1,1
B-2,1B-3…上より集光レンズを用いて赤外線を照射した
場合、光源より光電変換部1A-1,1A-2,1A-3…と、光電変
換部1B-1,1B-2,1B-3…に到る光学的距離は等しくなる。
In this way, the photoelectric conversion units 1A-1, 1A-2, 1A
-3 ... and the photoelectric conversion units 1B-1, 1B-2, 1B-3 ...
-1,1A-2,1A-3 ... Since the refractive index adjusting member 13 is disposed on the photoelectric conversion units 1A-1,1A-2,1A-3 ..., and the photoelectric conversion units 1B-1,1.
B-2, 1B-3 ... When infrared rays are radiated from above using a condenser lens, the photoelectric conversion units 1A-1, 1A-2, 1A-3 ... and the photoelectric conversion units 1B-1, 1B- from the light source. The optical distances to 2,1B-3 ... are equal.

【0030】そのため、光電変換部1A-1,1A-2,1A-3…
と、光電変換部1B-1,1B-2,1B-3…は、集光レンズの焦点
面に合致するようになり、第1実施例に比較してより高
性能な固体撮像素子が得られる。なお、上記した屈折率
調整部材は、ゲルマニウムの他に、Si、或いはCdTe基板
等の赤外線透過部材であると何れでも良い。
Therefore, the photoelectric conversion units 1A-1, 1A-2, 1A-3 ...
Then, the photoelectric conversion units 1B-1, 1B-2, 1B-3 ... Align with the focal plane of the condenser lens, and a higher performance solid-state image sensor can be obtained as compared with the first embodiment. . In addition to germanium, the above-mentioned refractive index adjusting member may be any infrared transmitting member such as Si or CdTe substrate.

【0031】また図3(b)の平面図に示すように、上記光
電変換部1A-1,1A-2,1A-3…の信号を処理する信号処理装
置14と上記光電変換部1B-1,1B-2,1B-3…の信号を処理す
る信号処理装置15を設け、各光電変換部で得られた信号
を信号処理する。
As shown in the plan view of FIG. 3 (b), the signal processing device 14 for processing the signals of the photoelectric conversion units 1A-1, 1A-2, 1A-3 ... And the photoelectric conversion unit 1B-1. , 1B-2, 1B-3 ... Are provided with a signal processing device 15, and the signals obtained by the photoelectric conversion units are processed.

【0032】以上述べたように、本発明の固体撮像素子
によると、半導体基板の切断された端部で形成された光
電変換部は使用しなくても済み、かつ光電変換部が一列
に配置されているので、該光電変換部で得られた信号を
走査した場合、時間的遅れの発生しない検知信号が得ら
れる。
As described above, according to the solid-state image pickup device of the present invention, it is not necessary to use the photoelectric conversion parts formed at the cut ends of the semiconductor substrate, and the photoelectric conversion parts are arranged in a line. Therefore, when the signal obtained by the photoelectric conversion unit is scanned, a detection signal with no time delay is obtained.

【0033】また積層された固体撮像素子の光電変換部
が集光レンズの焦点面に合致するので、高解像度の固体
撮像素子が得られる。なお、本実施例では光電変換部を
一列に設けた固体撮像素子に例を用いて説明したが、光
電変換部を複数列配置した固体撮像素子に於いても本発
明は適用することが可能である。
Further, since the photoelectric conversion parts of the stacked solid-state image pickup elements are aligned with the focal plane of the condenser lens, a high-resolution solid-state image pickup element can be obtained. Although the present embodiment has been described by using an example of a solid-state imaging device having photoelectric conversion units arranged in a line, the present invention can be applied to a solid-state imaging device having photoelectric conversion units arranged in a plurality of columns. is there.

【0034】[0034]

【発明の効果】以上述べたように、本発明の固体撮像素
子によれば、集光レンズで走査した場合に走査信号に時
間遅れを生じない固体撮像素子が得られる。
As described above, according to the solid-state image pickup device of the present invention, it is possible to obtain a solid-state image pickup device which does not cause a time delay in a scanning signal when scanning is performed by a condenser lens.

【0035】また光電変換部が集光レンズの焦点面に合
致しているので、高解像度の固体撮像素子が得られる効
果がある。
Further, since the photoelectric conversion part is aligned with the focal plane of the condenser lens, there is an effect that a high resolution solid-state image pickup device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の固体撮像素子の第1実施例の平面図
と断面図である。
FIG. 1 is a plan view and a sectional view of a first embodiment of a solid-state image sensor according to the present invention.

【図2】 本発明の固体撮像素子の第2実施例の断面図
である。
FIG. 2 is a sectional view of a second embodiment of the solid-state imaging device of the present invention.

【図3】 本発明の固体撮像素子の第3実施例の断面図
と平面図である。
3A and 3B are a sectional view and a plan view of a third embodiment of the solid-state image pickup device of the present invention.

【図4】 集光レンズの波長による焦点面の説明図であ
る。
FIG. 4 is an explanatory diagram of a focal plane according to a wavelength of a condenser lens.

【図5】 従来の固体撮像素子の平面図である。FIG. 5 is a plan view of a conventional solid-state image sensor.

【符号の説明】[Explanation of symbols]

1,1A-1,1A-2,1A-3 …光電変換部 1B-1,1B-2,1B-3 …光電変換部 2,2A,2B 固体撮像素子 3,3A,3B 化合物半導体基板 11 支持基板 12 焦点面 13 屈折率調整部材 14,15 信号処理装置 1,1A-1,1A-2,1A-3… Photoelectric converter 1B-1,1B-2,1B-3… Photoelectric converter 2,2A, 2B Solid-state image sensor 3,3A, 3B Compound semiconductor substrate 11 Support Substrate 12 Focal plane 13 Refractive index adjusting member 14, 15 Signal processing device

フロントページの続き (72)発明者 尾▲崎▼ 一男 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内Front Page Continuation (72) Inventor Ouzaki Kazuo 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Fujitsu Limited

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の光電変換部(1A-1,1A-2,1A-3 …、
1B-1,1B-2,1B-3…)を有する固体撮像素子(2A,2B) を接
続して長尺寸法の固体撮像素子を形成する場合に於い
て、前記複数の固体撮像素子(2A,2B) を形成した半導体
基板(3A,3B) の端部同士を互いに積層して形成すること
を特徴とする固体撮像素子。
1. A plurality of photoelectric conversion units (1A-1, 1A-2, 1A-3 ...,
1B-1, 1B-2, 1B-3 ...) are connected to form a long-sized solid-state image pickup device (2A, 2B), the solid-state image pickup device (2A , 2B) is formed on the semiconductor substrate (3A, 3B) by laminating the ends thereof on each other.
【請求項2】 請求項1記載の半導体基板(3A,3B) の長
さと、厚さを適宜変化させ、積層した半導体基板(3A,3
B) の光電変換部(1A-1,1A-2,1A-3 …、1B-1,1B-2,1B-3
…) を、該固体撮像素子に入射する入射光の集光レンズ
の焦点面(12)と合致させたことを特徴とする固体撮像素
子。
2. The semiconductor substrate (3A, 3B) according to claim 1, wherein the length and thickness of the semiconductor substrate (3A, 3B) are appropriately changed and laminated.
B) photoelectric conversion unit (1A-1,1A-2,1A-3 ..., 1B-1,1B-2,1B-3
.) Is matched with the focal plane (12) of the condensing lens of the incident light incident on the solid-state image sensor.
【請求項3】 請求項1、或いは2に記載の固体撮像素
子を形成した半導体基板(3A,3B) を積層する際に、屈折
率調整部材(13)を前記半導体基板(3A,3B) と集光レンズ
の間に設けて、前記集光レンズの焦点面(12)と積層した
固体撮像素子の光電変換部(1A-1,1A-2,1A-3 …、1B-1,1
B-2,1B-3…) とを合致させたことを特徴とする固体撮像
素子。
3. When stacking the semiconductor substrates (3A, 3B) on which the solid-state imaging device according to claim 1 or 2 is laminated, a refractive index adjusting member (13) is used as the semiconductor substrate (3A, 3B). The photoelectric conversion unit (1A-1, 1A-2, 1A-3 ..., 1B-1, 1 of the solid-state image pickup device, which is provided between the condenser lenses and laminated with the focal plane (12) of the condenser lenses, is stacked.
B-2, 1B-3 ...) are matched.
JP4218841A 1992-08-18 1992-08-18 Solid-state image pickup element Withdrawn JPH0667114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4218841A JPH0667114A (en) 1992-08-18 1992-08-18 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4218841A JPH0667114A (en) 1992-08-18 1992-08-18 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPH0667114A true JPH0667114A (en) 1994-03-11

Family

ID=16726182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4218841A Withdrawn JPH0667114A (en) 1992-08-18 1992-08-18 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPH0667114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133447A1 (en) 2011-03-31 2012-10-04 浜松ホトニクス株式会社 Photodiode array module and method for manufacturing same
WO2012133448A1 (en) 2011-03-31 2012-10-04 浜松ホトニクス株式会社 Photodiode array module and manufacturing method for same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133447A1 (en) 2011-03-31 2012-10-04 浜松ホトニクス株式会社 Photodiode array module and method for manufacturing same
WO2012133448A1 (en) 2011-03-31 2012-10-04 浜松ホトニクス株式会社 Photodiode array module and manufacturing method for same
EP2693479A1 (en) * 2011-03-31 2014-02-05 Hamamatsu Photonics K.K. Photodiode array module and manufacturing method for same
EP2693479A4 (en) * 2011-03-31 2014-08-20 Hamamatsu Photonics Kk Photodiode array module and manufacturing method for same
US8994041B2 (en) 2011-03-31 2015-03-31 Hamamatsu Photonics K.K. Photodiode array module and manufacturing method for same
US9496298B2 (en) 2011-03-31 2016-11-15 Hamamatsu Photonics K.K. Photodiode array module and method for manufacturing same

Similar Documents

Publication Publication Date Title
US10935930B2 (en) Method, apparatus and system providing holographic layer as micro-lens and color filter array in an imager
US7755123B2 (en) Apparatus, system, and method providing backside illuminated imaging device
US7714368B2 (en) Method and apparatus providing imager pixel array with grating structure and imager device containing the same
US7965444B2 (en) Method and apparatus to improve filter characteristics of optical filters
JPS6215854A (en) Optical imager
TW201138074A (en) Image sensor having metal reflectors with scaled widths
US5120960A (en) Infrared image detecting device and method
US10692915B2 (en) Imaging device and method of manufacturing imaging device
US10784300B1 (en) Solid-state imaging devices
JPH0667114A (en) Solid-state image pickup element
US10451483B2 (en) Short wave infrared polarimeter
US20230307478A1 (en) Image sensor diagonal isolation structures
JPH04343470A (en) Solid-state image pickup device
US11676982B2 (en) Image sensing device
JP2876838B2 (en) Solid-state imaging device
US5438200A (en) Composite photodetector substrate and method of forming the same
JPH0682813B2 (en) Method for manufacturing infrared detection solid-state imaging device
JPS59182561A (en) Semiconductor image sensor
US5502300A (en) Compound optically tipped detectors
JPS61154283A (en) Solid image pick-up element
JP2697081B2 (en) Semiconductor light receiving device
EP3869564A1 (en) Spectral sensors
US20220367548A1 (en) Crosstalk-suppressing image sensor
JPH06326833A (en) Color picture reader
JPH0223782A (en) Solid-state image pickup device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102