JP2697081B2 - Semiconductor light receiving device - Google Patents

Semiconductor light receiving device

Info

Publication number
JP2697081B2
JP2697081B2 JP1041255A JP4125589A JP2697081B2 JP 2697081 B2 JP2697081 B2 JP 2697081B2 JP 1041255 A JP1041255 A JP 1041255A JP 4125589 A JP4125589 A JP 4125589A JP 2697081 B2 JP2697081 B2 JP 2697081B2
Authority
JP
Japan
Prior art keywords
light receiving
receiving device
semiconductor
superlattice
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1041255A
Other languages
Japanese (ja)
Other versions
JPH02219280A (en
Inventor
義博 宮本
宏爾 篠原
信之 梶原
総一郎 匹田
加寿也 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1041255A priority Critical patent/JP2697081B2/en
Publication of JPH02219280A publication Critical patent/JPH02219280A/en
Application granted granted Critical
Publication of JP2697081B2 publication Critical patent/JP2697081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概 要〕 半導体受光装置に関し、 赤外線、特に8〜14μmの長波長帯の赤外線に感度を
有し、GaAs系の超格子を用いた画素数の多い半導体受光
装置の提供を目的とし、 半導体基板の所定の結晶軸方向に対して垂直な主平面
に対して、所定の角度の傾斜を有する副平面を含む溝、
或いは穴を設け、少なくとも該副平面上に超格子を設け
て構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] Regarding a semiconductor light receiving device, there is provided a semiconductor light receiving device having sensitivity to infrared rays, particularly infrared rays in a long wavelength band of 8 to 14 μm, and having a large number of pixels using a GaAs superlattice. For the purpose of providing, a groove including a sub-plane having an inclination of a predetermined angle with respect to a main plane perpendicular to a predetermined crystal axis direction of the semiconductor substrate,
Alternatively, a hole is provided and a superlattice is provided at least on the sub-plane.

〔産業上の利用分野〕[Industrial applications]

本発明は半導体受光装置に係り、赤外線、特に8〜14
μmの長波長帯の赤外線に感度を有し、GaAs系の超格子
を用いた画素数の多い半導体受光装置に関する。
The present invention relates to a semiconductor light receiving device, and more particularly to infrared light, particularly 8 to 14 light receiving devices.
The present invention relates to a semiconductor light receiving device having sensitivity to infrared rays in a long wavelength band of μm and having a large number of pixels using a GaAs superlattice.

近年の半導体加工技術の進歩に伴い、可視光を撮像す
る半導体受光装置として、シリコン(Si)の電荷転送装
置(CCD)を基本とした画素数の多い受光装置が開発さ
れている。また赤外線領域を撮像する受光装置としても
Siを材料として用い、該Siと白金等の金属とのショット
キー接合を用いたショットキー接合型の電荷転送装置に
おいては、多画素の受光装置が開発されている。然し、
このSiショットキー接合型の受光装置は、3〜5μm帯
の赤外線にしか感度を有せず、更に8〜14μm帯の長波
長の赤外線に感度を有し、かつ多画素で二次元の受光装
置の要求がある。
2. Description of the Related Art Along with recent advances in semiconductor processing technology, a light receiving device having a large number of pixels based on a silicon (Si) charge transfer device (CCD) has been developed as a semiconductor light receiving device for imaging visible light. It can also be used as a light-receiving device for imaging the infrared region.
In a Schottky junction type charge transfer device using Si as a material and a Schottky junction between the Si and a metal such as platinum, a light receiving device with multiple pixels has been developed. But
This Si Schottky junction type light receiving device is sensitive only to infrared rays in the 3 to 5 μm band, is sensitive to long wavelength infrared rays in the 8 to 14 μm band, and is a two-dimensional light receiving device with multiple pixels. There is a request.

また衛星搭載用の一次元受光装置に於いても、資源探
査の目的のために8〜14μm帯の赤外線に感度を有し、
2000〜4000画素程度の長尺の寸法の赤外線受光装置の要
求がある。
In addition, the one-dimensional light receiving device mounted on a satellite has sensitivity to infrared rays in the 8 to 14 μm band for the purpose of resource exploration,
There is a demand for an infrared light receiving device having a long dimension of about 2000 to 4000 pixels.

〔従来の技術〕[Conventional technology]

従来の赤外線受光装置として8〜14μm帯の赤外線に
感度を有する材料としては、Siにガリウム(Ga)、或い
はマグネシウム(Mg)を高濃度に添加した外因型Si、鉛
・錫・テルル(PbSnTe)、および水銀・カドミウム・テ
ルル(Hg1-xCdxTe)等があり、その中でも赤外線検知材
料としてHg1-xCdxTeを用いた赤外線受光装置が最も高性
能である。
As a conventional infrared light receiving device, materials having sensitivity to infrared rays in the 8 to 14 μm band include extrinsic Si in which gallium (Ga) or magnesium (Mg) is added to Si at a high concentration, lead / tin / tellurium (PbSnTe). , And mercury / cadmium / tellurium (Hg 1-x Cd x Te). Among them, an infrared light receiving device using Hg 1-x Cd x Te as an infrared detecting material has the highest performance.

然し、上記Hg1-xCdxTeを用いて8〜14μm帯の波長に
高感度で、かつ多画素の受光装置を得ようとしても、該
受光装置に光を集光するレンズ等の光学系の回折限界よ
り、一画素の寸法は検知すべき赤外線の波長より小さく
することは出来ず、そのため一画素の寸法を縮小して半
導体メモリ装置のように高集積化を図ることは出来な
い。
However, even if an attempt is made to obtain a multi-pixel light receiving device with high sensitivity at a wavelength of 8 to 14 μm using the above Hg 1-x Cd x Te, an optical system such as a lens for condensing light on the light receiving device is required. Due to the diffraction limit described above, the size of one pixel cannot be made smaller than the wavelength of infrared light to be detected, so that it is not possible to reduce the size of one pixel and achieve high integration like a semiconductor memory device.

このため、特に10μm帯の赤外線受光装置では、素子
寸法を10μm×10μm程度に大きくする必要があり、か
つ多画素化に伴って素子を形成する半導体ウェハの面積
を大きくしなければ成らず、1ウェハ当たりに形成され
る素子数を確保して歩留まりを上げる必要がある。然
し、上記したHg1-xCdxTeの結晶は大面積の結晶を得難
い。
For this reason, in particular, in the infrared light receiving device in the 10 μm band, the element size needs to be increased to about 10 μm × 10 μm, and the area of the semiconductor wafer on which the element is formed must be increased with the increase in the number of pixels. It is necessary to increase the yield by securing the number of elements formed per wafer. However, the above-mentioned Hg 1-x Cd x Te crystal has difficulty in obtaining a large-area crystal.

また上記受光装置が得た信号を処理する電荷転送装置
は一般にSi基板を材料として形成されており、この受光
装置と信号処理装置とを一体化した場合、各々の装置を
形成する基板の材料の熱膨張係数が異なるため、該受光
装置を使用する液体窒素温度と温室との温度サイクルに
よって基板間に生じる熱歪が異なるため、受光装置と信
号処理装置は同一基板を用いて形成することが望まし
い。
In general, a charge transfer device that processes signals obtained by the light receiving device is formed using a Si substrate as a material. When this light receiving device and the signal processing device are integrated, the material of the substrate that forms each device is Since the thermal expansion coefficient is different, the thermal strain generated between the substrates due to the liquid nitrogen temperature using the light receiving device and the temperature cycle between the greenhouse is different. Therefore, it is desirable that the light receiving device and the signal processing device are formed using the same substrate. .

このような要求を満たす受光装置として従来、第12図
に示すように、側端部を所定の角度で斜め方向に切断加
工したGaAs基板1上に高濃度に不純物を添加したGaAs層
をコンタクト層2として形成した後、該コンタクト層2
上にアルミニウム・ガリウム・砒素(AlxGa1-xAs)の超
格子3を数10層積層した受光部を形成し、その上に前記
コンタクト層4を設け、該コンタクト層2,4に電極を形
成し、前記基板1の斜めに加工した側端部1Aより矢印A
方向より入射した赤外線を検知する半導体受光装置が文
献(ELECTRONICS LETTERS 9th June 1988 Vol.24 No.12
P747)に於いて提案されている。そしてこの基板1の
側端部1Aより入射した赤外線のエネルギーにより、AlxG
a1-xAsの超格子3内に形成されたサブバンド間で遷移し
た電子を検知して入射赤外線を検知している。
Conventionally, as a light receiving device satisfying such requirements, as shown in FIG. 12, a GaAs layer doped with a high concentration of impurities is formed on a GaAs substrate 1 having side edges cut at a predetermined angle in an oblique direction. 2 and then the contact layer 2
A light receiving portion is formed by stacking several tens of aluminum / gallium / arsenic (Al x Ga 1-x As) superlattices 3 on the light receiving portion, and the contact layer 4 is provided thereon, and electrodes are provided on the contact layers 2 and 4. Is formed, and an arrow A is formed from the obliquely processed side end 1A of the substrate 1.
A semiconductor light-receiving device that detects infrared light incident from different directions is described in the literature (ELECTRONICS LETTERS 9th June 1988 Vol.24 No.12
P747). The energy of the infrared ray incident from the side end 1A of the substrate 1 causes Al x G
An incident infrared ray is detected by detecting electrons that have transitioned between subbands formed in the superlattice 3 of a 1-x As.

このように超格子3の各層に対して斜め方向に赤外線
を入射させる理由は、本来ならば超格子層の面に対して
平行に光を入射させるのが、最も変換効率が良いが、こ
のように平行に入射させると超格子層が1μm程度以下
と極めて薄いために受光面積を大きくできず、入射効率
が悪い。
As described above, the reason why the infrared rays are made to be incident on each layer of the superlattice 3 in the oblique direction is that the light is normally incident on the plane of the superlattice layer in parallel, but the conversion efficiency is the best. When the light is made incident in parallel, the light receiving area cannot be increased because the superlattice layer is extremely thin, about 1 μm or less, and the incidence efficiency is poor.

そのため、該超格子面の屈折率等を考慮して該超格子
面に対して所定の角度で入射させると最もサブバンド間
の電子の遷移効率が大となって最も変換効率が良くなる
とされている。
Therefore, when the light is incident on the superlattice surface at a predetermined angle in consideration of the refractive index and the like of the superlattice surface, the transition efficiency of electrons between subbands is maximized and the conversion efficiency is maximized. I have.

またこの他に第13図に示すように、プリズムのように
三角柱状に加工したGaAs基板1上に前記したAlxGa1-xAs
の超格子3よりなる受光部3A,3B,3C……を複数個アレイ
状に形成し、前記基板の斜め方向の加工面よ1Bより赤外
線を入射し、この赤外線を検知するアレイ状の半導体受
光装置7も上記した文献に提案されている。
In addition, as shown in FIG. 13, the above-mentioned Al x Ga 1-x As is formed on a GaAs substrate 1 processed into a triangular prism shape like a prism.
Are formed in the form of an array, and infrared rays are incident from the processing surface of the substrate in the oblique direction from 1B, and an array of semiconductor light receiving elements for detecting the infrared rays is formed. Device 7 is also proposed in the above-mentioned document.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

然し、上記した構造の一次元の受光装置7では、例え
ば集光レンズ8を用いて集光した光がアレイ状に配列さ
れた複数の超格子よりなる受光部3A,3B……に導入され
るため、この光の焦点を各受光部の位置に全て合致させ
ることが困難で、解像度の高い像を得ることができない
という問題があるために、従来のような構造の受光装置
では多画素の二次元の受光装置を得ることができない。
However, in the one-dimensional light receiving device 7 having the structure described above, for example, light condensed by using the condensing lens 8 is introduced into the light receiving units 3A, 3B,... Formed by a plurality of superlattices arranged in an array. For this reason, it is difficult to make all the focal points of the light coincide with the positions of the respective light receiving sections, and there is a problem that a high-resolution image cannot be obtained. A three-dimensional light receiving device cannot be obtained.

また上記したように赤外線検知装置と該検知装置で得
られた信号を処理する信号処理装置とを同一基板で形成
することが望ましいが、このようなAlxGa1-xAsの超格子
を設けたGaAs基板に信号処理装置を一体化して設けた受
光装置は現在提案されていないのが現状である。
Further, as described above, it is desirable to form the infrared detecting device and the signal processing device for processing a signal obtained by the detecting device on the same substrate, but such an Al x Ga 1-x As super lattice is provided. At present, a light receiving device in which a signal processing device is integrally provided on a GaAs substrate has not been proposed.

本発明は上記した事項に鑑みてなされたもので、上記
超格子を用いた二次元の高感度な赤外線受光装置を提供
するとともに、該受光装置を形成した同一基板に信号処
理装置を設けた半導体受光装置の提供を目的とする。
The present invention has been made in view of the above, and provides a two-dimensional high-sensitivity infrared light receiving device using the superlattice, and a semiconductor provided with a signal processing device on the same substrate on which the light receiving device is formed. It is intended to provide a light receiving device.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の半導体受光装置は、半導体基板の所定の結晶
軸方向に垂直な主平面に対して所定の角度の傾斜を有す
る副平面からなる溝、或いは穴を有し、この副平面上に
この副平面に略平行に積層して設けられた超格子からな
る受光部を有するように構成する。
The semiconductor light receiving device of the present invention has a groove or a hole formed by a sub-plane having a predetermined angle with respect to a main plane perpendicular to a predetermined crystal axis direction of the semiconductor substrate, and the sub-plane has a groove or a hole formed on the sub-plane. It is configured to have a light receiving portion composed of a superlattice provided by being stacked substantially parallel to a plane.

〔作 用〕(Operation)

半導体基板の所定の結晶軸方向に垂直な主平面に対し
て所定の角度の傾斜を有する副平面からなる溝、或いは
穴を形成し、この副平面上にこの副平面に略平行に積層
して設けられた超格子からなる受光部を設けるから、入
射光を主平面に垂直に入射しても、受光部となる超格子
には所定の角度をもって光が入射するため、光電変換効
率の高い半導体受光装置を得ることが可能となる。
A groove or a hole composed of a sub-plane having a predetermined angle with respect to a main plane perpendicular to a predetermined crystal axis direction of the semiconductor substrate is formed, and laminated on the sub-plane in a direction substantially parallel to the sub-plane. Since the light receiving portion composed of the provided superlattice is provided, even if the incident light is perpendicularly incident on the main plane, the light is incident on the superlattice serving as the light receiving portion at a predetermined angle, so that a semiconductor having high photoelectric conversion efficiency is provided. A light receiving device can be obtained.

また、半導体基板の主平面上に形成した超格子の感光
部をパターニングして、この半導体基板の主平面の周辺
部上の超格子を選択的に除去し、この周辺部受にマルチ
プレクサ等の信号処理回路を形成すると、信号処理回路
と受光部とを同一基板上に形成することが可能となるの
で、半導体受光装置の動作中の温度と非動作時の温度の
温度サイクルによっても、熱歪みの発生しない高性能の
半導体受光装置を得ることが可能となる。
In addition, the photosensitive portion of the superlattice formed on the main plane of the semiconductor substrate is patterned to selectively remove the superlattice on the periphery of the main plane of the semiconductor substrate. When the processing circuit is formed, the signal processing circuit and the light receiving unit can be formed on the same substrate, so that the temperature cycle of the operating temperature and the non-operating temperature of the semiconductor light receiving device may cause thermal distortion. It is possible to obtain a high-performance semiconductor light receiving device that does not generate any light.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の実施例に付き詳細に説明
する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第2図は本発明の第1実施例の半導体受光装置の断面
図である。
FIG. 2 is a sectional view of the semiconductor light receiving device according to the first embodiment of the present invention.

図示するように主平面12が(001)面のGaAs基板11に
エッチングによって(111)面を副平面とする四角錐状
の穴14、或いは(110)面を副平面としたV字状の溝14
が形成され、この穴、或いは溝14を含む基板上にN型の
不純物を1018原子/cm3程度に高濃度に添加されたN+GaAs
層よりなるコンタクト層21が形成され、該コンタクト層
21上にノンドープのAlxGa1-xAsの超格子15が形成され、
この上には更にコンタクト層22が形成され、該コンタク
ト層22上に金等の電極23が形成されて受光装置が形成さ
れている。
As shown in the figure, a quadrangular pyramid-shaped hole 14 having a (111) plane as a sub-plane or a V-shaped groove having a (110) plane as a sub-plane by etching a GaAs substrate 11 whose main plane 12 is a (001) plane. 14
Is formed on the substrate including the holes or the grooves 14, and N + GaAs doped with N-type impurities at a high concentration of about 10 18 atoms / cm 3.
A contact layer 21 made of a layer is formed.
A superlattice 15 of undoped Al x Ga 1-x As is formed on 21,
A contact layer 22 is further formed thereon, and an electrode 23 such as gold is formed on the contact layer 22 to form a light receiving device.

上記第1実施例の半導体受光装置を形成するには第3
図(a)に示すように、前記GaAs基板11上に所定のパタ
ーンに開口されたSiO2膜24を蒸着、或いはスパッタ法に
より形成する。
To form the semiconductor light receiving device of the first embodiment, the third
As shown in FIG. 1A, an SiO 2 film 24 having a predetermined pattern is formed on the GaAs substrate 11 by vapor deposition or sputtering.

次いで上記SiO2膜24をマスクとして用いて燐酸(H3PO
4)、過酸化水素(H2O2)、および水(H2O)のエッチン
グ液を用いてエッチングする。このようにすると主平面
12に対して54.7度の(111)面の副平面13を有する四角
錐状の穴14が二次元的に形成される。
Then, using the SiO 2 film 24 as a mask, phosphoric acid (H 3 PO
4 ) Etching is performed using an etching solution of hydrogen peroxide (H 2 O 2 ) and water (H 2 O). By doing this, the main plane
A quadrangular pyramid-shaped hole 14 having a sub-plane 13 of a (111) plane at 54.7 degrees with respect to 12 is formed two-dimensionally.

また上記SiO2膜24のマスクの開口部25の形状を変化さ
せ、前記エッチング液の組成を変動させてエッチングす
ることで、主平面12に対して45度の角度をなす副平面を
有するV字状の溝14を一次元的に形成することもでき
る。
Further, by changing the shape of the opening 25 of the mask of the SiO 2 film 24 and changing the composition of the etching solution to perform etching, a V-shape having a sub-plane that forms an angle of 45 degrees with the main plane 12 is formed. The groove 14 can be formed one-dimensionally.

次いでSiO2膜24を除去した後、第3図(b)に示すよ
うに、該穴、または溝14を含む基板11上に分子線エピタ
キシャル成長法等を用いて1018原子/cm3程度に高濃度に
N型の不純物が添加されたコンタクト層21を形成後、更
にノンドープのAlxGa1-xAsの超格子15を数10層形成後、
更にその上にコンタクト層22を形成する。
Next, after the SiO 2 film 24 is removed, as shown in FIG. 3 (b), on the substrate 11 including the holes or the grooves 14, a high pressure of about 10 18 atoms / cm 3 is formed by using a molecular beam epitaxial growth method or the like. After forming a contact layer 21 doped with an N-type impurity at a concentration, and further forming several tens of non-doped Al x Ga 1-x As superlattices 15,
Further, a contact layer 22 is formed thereon.

次いで第3図(c)に示すように、主平面12上のコン
タクト層21を一部残留させた状態で超格子15および、そ
の上のコンタクト層22を所定のパターンでエッチングし
た後、該コンタクト層21,22上に電極23を形成して半導
体受光装置を形成する。
Next, as shown in FIG. 3 (c), the superlattice 15 and the contact layer 22 thereon are etched in a predetermined pattern in a state where the contact layer 21 on the main plane 12 is partially left. An electrode 23 is formed on the layers 21 and 22 to form a semiconductor light receiving device.

第4図は本発明の第2実施例の半導体受光装置の断面
図である。
FIG. 4 is a sectional view of a semiconductor light receiving device according to a second embodiment of the present invention.

図示するように主平面12が(001)面のGaAs基板11に
エッチングによって(111)面を副平面13とする四角錐
状の穴、或いはV字状の溝14が形成され、この穴、或い
は溝14を含む基板上にN型の不純物を高濃度に添加され
たN+GaAs層よりなるコンタクト層21が形成され、該コン
タクト層21上にノンドープのAlxGa1-xAsの超格子層15が
数10層、積層形成され、この上には更にコンタクト層22
が形成され、この上には赤外線を透過するGaAsよりなる
透過層31が分子線エピタキシャル成長方法を用いて形成
された後、バイアススパッタ法を用いて平坦化されて埋
設形成されて、その上には該赤外線を反射する金、或い
はゲルマニウムよりなる反射層32が形成され、前記コン
タクト層21と反射層32上に電極23が形成されて受光装置
が形成されている。
As shown in the figure, a quadrangular pyramid-shaped hole or a V-shaped groove 14 having the (111) plane as the sub-plane 13 is formed in the GaAs substrate 11 having the (001) plane as the main plane 12 by etching. A contact layer 21 made of an N + GaAs layer doped with a high concentration of N-type impurities is formed on the substrate including the groove 14, and a non-doped Al x Ga 1 -x As superlattice layer is formed on the contact layer 21. Several tens of layers 15 are formed in layers, and a contact layer 22 is further formed thereon.
Is formed thereon, and a transmission layer 31 made of GaAs that transmits infrared rays is formed thereon using a molecular beam epitaxial growth method, and then flattened using a bias sputtering method to be buried and formed thereon. A reflection layer 32 made of gold or germanium that reflects the infrared rays is formed, and an electrode 23 is formed on the contact layer 21 and the reflection layer 32 to form a light receiving device.

このようにすると赤外線を透過するGaAs基板の底部よ
り矢印A方向に沿って入射された赤外線は、超格子15に
導入され、この超格子を透過した一部の入射赤外線が、
更に透過層31を通過して反射層32に当たって超格子15に
再入射されるので、第1実施例に比較して高感度な受光
装置が得られる。
In this way, the infrared light transmitted along the direction of arrow A from the bottom of the GaAs substrate that transmits the infrared light is introduced into the superlattice 15, and a part of the incident infrared light transmitted through the superlattice becomes
Further, since the light passes through the transmission layer 31 and strikes the reflection layer 32 and re-enters the superlattice 15, a light-receiving device with higher sensitivity than in the first embodiment can be obtained.

上記第2実施例の半導体受光装置を形成するには第5
図(a)に示すように、前記GaAs基板11上に所定のパタ
ーンに開口されたSiO2膜24を蒸着に基板上に形成する。
To form the semiconductor light receiving device of the second embodiment, the fifth
As shown in FIG. 1A, an SiO 2 film 24 having a predetermined pattern is formed on the GaAs substrate 11 by vapor deposition.

更にSiO2膜24をマスクとし、燐酸(H3PO4)、過酸化
水素(H2O2)、および水(H2O)のエッチング液を用い
てエッチングする。このようにすると主平面12に対して
54.7度(111)面の副平面13を含む四角錐状の穴14が二
次元的に形成される。
Further, using the SiO 2 film 24 as a mask, etching is performed using an etchant of phosphoric acid (H 3 PO 4 ), hydrogen peroxide (H 2 O 2 ), and water (H 2 O). In this way, the main plane 12
A quadrangular pyramid-shaped hole 14 including the sub-plane 13 of the 54.7 degree (111) plane is formed two-dimensionally.

また上記したSiO2膜24の開口部のパターンを変化させ
て、上記エッチング液を構成する成分の割合を変動させ
てエッチングすると主平面12に対して45度の角度の(11
0)面の副平面13を有するV字状の一次元の溝14が形成
される。
Further, when the etching is performed by changing the pattern of the opening of the SiO 2 film 24 and changing the ratio of the components constituting the etching solution, the angle (11
A V-shaped one-dimensional groove 14 having a sub-plane 13 of the 0) plane is formed.

次いで第5図(b)に示すように該穴、或いは溝14を
含む基板上に分子線エピタキシャル成長法等を用いて10
18原子/cm3程度に高濃度にN型の不純物が添加されたコ
ンタクト層21を形成後、更にノンドープのAlxGa1-xAsの
超格子15を数10層形成後、更にコンタクト層22を形成
後、該コンタクト層22上にGaAsよりなる赤外線の透過層
31を厚く形成する。
Next, as shown in FIG. 5 (b), a hole is formed on the substrate including the groove 14 by a molecular beam epitaxial growth method or the like.
After forming a contact layer 21 doped with an N-type impurity at a high concentration of about 18 atoms / cm 3 , further forming several tens of non-doped Al x Ga 1-x As superlattices 15, and further forming a contact layer 22. After forming, an infrared transmitting layer made of GaAs is formed on the contact layer 22.
31 is formed thick.

次いで第5図(c)に示すように、バイアススパッタ
法を用いて該透過層31の表面を主平面12と平行になるよ
うに平坦に加工後、該基板11上の積層された超格子15と
コンタクト層22を一部除去した後、金・ゲルマニウム合
金の反射層32を形成して受光装置を形成する。
Next, as shown in FIG. 5 (c), the surface of the transmission layer 31 is flattened using a bias sputtering method so as to be parallel to the main plane 12, and then the superlattice layer 15 laminated on the substrate 11 is processed. After partially removing the contact layer 22 and the light-receiving device, a reflective layer 32 of a gold-germanium alloy is formed.

本発明の半導体受光装置の第3実施例を第6図(a)
に示し、その等価回路図を第6図(b)に示す。
FIG. 6 (a) shows a third embodiment of the semiconductor light receiving device of the present invention.
And an equivalent circuit diagram thereof is shown in FIG. 6 (b).

本実施例は、前記形成した第2実施例の受光装置の反
射層32を金・ゲルマニウム合金等の導体層で形成し、そ
の上にSiO2膜よりなる絶縁膜41を設けた後、更に該絶縁
膜41上に金・ゲルマニウム合金よりなる導体層42を設
け、該絶縁膜41を積分容量としたものである。
In the present embodiment, the reflection layer 32 of the light receiving device of the second embodiment is formed of a conductor layer such as a gold-germanium alloy, and an insulating film 41 made of a SiO 2 film is provided thereon. A conductor layer made of a gold-germanium alloy is provided on an insulating film 41, and the insulating film 41 has an integral capacity.

かかる受光装置の動作を説明すると、第6図(b)に
示すように前記形成した導電性の反射層32と本実施例で
形成した導体層42の間に電圧を印加して前記絶縁膜41で
形成された容量43に電荷を蓄積する。更に上記電圧の印
加を停止して所定時間放置した段階で上記導体層42と反
射層32の間の電圧を測定する。そしてこの放電時間の間
に前記超格子15に赤外線を導入することで該超格子の抵
抗が変動し、該超格子が光導電層となるので、この光導
電層によって放電後の電圧変動を検知することで赤外線
を検知する。
The operation of the light receiving device will be described. As shown in FIG. 6 (b), a voltage is applied between the formed conductive reflective layer 32 and the conductor layer 42 formed in this embodiment to apply the insulating film 41. The electric charge is accumulated in the capacitor 43 formed by the above. Further, the voltage between the conductor layer 42 and the reflection layer 32 is measured at the stage where the application of the voltage is stopped and left for a predetermined time. Then, by introducing infrared rays into the superlattice 15 during the discharge time, the resistance of the superlattice fluctuates, and the superlattice becomes a photoconductive layer. To detect infrared rays.

このようにすれば容量を充電し、超格子に導入された
赤外線の光伝導で放電することで、この容量に積分効果
が生じ、S/N比の向上した半導体受光装置が得られる。
In this way, the capacitance is charged and discharged by the photoconductivity of the infrared light introduced into the superlattice, whereby an integration effect is generated in the capacitance and a semiconductor light receiving device with an improved S / N ratio can be obtained.

本発明の半導体受光装置の第4実施例を第7図に示
す。
FIG. 7 shows a fourth embodiment of the semiconductor light receiving device of the present invention.

本実施例が第1,第2および第3実施例と異なる点は上
記した主平面12内に複数の副平面13を規則的に配置し、
該主および副平面上に超格子15を設けた点にある。
This embodiment is different from the first, second and third embodiments in that a plurality of sub-planes 13 are regularly arranged in the main plane 12 described above.
The point is that the superlattice 15 is provided on the main and sub planes.

このようにすることで超格子15で形成される受光部領
域の面積が増大し、前記第1,第2および第3実施例より
更に高感度な検知装置が得られる。
By doing so, the area of the light receiving area formed by the superlattice 15 is increased, and a detection device with higher sensitivity than the first, second and third embodiments can be obtained.

本発明の半導体受光装置の第5実施例を第8図(a)
および第8図(b)の斜視図に示す。本実施例では第8
図(a)および第8図(b)に示すように、基板11の主
平面12と該主平面に対して所定の角度で傾斜した副平面
13をエッチングにより形成し、該副平面13を含む穴14、
或いは溝14を設けた後、該基板上の全面に超格子15を設
け、該基板の周辺部上の超格子のみを選択的に除去した
後、該溝14上に形成された超格子15を所定のピッチで分
離すると共に、穴14上のみ超格子が残留するようにエッ
チングし、露出された平坦な主平面12に電極23を設け
る。このようにすれば素子分離されたアレイ状の一次元
の受光装置が得られる。
FIG. 8 (a) shows a fifth embodiment of the semiconductor light receiving device of the present invention.
8 (b). In the present embodiment, the eighth
As shown in FIG. 8A and FIG. 8B, a main plane 12 of the substrate 11 and a sub-plane inclined at a predetermined angle with respect to the main plane.
13 is formed by etching, a hole 14 including the sub-plane 13,
Alternatively, after providing the groove 14, a superlattice 15 is provided on the entire surface of the substrate, and after selectively removing only the superlattice on the peripheral portion of the substrate, the superlattice 15 formed on the groove 14 is removed. Separation is performed at a predetermined pitch, and etching is performed so that the superlattice remains only on the hole 14, and the electrode 23 is provided on the exposed flat main plane 12. In this way, an array-shaped one-dimensional light receiving device in which elements are separated can be obtained.

本発明の半導体受光装置の第6実施例を第9図に示
す。
FIG. 9 shows a sixth embodiment of the semiconductor light receiving device of the present invention.

図示するようにGaAs基板11に該基板の主平面に対して
所定の角度副平面13を有する穴14を二次元的に設け、該
穴14上に選択的に超格子15を設けて受光部に設ける。そ
して各受光部の超格子15に対応して、ショットキー接合
型のMES FET(Metal Semiconductor FET)よりなるスイ
ッチング素子51のソース領域が前記超格子に接続するよ
うに設ける。
As shown in the figure, a hole 14 having a predetermined angle sub-plane 13 with respect to the main plane of the substrate is provided two-dimensionally on the GaAs substrate 11, and a superlattice 15 is selectively provided on the hole 14 to provide a light receiving portion. Provide. A source region of a switching element 51 made of a Schottky junction type MES FET (Metal Semiconductor FET) is provided so as to be connected to the superlattice corresponding to the superlattice 15 of each light receiving unit.

更に該スィッチング素子51のゲート電極に接続するシ
フトレジスタ52、該スィッチング素子51のドレイン領域
に接続するマルチプレクサ53等の信号回路を基板の周辺
部に設けることで、各受光部15からの信号をシフトレジ
スタ52で走査し、マルチプレクサ53で時系列信号に変換
して信号処理できるラインアドレス型の二次元の撮像装
置が得られる。
Further, by providing signal circuits such as a shift register 52 connected to the gate electrode of the switching element 51 and a multiplexer 53 connected to the drain region of the switching element 51 around the substrate, the signal from each light receiving section 15 is shifted. A line address type two-dimensional image pickup device capable of scanning with the register 52, converting the signal into a time series signal with the multiplexer 53, and processing the signal is obtained.

本発明の半導体受光装置の第7実施例の構成図を第10
図(a)に、該実施例の等価回路図を第10図(b)に示
す。第10図(a)、および第10図(b)に図示するよう
に、GaAs基板に前記した第3実施例に示した受光素子61
を二次元的に所定のピッチで配設し、該受光素子61の各
受光部の超格子に対応して、ショットキー接合型のMES
FET(Metal Semiconductor)よりなるスイッチング素子
51のソース領域が前記超格子に接続するように設ける。
The configuration of the seventh embodiment of the semiconductor light receiving device of the present invention is
FIG. 10A shows an equivalent circuit diagram of this embodiment in FIG. As shown in FIGS. 10 (a) and 10 (b), the light receiving element 61 shown in the third embodiment is formed on a GaAs substrate.
Are arranged two-dimensionally at a predetermined pitch, and a Schottky junction type MES corresponding to the superlattice of each light receiving portion of the light receiving element 61 is provided.
Switching element composed of FET (Metal Semiconductor)
51 source regions are provided to connect to the superlattice.

更に該スィッチング素子51のゲート電極に接続するシ
フトレジスタ52、該スィッチング素子51のドレイン領域
に接続するマルチプレクサ53等の信号処理回路を基板の
周辺部に設ける。そして該シフトレジスタ52で所定の位
置の受光素子61を設定し、この受光素子61に対応したス
ィッチング素子51に電圧を印加することで受光素子の容
量43に電荷を蓄積する。そして該スイッチング素子51の
電圧の印加を停止し、容量43より電荷を放電させる。そ
してこの所定位置の受光素子に赤外線が入射するとその
超格子の抵抗44の値が変動するので、これによって所定
時間放電されたスイッチング素子の電圧変動をマルチプ
レクサで53読み取ることで入射された赤外線が検知で
き、二次元の撮像装置が得られる。
Further, a signal processing circuit such as a shift register 52 connected to the gate electrode of the switching element 51 and a multiplexer 53 connected to the drain region of the switching element 51 are provided on the periphery of the substrate. Then, the light receiving element 61 at a predetermined position is set by the shift register 52, and a voltage is applied to the switching element 51 corresponding to the light receiving element 61 to accumulate charges in the capacitance 43 of the light receiving element. Then, the application of the voltage to the switching element 51 is stopped, and the charge is discharged from the capacitor 43. When the infrared light enters the light receiving element at the predetermined position, the value of the resistance 44 of the superlattice changes, so that the voltage fluctuation of the switching element discharged for a predetermined time is read by a multiplexer 53 to detect the incident infrared light. The result is a two-dimensional imaging device.

本発明の第8実施例を第11図に示す。 An eighth embodiment of the present invention is shown in FIG.

図示するように上記第1乃至第7実施例で形成した半
導体受光装置の受光面側を、液体窒素等を用いて冷却し
たコールドヘッド71上に対向するようにIn金属バンプ72
等を用いて接続する。そして基板の裏面側にZnS等の反
射防止膜73を蒸着等により形成し、裏面側より赤外線を
入射させ、コールドヘッド71の側面に形成した配線層74
を介して該受光装置に電圧を印加するようにする。この
ようにすればGaAsは比較的熱容量が大で熱が放熱し難い
特性を有しているが、この動作時の基板をコールドヘッ
ドで冷却することで雑音の少ない高感度の受光装置が得
られる。
As shown in the drawing, the light receiving surface side of the semiconductor light receiving device formed in the first to seventh embodiments is placed on an In metal bump 72 so as to face a cold head 71 cooled using liquid nitrogen or the like.
And so on. Then, an anti-reflection film 73 of ZnS or the like is formed on the back surface of the substrate by vapor deposition or the like, and infrared rays are made incident from the back surface to form a wiring layer 74 formed on the side surface of the cold head 71.
A voltage is applied to the light-receiving device via. In this way, GaAs has a relatively large heat capacity and has a characteristic that heat is difficult to dissipate, but by cooling the substrate with a cold head during this operation, a high-sensitivity light receiving device with less noise can be obtained. .

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように本発明によれば、多画
素で、赤外線、特に8〜14μm帯の長波長帯に高感度を
有する高性能な半導体受光装置が得られる効果がある。
As is clear from the above description, according to the present invention, there is an effect that a high-performance semiconductor light receiving device having a large number of pixels and having high sensitivity to infrared rays, particularly a long wavelength band of 8 to 14 μm, can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の半導体受光装置の原理図、 第2図は本発明の半導体受光装置の第1実施例の断面
図、 第3図(a)より第3図(c)迄は第1実施例の受光装
置の製造工程を示す断面図、 第4図は本発明の半導体受光装置の第2実施例の断面
図、 第5図(a)より第5図(c)迄は第2実施例の製造工
程を示す断面図、 第6図(a)は本発明の装置の第3実施例の断面図、 第6図(b)は第3実施例の等価回路図、 第7図は本発明の装置の第4実施例の断面図、 第8図(a)および第8図(b)は本発明の装置の第5
実施例の斜視図、 第9図は本発明の装置の第6実施例の平面図、 第10図(a)は本発明の装置の第7実施例の構成図、 第10図(b)は第7実施例の等価回路図、 第11図は本発明の装置の第8実施例の断面図、 第12図は従来の装置の断面図、 第13図は従来の装置の模式図を示す。 図において、 11は半導体基板(GaAs基板)、12は主平面、13は副平
面、14は溝、或いは穴、15は超格子、21,22はコンタク
ト層、23は電極、24はSiO2膜、25は開口部、31は透過
層、32は反射層、41は絶縁膜、42は導体層、43は容量、
44は抵抗、51はスィッチング素子、52はシフトレジス
タ、53はマルチプレクサ、61は受光素子、71はコールド
ヘッド、72は金属バンプ、73は反射防止膜、74は配線層
を示す。
FIG. 1 is a principle view of a semiconductor light receiving device according to the present invention, FIG. 2 is a sectional view of a first embodiment of the semiconductor light receiving device according to the present invention, and FIGS. FIG. 4 is a cross-sectional view showing a manufacturing process of the light-receiving device according to the embodiment; FIG. 4 is a cross-sectional view of the second embodiment of the semiconductor light-receiving device of the present invention; FIG. 5 (a) to FIG. FIG. 6 (a) is a sectional view of a third embodiment of the device of the present invention, FIG. 6 (b) is an equivalent circuit diagram of the third embodiment, and FIG. FIG. 8 (a) and FIG. 8 (b) are cross-sectional views of a fourth embodiment of the apparatus of the present invention.
FIG. 9 is a perspective view of an embodiment, FIG. 9 is a plan view of a sixth embodiment of the device of the present invention, FIG. 10 (a) is a configuration diagram of a seventh embodiment of the device of the present invention, and FIG. FIG. 11 is an equivalent circuit diagram of the seventh embodiment, FIG. 11 is a cross-sectional view of the eighth embodiment of the device of the present invention, FIG. 12 is a cross-sectional view of the conventional device, and FIG. 13 is a schematic diagram of the conventional device. In the figure, 11 is a semiconductor substrate (GaAs substrate), 12 is a main plane, 13 is a sub-plane, 14 is a groove or a hole, 15 is a super lattice, 21 and 22 are contact layers, 23 is an electrode, and 24 is a SiO 2 film. , 25 is an opening, 31 is a transmission layer, 32 is a reflection layer, 41 is an insulating film, 42 is a conductor layer, 43 is a capacitor,
44 is a resistor, 51 is a switching element, 52 is a shift register, 53 is a multiplexer, 61 is a light receiving element, 71 is a cold head, 72 is a metal bump, 73 is an antireflection film, and 74 is a wiring layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 匹田 総一郎 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 久保 加寿也 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 平1−181480(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Soichiro Hitoda 1015 Uedanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside Fujitsu Limited (72) Inventor Kazuya Kubo 1015 Kamikodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture (56) References JP-A-1-181480 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板の所定の結晶軸方向に垂直な主
平面に対して所定の角度の傾斜を有する副平面からなる
溝、或いは穴を有し、 該副平面上に該副平面に略平行に積層して設けられた超
格子からなる受光部を有する ことを特徴とする半導体受光装置。
1. A semiconductor device comprising: a groove or a hole formed by a sub-plane having a predetermined angle with respect to a main plane perpendicular to a predetermined crystal axis direction of a semiconductor substrate; A semiconductor light receiving device, comprising: a light receiving portion composed of a superlattice provided by being stacked in parallel.
【請求項2】前記超格子を設けた溝、或いは穴に埋設さ
れ、表面が前記半導体基板の主平面に対して平行で、検
知すべき光を透過する透過層を有し、 検知すべき光を反射する反射層を該透過層上に有する ことを特徴とする請求項1記載の半導体受光装置。
2. A light to be detected which is buried in a groove or a hole provided with the superlattice, has a surface parallel to a main plane of the semiconductor substrate, and transmits light to be detected. The semiconductor light receiving device according to claim 1, further comprising a reflection layer that reflects light on the transmission layer.
【請求項3】導電体からなる前記反射層と、該反射層上
に形成した絶縁層と、該絶縁層上に形成した導電体層と
からなる積分容量を有する ことを特徴とする請求項2記載の半導体受光装置。
3. An integrated capacitor comprising said reflective layer made of a conductor, an insulating layer formed on said reflective layer, and a conductive layer formed on said insulating layer. A semiconductor light receiving device as described in the above.
【請求項4】前記半導体基板の主平面内に規則的に設け
た複数の前記副平面を有することを特徴とする請求項1,
2または3記載の半導体受光装置。
4. The semiconductor device according to claim 1, further comprising a plurality of said sub-planes regularly provided in a main plane of said semiconductor substrate.
4. The semiconductor light receiving device according to 2 or 3.
【請求項5】前記半導体基板の前記主平面上に設けた配
線および、前記受光部からの信号を走査し、時系列信号
に変換する周辺回路を有する ことを特徴とする請求項1,2,3または4記載の半導体受
光装置。
5. The semiconductor device according to claim 1, further comprising a wiring provided on said main plane of said semiconductor substrate, and a peripheral circuit for scanning a signal from said light receiving section and converting it into a time series signal. 5. The semiconductor light receiving device according to 3 or 4.
【請求項6】超格子を設けた半導体基板の前記主平面に
対向して設けた冷却手段を有し、検知すべき光を半導体
基板の裏面側より導入する、 ことを特徴とする請求項1,2,3,4または5記載の半導体
受光装置。
6. A semiconductor device provided with a superlattice, comprising cooling means provided opposite to the main plane of the semiconductor substrate, wherein light to be detected is introduced from the back surface side of the semiconductor substrate. 6. A semiconductor light receiving device according to claim 2, 3, 4, or 5.
JP1041255A 1989-02-20 1989-02-20 Semiconductor light receiving device Expired - Lifetime JP2697081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1041255A JP2697081B2 (en) 1989-02-20 1989-02-20 Semiconductor light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1041255A JP2697081B2 (en) 1989-02-20 1989-02-20 Semiconductor light receiving device

Publications (2)

Publication Number Publication Date
JPH02219280A JPH02219280A (en) 1990-08-31
JP2697081B2 true JP2697081B2 (en) 1998-01-14

Family

ID=12603332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1041255A Expired - Lifetime JP2697081B2 (en) 1989-02-20 1989-02-20 Semiconductor light receiving device

Country Status (1)

Country Link
JP (1) JP2697081B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058884A (en) * 1998-06-05 2000-02-25 Fujitsu Ltd Infrared detector
CZ301290B6 (en) * 2004-12-27 2009-12-30 Masarykova Univerzita V Brne Process for preparing optically active haloalkanes and alcohols by haloalkane dehalogenase-catylyzed hydrolytic dehalogenation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748570B2 (en) * 1988-01-08 1995-05-24 日本電気株式会社 Method for manufacturing wavelength-division discrimination type semiconductor light receiving element

Also Published As

Publication number Publication date
JPH02219280A (en) 1990-08-31

Similar Documents

Publication Publication Date Title
US6355939B1 (en) Multi-band infrared photodetector
EP0883189B1 (en) Back illuminated photodetector and method of fabricating the same
JP2721146B2 (en) Dual color infrared simultaneous detector with common interlayer metal contact
US6710370B2 (en) Image sensor with performance enhancing structures
US6974953B2 (en) Infrared sensor device and manufacturing method thereof
US6147349A (en) Method for fabricating a self-focusing detector pixel and an array fabricated in accordance with the method
JP2784020B2 (en) Schottky barrier photodiode with groove for infrared detection
US5721429A (en) Self-focusing detector pixel structure having improved sensitivity
JPS6215854A (en) Optical imager
EP0475525A1 (en) Plural-wavelength infrared detector devices
US8691614B2 (en) Direct readout focal plane array
US20070045685A1 (en) Method and apparatus providing integrated color pixel with buried sub-wavelength gratings in solid state imagers
JPS60161664A (en) Tightly adhered two-dimensional image readout device
JP6732039B2 (en) Direct read pixel alignment
JPH0436470B2 (en)
JP2697081B2 (en) Semiconductor light receiving device
US4148052A (en) Radiant energy sensor
US20130009045A1 (en) Self-Aligned Contacts for Photosensitive Detection Devices
JPH06310699A (en) Multilayer solid-state image pickup device
KR20190041952A (en) Photodetector with helmholtz resonator
CN111697017B (en) Image sensor and preparation method thereof
JPH0158711B2 (en)
US5438200A (en) Composite photodetector substrate and method of forming the same
GB2241605A (en) Infrared photodiodes, arrays and their manufacture
JP2508579B2 (en) Method of manufacturing array type infrared detector