JPH0666518A - Position detector - Google Patents

Position detector

Info

Publication number
JPH0666518A
JPH0666518A JP22415092A JP22415092A JPH0666518A JP H0666518 A JPH0666518 A JP H0666518A JP 22415092 A JP22415092 A JP 22415092A JP 22415092 A JP22415092 A JP 22415092A JP H0666518 A JPH0666518 A JP H0666518A
Authority
JP
Japan
Prior art keywords
light
optical path
incident
angle
displacement member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22415092A
Other languages
Japanese (ja)
Inventor
Hitoshi Inoue
仁 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP22415092A priority Critical patent/JPH0666518A/en
Publication of JPH0666518A publication Critical patent/JPH0666518A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the intensity of an incident light uniform and thereby to prevent the occurrence of an error in detection by a construction wherein a V-shaped groove made up of two reflecting surfaces intersecting a plane perpendicular to the direction of movement of an object of measurement, at a specified angle, respectively is formed to be a displacement member. CONSTITUTION:A V-shaped groove 21 made up of reflecting surfaces 21a and 21b intersecting a plane perpendicular to the direction of movement of a displacement member 20 at an angle of 45 degrees respectively is formed in the member. When an irradiation light from a light- applying part 10 is cast on the bottom part of the groove 21, it is reflected on the cast on bottom part and cast on the central part of PSD 30 with the optical path changed at an angle of 180 degrees. When the member 20 moves to the right, the irradiation light is cast on the reflecting surface 21a at an angle of 45 degrees, cast on the reflecting surface 21b with the optical path changed at an angle of 90 degrees, emitted in the direction reverse to the direction of incidence with the optical path changed at an angle of 90 degrees likewise, and cast on the right peripheral part of the PSD 30. Although the position of the groove 21 changes with the movement of the member 20, the optical path from the light-applying part 10 to the PSD 30 and a radiant solid angle are always unvaried. Therefore the intensity of the reflected light cast on the PSD 30 is made uniform and an error in measurement is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、PSD等の光位置検出
素子を用いた位置検出装置に関し、特にカメラのフォー
カスレンズの位置を検出する位置検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting device using an optical position detecting element such as PSD, and more particularly to a position detecting device for detecting the position of a focus lens of a camera.

【0002】[0002]

【従来の技術】図12に光位置検出素子を用いた従来の
位置検出装置の構成を示す。光源を構成するLED10
1から出射された光束は、検出対象102表面に設けら
れた細い反射板103で反射し、検出素子であるPSD
104に入射される。検出対象102の移動によって、
反射板103で反射された光が入射するPSD104上
の位置が変化する。PSD104は入射された光の位置
によって異なる電流比で電流I1 、I2 を発生し、この
電流比を演算することによって検出対象102の位置を
検出することができる。
2. Description of the Related Art FIG. 12 shows the configuration of a conventional position detecting device using an optical position detecting element. LED 10 constituting a light source
The light flux emitted from the No. 1 is reflected by the thin reflection plate 103 provided on the surface of the detection target 102, and is a PSD that is a detection element.
It is incident on 104. By moving the detection target 102,
The position on the PSD 104 where the light reflected by the reflection plate 103 enters changes. The PSD 104 generates the currents I 1 and I 2 at a current ratio different depending on the position of the incident light, and the position of the detection target 102 can be detected by calculating the current ratio.

【0003】[0003]

【発明が解決しようとする課題】ところで、図13に示
すように、従来の位置検出装置は、LED101と反射
板103が離れる程、LED101から照射した光がP
SD104に入射されるまでの光路長が長くなる。ま
た、図14に示すように、従来の位置検出装置は、LE
D101に反射板103が近接した位置での放射立体角
θ11に比べて、LED101から反射板103が離れた
位置での放射立体角θ12が狭くなる。
By the way, as shown in FIG. 13, in the conventional position detecting device, as the LED 101 and the reflecting plate 103 are separated from each other, the light emitted from the LED 101 becomes P
The optical path length until it enters the SD 104 becomes long. Further, as shown in FIG. 14, the conventional position detecting device is
The radiation solid angle θ 12 at the position where the reflector 103 is away from the LED 101 is narrower than the radiation solid angle θ 11 at the position where the reflector 103 is close to D101.

【0004】このように、PSD104への入射位置
が、LED101から離れる程、光路長が長くなると共
に、放射立体角も狭くなる。このため、PSD104受
光面での光強度が弱くなり、この強度分布の差が検出位
置の誤差となるといった問題があった。
Thus, the farther the incident position on the PSD 104 is from the LED 101, the longer the optical path and the narrower the solid angle of emission. Therefore, there is a problem in that the light intensity on the light receiving surface of the PSD 104 becomes weak, and the difference in the intensity distribution causes an error in the detection position.

【0005】本発明は、PSD104への入射光の強度
分布を均一にして、検出誤差の生じ難い位置検出装置を
提供することを目的とする。
An object of the present invention is to provide a position detecting device in which the intensity distribution of incident light on the PSD 104 is made uniform and a detection error is unlikely to occur.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の位置検出装置は、測定対象の動きに応じて
1次元的な移動をし、この移動方向と垂直な面に対して
それぞれ45°の角度で交わる2つの反射面からなるV
字形の溝を有する変位部材と、この変位部材の移動方向
と垂直な面に沿って変位部材の溝に光を照射する光照射
部と、この光照射部からの照射光が変位部材の溝で反射
した光の光路上に配設され、この反射光の入射位置を検
出する光位置検出部とを備える。
In order to solve the above-mentioned problems, the position detecting device of the present invention moves one-dimensionally in accordance with the movement of the object to be measured, and with respect to a plane perpendicular to this movement direction. V consisting of two reflective surfaces that intersect at an angle of 45 °
A displacement member having a V-shaped groove, a light irradiation unit that irradiates the groove of the displacement member with light along a plane perpendicular to the moving direction of the displacement member, and irradiation light from the light irradiation unit is generated by the groove of the displacement member. And a light position detector arranged on the optical path of the reflected light and detecting the incident position of the reflected light.

【0007】また、光照射部は、光源と変位部材の移動
方向に垂直なスリットが形成されたスリット板とを備
え、光源からの照射光をスリットを介して変位部材の溝
に照射しても良い。
Further, the light irradiating section is provided with a light source and a slit plate in which a slit perpendicular to the moving direction of the displacing member is formed, and the irradiating light from the light source irradiates the groove of the displacing member through the slit. good.

【0008】[0008]

【作用】本発明の位置検出装置は上述のように構成され
るので、変位部材の移動方向と垂直な面に沿って照射さ
れた照射光は、変位部材の溝の2つの反射面が交わる底
辺部に入射されるか、或いは変位部材の溝の一方の反射
面に入射される。
Since the position detecting device of the present invention is constructed as described above, the irradiation light emitted along the plane perpendicular to the moving direction of the displacement member is the base where the two reflecting surfaces of the groove of the displacement member intersect. The light is incident on the part or on one of the reflecting surfaces of the groove of the displacement member.

【0009】溝の底辺部に入射される場合には、照射光
は、溝の2つの反射面に対してそれぞれ45°の角度で
底辺部に入射される。そして、底面部で180°光路変
更されて、照射光の向きと逆方向で、照射光の入射角と
同じ角度の反射光となって出射する。
When incident on the bottom of the groove, the irradiation light is incident on the bottom of the groove at an angle of 45 ° with respect to the two reflecting surfaces. Then, the optical path is changed by 180 ° at the bottom surface portion, and the reflected light is emitted in the direction opposite to the direction of the irradiation light and at the same angle as the incident angle of the irradiation light.

【0010】また、溝の一方の反射面に入射される場合
には、照射光は、溝の一方の反射面に45°の角度で入
射される。入射光はこの反射面で反射し90°光路変更
される。さらに、この反射光は、他方の反射面に45°
の角度で入射される。入射光は、この反射面でも反射し
90°光路変更される。したがって、この反射面からの
反射光は、入射光の向きと逆方向で、入射光の入射角と
同じ角度になる。
When incident on one reflecting surface of the groove, the irradiation light is incident on one reflecting surface of the groove at an angle of 45 °. The incident light is reflected by this reflecting surface and the optical path is changed by 90 °. Furthermore, this reflected light is 45 ° on the other reflecting surface.
Is incident at an angle of. The incident light is also reflected by this reflecting surface and the optical path is changed by 90 °. Therefore, the reflected light from this reflecting surface has the same angle as the incident angle of the incident light in the direction opposite to the direction of the incident light.

【0011】このように溝から出射された反射光は、こ
の反射光の光路上に配設された光位置検出部に入射さ
れ、この反射光の入射位置の検出が行われる。
The reflected light emitted from the groove in this way is incident on the optical position detecting section arranged on the optical path of the reflected light, and the incident position of the reflected light is detected.

【0012】本発明の位置検出装置では、変位部材の移
動により、光照射部からの照射光が入射される溝の位置
が変化するが、光照射部から光位置検出部までの照射光
の光路長は一定である。また、変位部材の移動に関わら
ず、光照射部からの照射光の照射角度が一定であるた
め、放射立体角も一定となる。このため、変位部材の移
動に関わらず、光位置検出部に入射される反射光の光強
度は常に等しい。
In the position detecting device of the present invention, the position of the groove into which the irradiation light from the light irradiation section is incident changes due to the movement of the displacement member, but the optical path of the irradiation light from the light irradiation section to the light position detection section is changed. The length is constant. Further, regardless of the movement of the displacement member, the irradiation angle of the irradiation light from the light irradiation unit is constant, so that the radiating solid angle is also constant. Therefore, regardless of the movement of the displacement member, the light intensity of the reflected light incident on the light position detection unit is always the same.

【0013】次に、変位部材の移動に関わらず、光照射
部から光位置検出部までの照射光の光路長が一定になる
原理を、図11を用いて説明する。
Next, the principle that the optical path length of the irradiation light from the light irradiation unit to the light position detection unit becomes constant regardless of the movement of the displacement member will be described with reference to FIG.

【0014】図11には、変位部材60が光照射部61
から遠ざかる方向(図の右方向)に移動した場合の照射
光の光路の変化を示している。ここで、移動前の溝の2
つの面を反射面62、63、移動後の溝の2つの面を反
射面62´、63´とし、照射光が反射する反射面62
´上の位置を反射部62aとする。
In FIG. 11, the displacement member 60 is shown as a light irradiating section 61.
It shows a change in the optical path of the irradiation light when moving in a direction away from (rightward in the figure). Here, 2 of the groove before moving
One surface is the reflecting surface 62, 63, and the two surfaces of the groove after the movement are the reflecting surfaces 62 ', 63', and the reflecting surface 62 for reflecting the irradiation light
The position above ′ is the reflection portion 62a.

【0015】まず、光照射部61から反射部62aまで
の光路長をl1 、反射部62aから底辺部64までの光
路長をl2 、反射部62aから光位置検出部65までの
光路長をl3 とすると、底辺部64で反射した場合の光
照射部61から光位置検出部65までの光路長は(l1
+2×l2 +l3 )となる。
First, the optical path length from the light irradiating section 61 to the reflecting section 62a is l 1 , the optical path length from the reflecting section 62a to the base 64 is l 2 , and the optical path length from the reflecting section 62a to the optical position detecting section 65 is. If l 3 is set, the optical path length from the light irradiating section 61 to the light position detecting section 65 when reflected by the base 64 is (l 1
+ 2 × l 2 + l 3 ).

【0016】また、反射部62aで反射した光が反射面
63´に到達するまでの光路長をl4 、反射面63´か
ら光位置検出部65までの光路長をl5 とすると、反射
面62´、63´で反射した場合の光照射部61から光
位置検出部65までの光路長は(l1 +l4 +l5 )と
なる。
Further, the optical path length to the light reflected by the reflecting portion 62a and reaches the reflecting surface 63 'l 4, when the optical path length from the reflection surface 63' to the light position detector 65 and l 5, reflective surface The optical path length from the light irradiation unit 61 to the light position detection unit 65 when reflected by 62 ′ and 63 ′ is (l 1 + l 4 + l 5 ).

【0017】ここで、反射面62´で反射した光とこの
反射面62´との角度は45°、この反射光と反射面6
3´との角度も45°、さらに反射面62´と反射面6
3´とが交わる角度は90°なので、反射面62´で反
射した光の光路と反射面62´、63´で囲まれた三角
形(斜線部66)は、直角二等辺になる。光路長l
2は、この三角形の高さに等しいので、光路長l2 を2
倍した距離と光路長l4 とは等しくなる。また、反射面
62´で90°の光路変更が、反射面63´で90°の
光路変更がそれぞれ行われるので、光照射部61からの
照射光が2つの反射面62´、63´で反射されて、光
位置検出部65に到達するまでの光路によって囲まれた
四角形(斜線部67)は、長方形になる。したがって、
光路長l3 と光路長l5 は等しい。以上から、底辺部6
4で反射した場合の光路長(l1 +2×l2 +l3
と、反射面62´、63´で反射した場合の光路長(l
1 +l4+l5 )が等しいことが検証された。
Here, the angle between the light reflected by the reflecting surface 62 'and this reflecting surface 62' is 45 °, and this reflected light and the reflecting surface 6
The angle with 3'is also 45 °, and the reflecting surface 62 'and the reflecting surface 6
Since the angle of intersection with 3 ′ is 90 °, the optical path of the light reflected by the reflecting surface 62 ′ and the triangle (hatched portion 66) surrounded by the reflecting surfaces 62 ′ and 63 ′ form an isosceles right angle. Optical path length l
2 is equal to the height of this triangle, so the optical path length l 2 is 2
The multiplied distance is equal to the optical path length l 4 . Further, since the optical path is changed by 90 ° on the reflecting surface 62 ′ and the optical path is changed by 90 ° on the reflecting surface 63 ′, the irradiation light from the light irradiation unit 61 is reflected by the two reflecting surfaces 62 ′ and 63 ′. The quadrangle (the shaded portion 67) surrounded by the optical path until reaching the light position detection unit 65 becomes a rectangle. Therefore,
The optical path length l 3 and the optical path length l 5 are equal. From the above, the bottom part 6
Optical path length when reflected at 4 (l 1 + 2 × l 2 + l 3 )
And the optical path length (l
It was verified that 1 + l 4 + l 5 ) are equal.

【0018】さらに、光照射部が光源とスリット板とを
備えている場合には、次の作用を有する。スリット板に
は変位部材の移動方向に対して垂直にスリットが形成さ
れているので、スリット板からの照射光は移動方向に対
して垂直な方向に長い長方形形状の断面を持つ光束とな
る。この光束が変位部材の溝で反射して光位置検出部に
入射される際の反射光の断面も、移動方向に対して垂直
な方向に長い長方形形状である。このため、光照射部ま
たは光位置検出部と変位部材との距離が変動して、反射
光の光位置検出部への入射位置が移動方向に対して垂直
な方向にずれた場合でも、この長方形形状の反射光の一
部が光位置検出部で受光できれば位置検出できるので、
ある程度の距離変動は位置検出に影響を与えない。この
場合、距離変動による入射位置変化の許容範囲は、(移
動方向に垂直な方向の光位置検出部の幅)+2×(光位
置検出部に入射する光束の移動方向に垂直な方向の幅)
である。
Further, when the light irradiating section is provided with the light source and the slit plate, it has the following effects. Since a slit is formed in the slit plate perpendicularly to the moving direction of the displacement member, the irradiation light from the slit plate becomes a light beam having a rectangular cross section that is long in the direction perpendicular to the moving direction. The cross section of the reflected light when this light flux is reflected by the groove of the displacement member and is incident on the light position detection unit is also a rectangular shape that is long in the direction perpendicular to the movement direction. Therefore, even if the distance between the light irradiation unit or the light position detection unit and the displacement member fluctuates, and the incident position of the reflected light on the light position detection unit shifts in the direction perpendicular to the moving direction, the rectangle If part of the reflected light of the shape can be received by the light position detector, the position can be detected.
A certain distance variation does not affect the position detection. In this case, the permissible range of the incident position change due to the distance change is (width of the light position detecting portion in the direction perpendicular to the moving direction) + 2 × (width of the light beam incident on the light position detecting portion in the direction perpendicular to the moving direction)
Is.

【0019】[0019]

【実施例】以下、本発明の位置検出装置の一実施例につ
いて、添付図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the position detecting device of the present invention will be described below with reference to the accompanying drawings.

【0020】図1は、本発明に係る位置検出装置の一実
施例の構成を示す斜視図である。本実施例の位置検出装
置は、LED11とスリット板12からなる光照射部1
0と、V字型の溝21を有する変位部材20と、変位部
材20で反射した光を入射する光位置検出部であるPS
D30とを備えている。LED11とスリット板12
は、LED11からの照射光がスリット板12を通して
変位部材20の溝21に照射するように、不図示の手段
によって空間的にそれぞれ固定されている。同様に、P
SD30も変位部材20の溝21で反射した光を受光で
きるように、不図示の手段によって空間的に固定されて
いる。
FIG. 1 is a perspective view showing the configuration of an embodiment of the position detecting device according to the present invention. The position detecting device according to the present embodiment includes a light irradiating unit 1 including an LED 11 and a slit plate 12.
0, a displacement member 20 having a V-shaped groove 21, and a PS which is an optical position detection unit for injecting the light reflected by the displacement member 20.
And D30. LED 11 and slit plate 12
Are spatially fixed by means not shown so that the irradiation light from the LED 11 irradiates the groove 21 of the displacement member 20 through the slit plate 12. Similarly, P
The SD 30 is also spatially fixed by means (not shown) so that the light reflected by the groove 21 of the displacement member 20 can be received.

【0021】変位部材20は測定対象の動きに応じて1
次元的な移動を行う。この移動によって、溝21からの
反射光がPSD30に入射する位置が変化する。変位部
材20の溝21には、2つの反射面21a、21bが形
成され、変位部材の移動方向と垂直な面に対してそれぞ
れ45°の角度で交わっている。したがって、反射面2
1aと反射面21bと間の角度は90°である。
The displacing member 20 moves in accordance with the movement of the object to be measured.
Performs dimensional movement. This movement changes the position where the reflected light from the groove 21 is incident on the PSD 30. Two reflecting surfaces 21a and 21b are formed in the groove 21 of the displacing member 20 and intersect with the plane perpendicular to the moving direction of the displacing member at an angle of 45 °. Therefore, the reflective surface 2
The angle between 1a and the reflecting surface 21b is 90 °.

【0022】また、LED11から照射された光は変位
部材20の移動方向に垂直なスリットが形成されたスリ
ット板12により限られた面積だけ光を照射する光束と
なる。この光束が変位部材20の移動方向と垂直な面に
沿った光路になるように、LED11の照射方向が調整
されている。溝の反射面21a、21bは90°の角度
で交わっているので、これらの反射面で反射してPSD
30に入射される光も、変位部材20の移動方向と垂直
な面に沿った光路になる。
Further, the light emitted from the LED 11 becomes a light flux which illuminates the light in a limited area by the slit plate 12 having slits formed perpendicular to the moving direction of the displacement member 20. The irradiation direction of the LED 11 is adjusted so that this light flux forms an optical path along a plane perpendicular to the moving direction of the displacement member 20. Since the reflecting surfaces 21a and 21b of the groove intersect at an angle of 90 °, the reflecting surfaces 21a and 21b are reflected by these reflecting surfaces and PSD.
The light incident on 30 also has an optical path along a plane perpendicular to the moving direction of the displacement member 20.

【0023】さらに、PSD30は入射された光の位置
に相当する電流比でI1 、I2 を発生し、この電流比を
演算することにより、変位部材20の移動を検出するこ
とができる。
Further, the PSD 30 generates I 1 and I 2 at a current ratio corresponding to the position of the incident light, and the movement of the displacement member 20 can be detected by calculating this current ratio.

【0024】次に、本実施例の位置検出装置の動作につ
いて説明する。光照射部10からの照射光が溝21の反
射面21a、21bの交わる底辺部21cに入射された
ときの変位部材20の位置を基準位置として、この基準
位置での照射光の光路を図2及び図3に示す。そして、
変位部材20が基準位置より図の右側に移動した場合の
照射光の光路を図4及び図5に、変位部材20が基準位
置より図の左側に移動した場合の照射光の光路を図6及
び図7にそれぞれ示す。
Next, the operation of the position detecting device of this embodiment will be described. With reference to the position of the displacement member 20 when the irradiation light from the light irradiation unit 10 is incident on the bottom portion 21c where the reflecting surfaces 21a and 21b of the groove 21 intersect, the optical path of the irradiation light at this reference position is shown in FIG. And shown in FIG. And
4 and 5 show the optical path of the irradiation light when the displacement member 20 moves from the reference position to the right side of the drawing, and FIG. 6 shows the optical path of the irradiation light when the displacement member 20 moves from the reference position to the left side of the drawing. Each is shown in FIG.

【0025】まず、変位部材20が基準位置にある場合
の照射光の光路について、図2及び図3を用いて説明す
る。図2(a)は、光照射部10からの照射光が溝21
の底辺部21cで反射した場合の光路を示す斜視図であ
り、図2(b)及び図3(a)、(b)は、図2(a)
の矢印41〜43の3方向から見た光路を示す図であ
る。
First, the optical path of the irradiation light when the displacement member 20 is at the reference position will be described with reference to FIGS. 2 and 3. In FIG. 2A, the irradiation light from the light irradiation unit 10 is supplied to the groove 21.
2B is a perspective view showing an optical path when reflected by the bottom portion 21c of FIG. 2A, and FIG. 2B, FIG. 3A, and FIG.
It is a figure which shows the optical path seen from 3 directions of arrow 41-43 of FIG.

【0026】図2(a)に示すように、LED11(L
点)から照射された照射光は、スリット板12を通して
溝21の底辺部21c(O点)で反射して、PSD30
の中央部の入射点30a(P点)に入射する。図2
(b)の正面図より、溝21への入射光は変位部材20
の上面20aに対して垂直に入射していることが判る。
このときの入射光と溝21の2つの反射面21a、21
bとの角度はそれぞれ45°である。そして、底辺部2
1cで反射した反射光は入射光と同じ角度で出射する。
また、図3(c)の側面図より、溝21への入射光は底
辺部21cの垂線に対してθの角度で入射していること
が判る。そして、底辺部21cで2θ光路変更された反
射光は、底辺部21cの垂線に対してθの角度で出射さ
れる。さらに、図3(d)の上面図より、LED11か
ら照射された照射光は、底辺部21cに沿った光路であ
ることが判る。
As shown in FIG. 2A, the LED 11 (L
The irradiation light emitted from the point 30) is reflected by the bottom portion 21c (point O) of the groove 21 through the slit plate 12 and the PSD 30
Is incident on the incident point 30a (point P) at the center of the. Figure 2
From the front view of (b), the incident light to the groove 21 is the displacement member 20.
It can be seen that the light is incident perpendicularly on the upper surface 20a of the.
At this time, the incident light and the two reflecting surfaces 21a, 21 of the groove 21 are
The angle with b is 45 °. And the bottom part 2
The reflected light reflected by 1c is emitted at the same angle as the incident light.
Further, from the side view of FIG. 3C, it can be seen that the incident light on the groove 21 is incident at an angle of θ with respect to the perpendicular of the bottom portion 21c. Then, the reflected light whose optical path is changed by 2θ at the bottom portion 21c is emitted at an angle of θ with respect to the perpendicular of the bottom portion 21c. Further, from the top view of FIG. 3D, it can be seen that the irradiation light emitted from the LED 11 has an optical path along the bottom portion 21c.

【0027】次に、変位部材20が基準位置より図の右
側に移動した場合の照射光の光路について、図4及び図
5を用いて説明する。図4(a)は、光照射部10から
の照射光が溝21の反射面21a、21bで反射した場
合の光路を示す斜視図、図4(b)及び図5(a)、
(b)は、図4(a)の矢印41〜43の3方向から見
た光路を示す図である。
Next, the optical path of the irradiation light when the displacement member 20 moves to the right side of the drawing from the reference position will be described with reference to FIGS. 4 and 5. FIG. 4A is a perspective view showing an optical path when the irradiation light from the light irradiation unit 10 is reflected by the reflecting surfaces 21a and 21b of the groove 21, FIG. 4B and FIG.
4B is a diagram showing an optical path seen from three directions of arrows 41 to 43 in FIG.

【0028】図4(a)に示すように、LED11(L
点)から照射された照射光は、スリット板12を通して
溝21の反射面21a(A点)及び反射面21b(B
点)で反射して、PSD30の右周辺部の入射点30b
(P点)に入射する。図2(b)の正面図より、溝21
への入射光は反射面21aに対して45°の角度で入射
していることが判る。そして、90°光路変更されて、
反射面21bに入射する。反射面21bでも同様に90
°光路変更されて、入射方向と逆方向に出射する。この
出射光がPSD30の右周辺部30bに入射される。図
4(b)より、変位部材20の移動距離をdとすると、
A点〜B点間の光路長は2dであることが判る。次に、
図5(c)の側面図より、溝21への入射光は底辺部2
1cの垂線に対してθの角度で入射していることが判
る。そして、反射面21aで反射した光はさらに反射面
21bで反射して、この反射光が底辺部21cの垂線に
対してθの角度でPSD30に入射される。さらに、図
5(d)の上面図より、LED11から照射された照射
光は、底辺部21cと平行に進行し、反射面21aで
(θ+90°)光路変更され、さらに反射面21bで
(θ+90°)光路変更されて、光路は底辺部21cと
平行になることが判る。この反射光がPSD30の入射
点30bに入射される。
As shown in FIG. 4A, the LED 11 (L
The irradiation light emitted from the point 21) passes through the slit plate 12 and the reflecting surface 21a (point A) and the reflecting surface 21b (B) of the groove 21.
Incident point 30b on the right periphery of the PSD 30
It is incident on (point P). From the front view of FIG.
It can be seen that the incident light on is incident on the reflecting surface 21a at an angle of 45 °. And the optical path is changed by 90 °,
It is incident on the reflecting surface 21b. Similarly on the reflecting surface 21b, 90
° The optical path is changed and the light exits in the direction opposite to the incident direction. This emitted light is incident on the right peripheral portion 30b of the PSD 30. From FIG. 4B, if the moving distance of the displacement member 20 is d,
It can be seen that the optical path length between points A and B is 2d. next,
From the side view of FIG. 5C, the incident light on the groove 21 is
It can be seen that the light is incident at an angle of θ with respect to the perpendicular of 1c. Then, the light reflected by the reflecting surface 21a is further reflected by the reflecting surface 21b, and this reflected light is incident on the PSD 30 at an angle of θ with respect to the vertical line of the bottom portion 21c. Further, from the top view of FIG. 5D, the irradiation light emitted from the LED 11 travels in parallel with the bottom portion 21c, the optical path is changed (θ + 90 °) on the reflecting surface 21a, and further (θ + 90 °) on the reflecting surface 21b. ) It can be seen that the optical path is changed and the optical path becomes parallel to the bottom portion 21c. This reflected light is incident on the incident point 30b of the PSD 30.

【0029】同様に、図6(a)は、光照射部10から
の照射光が溝21の反射面21b、21aで反射した場
合の光路を示す斜視図、図6(b)及び図7(c)、
(d)は、図6(a)の矢印41〜43の3方向から見
た光路を示す平面図である。
Similarly, FIG. 6A is a perspective view showing an optical path when the irradiation light from the light irradiation unit 10 is reflected by the reflecting surfaces 21b and 21a of the groove 21, FIG. 6B and FIG. c),
FIG. 6D is a plan view showing an optical path seen from three directions of arrows 41 to 43 in FIG.

【0030】図6(a)に示すように、LED11(L
点)から照射された照射光は、スリット板12を通して
溝21の反射面21b(B点)及び反射面21a(A
点)で反射して、PSD30の左周辺部の入射点30c
(P点)に入射される。図2(b)の正面図より、変位
部材20の移動距離をdとすると、B点〜A点間の光路
長は2dであることが判る。また、図7(c)の側面図
より、溝21への入射光、及び溝21からの反射光は、
底辺部21cの垂線に対して共にθの角度で入出射され
いるのが判る。さらに、図7(d)の上面図より、LE
D11から照射された光は、反射面21a及び反射面2
1bで2度光路変更され、PSD30の入射点30cに
入射される。
As shown in FIG. 6A, the LED 11 (L
The irradiation light emitted from the reflection surface 21b (point B) and the reflection surface 21a (A) of the groove 21 passes through the slit plate 12.
Incident point 30c on the left peripheral part of PSD 30
It is incident on (point P). From the front view of FIG. 2B, it is understood that the optical path length between the points B and A is 2d, where d is the moving distance of the displacement member 20. Further, from the side view of FIG. 7C, the incident light to the groove 21 and the reflected light from the groove 21 are
It can be seen that the light is incident and emitted at an angle of θ with respect to the perpendicular of the bottom portion 21c. Furthermore, from the top view of FIG.
The light emitted from D11 is reflected by the reflecting surface 21a and the reflecting surface 2
The optical path is changed twice at 1b, and the light is incident on the incident point 30c of the PSD 30.

【0031】図7(d)に示すように、変位部材20の
移動に伴うPSD30の受光面への反射光の入射点は、
入射点30a、30b、30cを含む直線44上を移動
する。この直線44は、変位部材20の移動方向に対し
て平行である。したがって、PSD30は、長手方向が
変位部材20の移動方向に対して平行になるように配設
されるのが望ましい。
As shown in FIG. 7D, the incident point of the reflected light on the light receiving surface of the PSD 30 as the displacement member 20 moves is
It moves on a straight line 44 including the incident points 30a, 30b, 30c. The straight line 44 is parallel to the moving direction of the displacement member 20. Therefore, it is desirable that the PSD 30 is arranged such that its longitudinal direction is parallel to the moving direction of the displacement member 20.

【0032】また、図7(c)に示すA点〜O点〜B点
間の光路と、図7(d)に示すA点〜B点間の光路とは
等しいことが判る。このため、光路(L点→O点→P
点)と光路(L点→A点→B点→P点)との光路長は等
しい。このように、本実施例の構成では、光照射部10
からPSD30までの光路長は、変位部材20の移動に
関わらず一定である。
Further, it can be seen that the optical path between points A to O and B shown in FIG. 7C is equal to the optical path between points A and B shown in FIG. 7D. Therefore, the optical path (point L → point O → point P
Point) and the optical path (point L → point A → point B → point P) have the same optical path length. Thus, in the configuration of this embodiment, the light irradiation unit 10
The optical path length from to PSD 30 is constant regardless of the movement of the displacement member 20.

【0033】次に、本実施例の特徴について説明する。
本実施例の第1の特徴は、PSD30に入射される入射
光の光強度及び強度分布が等しいことである。これは、
上述したように、変位部材20の移動に関わらず光照射
部10からPSD30までの光路長が一定であり、図8
に示すように、変位部材20の移動に関わらず光照射部
10からの照射光の放射立体角θ1 が等しいからであ
る。
Next, the features of this embodiment will be described.
The first feature of the present embodiment is that the light intensity and intensity distribution of the incident light incident on the PSD 30 are equal. this is,
As described above, the optical path length from the light irradiation unit 10 to the PSD 30 is constant regardless of the movement of the displacement member 20,
This is because, as shown in, the radiation solid angles θ 1 of the irradiation light from the light irradiation unit 10 are the same regardless of the movement of the displacement member 20.

【0034】本実施例の第2の特徴は、図9に示すよう
に、PSD30と変位部材20との距離が変化しても、
PSD30への反射光の入射位置変化は、検出方向(変
位部材20の移動方向)と垂直方向になり、検出位置の
誤差が生じないことである。反射光の入射位置変化の許
容範囲は、(検出方向に垂直な方向のPSD30の幅)
+2×(検出方向に垂直な方向の光束の幅)である。ま
た、光源がレーザ光のように微小スポット光であれば、
許容範囲は、ほぼ(検出方向に垂直な方向のPSD30
の幅)になる。
The second characteristic of this embodiment is that, even if the distance between the PSD 30 and the displacement member 20 changes, as shown in FIG.
The change in the incident position of the reflected light on the PSD 30 is perpendicular to the detection direction (the moving direction of the displacement member 20), and the detection position error does not occur. The allowable range of incident position change of reflected light is (width of PSD 30 in the direction perpendicular to the detection direction)
+ 2 × (width of light flux in the direction perpendicular to the detection direction). Also, if the light source is a minute spot light such as laser light,
The allowable range is approximately (PSD30 in the direction perpendicular to the detection direction.
Width).

【0035】図10は、オートフォーカスカメラやVT
Rカメラなどにおいて、そのフォーカスレンズの位置検
出への応用例を示したものである。同図において、固定
レンズ51及びフォーカスレンズ52は光学系を形成
し、フォーカスレンズ52は不図示のアクチュエータで
フォーカスレンズ52の光軸方向に移動して、ピント合
わせが行われる。フォーカスレンズ52の側面には、上
面がV字型の溝になった変位部材53が備えられてい
る。また、変位部材53の溝に照射できる位置に、LE
D54とスリット板55が不図示の手段によって空間的
に固定されている。さらに、変位部材53の溝からの反
射光が入射できる位置に、PSD56が不図示の手段に
よって空間的に固定されている。そして、フォーカスレ
ンズ52の移動を、PSD56に入射される入射光の位
置変化によって検出する。
FIG. 10 shows an autofocus camera and a VT.
It shows an application example to the position detection of the focus lens in an R camera or the like. In the figure, the fixed lens 51 and the focus lens 52 form an optical system, and the focus lens 52 is moved in the optical axis direction of the focus lens 52 by an actuator (not shown) to perform focusing. The side surface of the focus lens 52 is provided with a displacement member 53 whose upper surface is a V-shaped groove. Further, the LE is placed at a position where the groove of the displacement member 53 can be irradiated.
The D54 and the slit plate 55 are spatially fixed by means not shown. Further, the PSD 56 is spatially fixed by means (not shown) at a position where reflected light from the groove of the displacement member 53 can enter. Then, the movement of the focus lens 52 is detected by the position change of the incident light incident on the PSD 56.

【0036】なお、本発明は上記実施例に限定されるも
のではない。例えば、PSD30の代りに多分割PD等
を使用することもできる。
The present invention is not limited to the above embodiment. For example, a multi-division PD or the like can be used instead of the PSD 30.

【0037】また、光照射部10にレーザーなどの高指
向性の光源を用いれば、小さな光源駆動により大きな信
号出力が得られる。
If a light source having a high directivity such as a laser is used for the light irradiation section 10, a large signal output can be obtained by driving a small light source.

【0038】[0038]

【発明の効果】以上説明したように、本発明の位置検出
装置であれば、光照射部から照射された照射光が光位置
検出部に入射されるまでの光路長は、変位部材の移動位
置に関わらず一定である。さらに、光照射部から照射さ
れた照射光の放射立体角も一定である。このため、光位
置検出部に入射される入射光の入射位置に関わらず、同
一の光強度の入射光となる。したがって、入射光の強度
分布が均一となり、光位置検出部の検出位置による誤差
が生じ難い。
As described above, in the position detecting device of the present invention, the optical path length until the irradiation light emitted from the light emitting portion is incident on the optical position detecting portion is the moving position of the displacement member. It is constant regardless of. Further, the radiation solid angle of the irradiation light emitted from the light irradiation unit is also constant. Therefore, the incident light has the same light intensity regardless of the incident position of the incident light incident on the light position detection unit. Therefore, the intensity distribution of the incident light becomes uniform, and an error due to the detection position of the light position detection unit hardly occurs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の位置検出装置の構成を示す斜視図で
ある。
FIG. 1 is a perspective view showing a configuration of a position detection device of this embodiment.

【図2】本実施例の位置検出装置の動作を示す図であ
る。
FIG. 2 is a diagram showing an operation of the position detection device of the present embodiment.

【図3】本実施例の位置検出装置の動作を示す図であ
る。
FIG. 3 is a diagram showing an operation of the position detection device of this embodiment.

【図4】本実施例の位置検出装置の動作を示す図であ
る。
FIG. 4 is a diagram showing an operation of the position detection device of this embodiment.

【図5】本実施例の位置検出装置の動作を示す図であ
る。
FIG. 5 is a diagram showing an operation of the position detection device of this embodiment.

【図6】本実施例の位置検出装置の動作を示す図であ
る。
FIG. 6 is a diagram showing an operation of the position detection device of this embodiment.

【図7】本実施例の位置検出装置の動作を示す図であ
る。
FIG. 7 is a diagram showing an operation of the position detection device of this embodiment.

【図8】照射光の放射立体角を示す図である。FIG. 8 is a diagram showing a radiation solid angle of irradiation light.

【図9】PSDと変位部材との距離変化に対するPSD
への入射位置変化を示す図である。
FIG. 9: PSD for a change in distance between PSD and displacement member
It is a figure which shows the incident position change to.

【図10】本発明の応用例を示す斜視図である。FIG. 10 is a perspective view showing an application example of the present invention.

【図11】光照射部から光位置検出部までの照射光の光
路長が一定になる原理を示す平面図である。
FIG. 11 is a plan view showing the principle that the optical path length of the irradiation light from the light irradiation unit to the light position detection unit becomes constant.

【図12】従来の位置検出装置の構成を示す斜視図であ
る。
FIG. 12 is a perspective view showing a configuration of a conventional position detection device.

【図13】反射板の位置と検出素子への入射位置の関係
を示す平面図である。
FIG. 13 is a plan view showing the relationship between the position of a reflector and the position of incidence on a detection element.

【図14】反射板に入射する光の放射立体角を示す平面
図である。
FIG. 14 is a plan view showing a radiation solid angle of light incident on a reflection plate.

【符号の説明】[Explanation of symbols]

10…光照射部、11…LED、12…スリット板、2
0…変位部材、21…溝、30…PSD。
10 ... Light irradiation part, 11 ... LED, 12 ... Slit plate, 2
0 ... Displacement member, 21 ... Groove, 30 ... PSD.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定対象の動きに応じて1次元的な移動
をし、この移動方向と垂直な面に対してそれぞれ45°
の角度で交わる2つの反射面からなるV字形の溝を有す
る変位部材と、 前記変位部材の移動方向と垂直な面に沿って前記変位部
材の溝に光を照射する光照射部と、 前記光照射部からの照射光が前記変位部材の溝で反射し
た光の光路上に配設され、この反射光の入射位置を検出
する光位置検出部とを備えることを特徴とする位置検出
装置。
1. A one-dimensional movement is made according to the movement of the object to be measured, and each of them is 45 ° with respect to a plane perpendicular to the movement direction.
A displacement member having a V-shaped groove composed of two reflecting surfaces that intersect at an angle of, a light irradiation unit that irradiates the groove of the displacement member with light along a surface perpendicular to the moving direction of the displacement member, A position detecting device, comprising: a light position detecting unit arranged on an optical path of light reflected from a groove of the displacement member, and a light position detecting unit detecting an incident position of the reflected light.
【請求項2】 前記光照射部は、光源と前記移動方向に
垂直なスリットが形成されたスリット板とを備え、前記
光源からの照射光を前記スリットを介して前記変位部材
の溝に照射することを特徴とする請求項1記載の位置検
出装置。
2. The light irradiating section includes a light source and a slit plate in which a slit perpendicular to the moving direction is formed, and irradiates the irradiating light from the light source to the groove of the displacing member through the slit. The position detecting device according to claim 1, wherein
JP22415092A 1992-08-24 1992-08-24 Position detector Pending JPH0666518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22415092A JPH0666518A (en) 1992-08-24 1992-08-24 Position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22415092A JPH0666518A (en) 1992-08-24 1992-08-24 Position detector

Publications (1)

Publication Number Publication Date
JPH0666518A true JPH0666518A (en) 1994-03-08

Family

ID=16809328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22415092A Pending JPH0666518A (en) 1992-08-24 1992-08-24 Position detector

Country Status (1)

Country Link
JP (1) JPH0666518A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201306A (en) * 2005-01-18 2006-08-03 Pentax Corp Stage device and camera shake correction unit using the stage device
CN115218809A (en) * 2022-07-22 2022-10-21 中国船舶科学研究中心 Creep detection device for observation window of manned deep submersible vehicle and use method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228102A (en) * 1986-03-29 1987-10-07 Toshiba Corp Remote displacement detector
JPS63225116A (en) * 1987-03-14 1988-09-20 Matsushita Electric Works Ltd Optical displacement measuring instrument
JPS6435305A (en) * 1987-07-31 1989-02-06 Komatsu Mfg Co Ltd Three-dimensional plane measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228102A (en) * 1986-03-29 1987-10-07 Toshiba Corp Remote displacement detector
JPS63225116A (en) * 1987-03-14 1988-09-20 Matsushita Electric Works Ltd Optical displacement measuring instrument
JPS6435305A (en) * 1987-07-31 1989-02-06 Komatsu Mfg Co Ltd Three-dimensional plane measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201306A (en) * 2005-01-18 2006-08-03 Pentax Corp Stage device and camera shake correction unit using the stage device
CN115218809A (en) * 2022-07-22 2022-10-21 中国船舶科学研究中心 Creep detection device for observation window of manned deep submersible vehicle and use method thereof

Similar Documents

Publication Publication Date Title
US4782239A (en) Optical position measuring apparatus
EP1238266B1 (en) Apparatus for shaping an x-ray beam and method of directing an x-ray beam through an aperture
CN111656215B (en) Laser radar device, driving assistance system, and vehicle
EP1342984B1 (en) Optical distance sensor
KR20200105665A (en) Laser radar and its working method
KR102603393B1 (en) Laser processing apparatus
US8102514B2 (en) Beam irradiation apparatus
EP1248137B1 (en) Laser beam irradiation device with changeable spreading angle
JP2022165971A (en) Scanning device and ranging device
CN108663757B (en) Light-emitting angle control device
JPH04109103A (en) Light spot position detecting device
US5523844A (en) Displacement detection apparatus
JPH0666518A (en) Position detector
US11714233B2 (en) Optical signal routing devices and systems
JP2000028944A5 (en)
JP2915519B2 (en) Laser irradiation equipment
SU1675827A1 (en) Microscope
JPH06331732A (en) Optical distance sensor
WO2019151092A1 (en) Scanning device and distance measuring device
JP3350826B2 (en) Limited reflection type photoelectric sensor
KR101727599B1 (en) Apparatus for processing light guide plate
JP2740021B2 (en) Laser scanning device
JPS6266112A (en) Position detector
JPH0961160A (en) Measuring apparatus for inclination amount of moving object
JP2002195880A (en) Floodlight unit and photoelectric sensor