JP2002195880A - Floodlight unit and photoelectric sensor - Google Patents
Floodlight unit and photoelectric sensorInfo
- Publication number
- JP2002195880A JP2002195880A JP2000397639A JP2000397639A JP2002195880A JP 2002195880 A JP2002195880 A JP 2002195880A JP 2000397639 A JP2000397639 A JP 2000397639A JP 2000397639 A JP2000397639 A JP 2000397639A JP 2002195880 A JP2002195880 A JP 2002195880A
- Authority
- JP
- Japan
- Prior art keywords
- light
- parallel light
- parallel
- unit
- reflecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、平行光を送受する
測定用光路上に位置する被検出物体による遮光状態を検
出することにより、被検出物体の位置や寸法等を測定す
るのに好適する投光ユニット及び光電センサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for measuring the position and size of an object to be detected by detecting a light blocking state by an object to be detected located on a measuring optical path for transmitting and receiving parallel light. The present invention relates to a light emitting unit and a photoelectric sensor.
【0002】[0002]
【従来の技術】従来より、平行光を送受する測定用光路
上に被検出物体が置かれた場合の遮光状態を検出するこ
とに基づいて、この被検出物体の位置や寸法等を測定す
る光電センサがある。例えば図5は、特開平7−113
688号公報に開示された光電センサを物体の高さ寸法
を測定するための光電センサ100に適用した場合の構
成を示すものであり、特に、反射部材を用いて平行光を
所定方向に拡大するように構成されている。2. Description of the Related Art Conventionally, based on detecting a light blocking state when an object to be detected is placed on a measurement optical path for transmitting and receiving parallel light, a photoelectric sensor for measuring the position and size of the object to be detected is used. There are sensors. For example, FIG.
688 shows a configuration in which the photoelectric sensor disclosed in Japanese Patent Application Publication No. 688 is applied to a photoelectric sensor 100 for measuring a height dimension of an object. In particular, parallel light is expanded in a predetermined direction using a reflecting member. It is configured as follows.
【0003】図5において、投光ユニット101は、図
示しないLED光源から出射されるLED光を伝搬する
光ファイバ102が挿入装着され、内部にコリメートレ
ンズ103と反射部材104とが透明樹脂により一体成
型された光学部材105が装着されて構成されている。
この光学部材105の反射部材104は、図6(a)に
示すように、入射する第1の平行光(後述)の進行方向
に対して反射角度が90°に設定された複数の同形状の
分割反射部106が等間隔で段階的に配置されて構成さ
れている。そして、光ファイバ102端面から出射され
るLED光が光学部材105のコリメートレンズ103
にて平行化されて第1の平行光として出射され、この第
1の平行光が反射部材104にて反射され、第1の平行
光よりも所定方向に拡大した第2の平行光として開口部
101aから出射されるようになっている。[0005] In FIG. 5, an optical fiber 102 for propagating LED light emitted from an LED light source (not shown) is inserted and mounted in a light projecting unit 101, and a collimating lens 103 and a reflecting member 104 are integrally molded with a transparent resin inside. The optical member 105 is mounted.
As shown in FIG. 6 (a), the reflecting member 104 of the optical member 105 has a plurality of the same shape whose reflection angle is set to 90 ° with respect to the traveling direction of the incident first parallel light (described later). The divided reflecting portions 106 are arranged in a stepwise manner at equal intervals. Then, the LED light emitted from the end face of the optical fiber 102 is collimated by the collimating lens 103 of the optical member 105.
The first parallel light is reflected by the reflection member 104, and is expanded as a second parallel light that is larger than the first parallel light in a predetermined direction. The light is emitted from 101a.
【0004】図5に戻って、受光ユニット107には、
矩形状に開口されたスリット108、集光レンズ109
及びフォトダイオード110が設けられており、前記第
2の平行光のうちスリット108を通過したものが集光
レンズ109により集光された状態で、フォトダイオー
ド110にて受光され、このフォトダイオード110か
ら受光量の大きさに応じて光電変換された電気信号が出
力される。Returning to FIG. 5, the light receiving unit 107 includes
Slit 108 opened in rectangular shape, condenser lens 109
And a photodiode 110. Of the second parallel light, the one that has passed through the slit 108 is received by the photodiode 110 in a state of being collected by the condenser lens 109, and An electric signal that is photoelectrically converted according to the amount of received light is output.
【0005】図示しない信号処理部は、マイクロコンピ
ュータを主体とした電気回路で構成されており、受光量
と被検出物体の高さ寸法との相対関係が予めデータ化さ
れて記録されている。そして、前記電気信号に基づいて
フォトダイオード110での受光量が検出され、この受
光量と前記データとを比較することに基づいて被検出物
体の高さ寸法の測定が行われる。[0005] The signal processing unit (not shown) is formed of an electric circuit mainly composed of a microcomputer, and the relative relationship between the amount of received light and the height of the detected object is converted into data and recorded in advance. Then, the amount of light received by the photodiode 110 is detected based on the electric signal, and the height of the detected object is measured based on a comparison between the amount of received light and the data.
【0006】[0006]
【発明が解決しようとする課題】ところで、光ファイバ
102端面から出射されるLED光の光強度分布は、図
7に示すように、光軸付近ほど大きく、放射角が広がる
に従って小さくなるような不均一なものである。そのた
め、コリメートレンズ103にて平行化された第1の平
行光の光強度分布も、図6(b)に示すように、その光
軸から離れるに従って小さくなるような不均一なものと
なる。As shown in FIG. 7, the light intensity distribution of the LED light emitted from the end face of the optical fiber 102 becomes larger near the optical axis and becomes smaller as the radiation angle becomes wider. It is uniform. Therefore, as shown in FIG. 6B, the light intensity distribution of the first parallel light collimated by the collimator lens 103 also becomes non-uniform as the distance from the optical axis decreases.
【0007】この場合、反射部材104の各分割反射部
106にて反射される第2の平行光は、第1の平行光に
比べて所定方向には拡大されるが、反射部材104近傍
での光強度分布は、図6(c)に示すように、光強度の
極大部が等間隔で並び、更に光軸から離れるに従って極
大部の光強度が小さくなるような不均一なものとなる。
そして、この第2の平行光は投光ユニット101の開口
部101aから出射されるまでに第1の平行光の僅少な
広がりや散乱等の影響を受けて光強度分布が滑らかにな
るものの、開口部101a近傍での光強度分布は、第1
の平行光と同様にして、図6(d)に示すように、光軸
から離れるに従って小さくなるような不均一なままであ
る。In this case, the second parallel light reflected by each of the divided reflecting portions 106 of the reflecting member 104 is expanded in a predetermined direction as compared with the first parallel light, but the second parallel light is reflected near the reflecting member 104. As shown in FIG. 6 (c), the light intensity distribution is non-uniform such that the maximum portions of the light intensity are arranged at equal intervals, and the light intensity of the maximum portion decreases as the distance from the optical axis increases.
Although the second parallel light is affected by a slight spread and scattering of the first parallel light before being emitted from the opening 101a of the light projecting unit 101, the light intensity distribution becomes smooth, The light intensity distribution near the portion 101a is the first
In the same manner as the parallel light, as shown in FIG. 6 (d), it remains non-uniform as the distance from the optical axis decreases.
【0008】このような光電センサ100では、第2の
平行光の光軸に垂直な面における単位面積当たりの光量
が不均一なために、被検出物体の高さ方向の変化率と被
検出物体により遮光されてスリット108を通過しなく
なる光量の割合(遮光率)とが比例関係にならず、フォ
トダイオード110での受光量と遮光率とが比例関係で
なくなり、高さ寸法の測定精度が低下してしまうという
問題が発生していた。In such a photoelectric sensor 100, since the amount of light per unit area in a plane perpendicular to the optical axis of the second parallel light is not uniform, the rate of change in the height direction of the object to be detected and the The ratio of the amount of light that is blocked by the light and no longer passes through the slit 108 (light blocking ratio) does not have a proportional relationship, and the amount of light received by the photodiode 110 and the light blocking ratio no longer have a proportional relationship, and the measurement accuracy of the height dimension decreases. Had the problem of doing so.
【0009】また、特開平7−146115号公報に開
示された光電センサでは、図示はしないが、第2の平行
光のうちの光強度分布が略均一となる光軸付近の光のみ
を測定光路上に出射するような構成にしている。これを
前記光電センサ100に適用した場合には、スリット1
08を通過する第2の平行光の光軸から離れた位置での
光強度分布の減少率がなだらかになり、光軸に垂直な面
における単位面積当たりの光量が略均一になるので、被
検出物体の高さ方向の変化率と遮光率とを略比例関係に
することができ、従って、フォトダイオード110での
受光量と遮光率とが略比例関係になり、高さ寸法の測定
精度を向上させることができるように思われる。In the photoelectric sensor disclosed in Japanese Patent Application Laid-Open No. 7-146115, although not shown, only the light near the optical axis where the light intensity distribution of the second parallel light is substantially uniform is measured light. It is configured to emit light on the road. When this is applied to the photoelectric sensor 100, the slit 1
08, the rate of decrease of the light intensity distribution at a position distant from the optical axis of the second parallel light becomes gentle, and the amount of light per unit area on a plane perpendicular to the optical axis becomes substantially uniform. The change rate in the height direction of the object and the light-shielding rate can be in a substantially proportional relationship, and therefore, the amount of light received by the photodiode 110 and the light-shielding rate are in a substantially proportional relationship, improving the measurement accuracy of the height dimension. Seems to be able to.
【0010】しかしながら、この場合にも、スリット1
08を通過する第2の平行光の光強度差は小さくなる
が、光軸から離れるに従って小さくなるという関係は解
消されていないので、被検出物体の高さ方向の変化率と
遮光率とが完全に比例関係にはならないという問題があ
った。しかも、第1の平行光の端部の光は測定に使用さ
れないため、測定に使用される第2の平行光の光量は発
光手段から出射される放射光を減衰させたものとなり、
そのためフォトダイオード110での受光量が低減し、
SN比を低下させてしまうという問題も発生していた。However, also in this case, the slit 1
08, the difference in the light intensity of the second parallel light becomes smaller, but the relationship that the light intensity becomes smaller as the distance from the optical axis becomes smaller is not solved. However, there was a problem that the relationship was not proportional. Moreover, since the light at the end of the first parallel light is not used for the measurement, the amount of the second parallel light used for the measurement is obtained by attenuating the radiation emitted from the light emitting means,
Therefore, the amount of light received by the photodiode 110 is reduced,
There has also been a problem that the SN ratio is lowered.
【0011】本発明は上述の事情に鑑みてなされたもの
であり、従ってその目的は、発光手段から出射される放
射光の光量を減衰させることなく反射させて、所定方向
の幅を拡大すると共に光強度分布が均一な平行光を出射
することができる投光ユニット、及び、この投光ユニッ
トを備えた光電センサを提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and therefore has as its object to increase the width of a predetermined direction by reflecting the amount of radiation emitted from a light emitting means without attenuating it. An object of the present invention is to provide a light projecting unit capable of emitting parallel light having a uniform light intensity distribution, and a photoelectric sensor including the light projecting unit.
【0012】[0012]
【課題を解決するための手段】請求項1記載の投光ユニ
ットは、光軸上に位置する発光手段から放射され、放射
角が大きくなるに従って光強度分布が小さくなる放射光
をコリメートレンズにて平行化し、この平行化により形
成された第1の平行光を反射部材にて反射させることに
より前記第1の平行光よりも所定方向の幅を拡大させた
第2の平行光を出射する投光ユニットにおいて、前記反
射部材は、前記第2の平行光の光軸に垂直な面における
単位面積当たりの光量が均一になるように構成されてい
ることを特徴とする。このような構成によれば、第1の
平行光の光量を減衰させることなく大きな強度を維持し
た状態で光強度分布が均一な第2の平行光を出射するこ
とができるので、第2の平行光における所定方向の遮光
寸法と第2の平行光の減少光量とを比例関係にすること
ができる。According to a first aspect of the present invention, there is provided a light projecting unit which emits, by a collimating lens, radiated light radiated from a light emitting means located on an optical axis and having a light intensity distribution which becomes smaller as the radiation angle becomes larger. A light projecting to collimate and to emit a second parallel light whose width in a predetermined direction is larger than that of the first parallel light by reflecting the first parallel light formed by the parallelization with a reflecting member. The unit is characterized in that the reflection member is configured such that the amount of light per unit area on a plane perpendicular to the optical axis of the second parallel light is uniform. According to such a configuration, it is possible to emit the second parallel light having a uniform light intensity distribution while maintaining a large intensity without attenuating the light amount of the first parallel light. The light-shielding dimension of the light in a predetermined direction and the reduced light amount of the second parallel light can be in a proportional relationship.
【0013】請求項2記載の投光ユニットでは、前記反
射部材は、前記第1の平行光を分割して反射させる複数
の分割反射部を段階的に並べることにより構成され、前
記各分割反射部の配置間隔は、前記第1の平行光の光軸
から離れるに従って小さくなるように設定されているこ
とを特徴とする。このような構成によれば、複数の分割
反射部の配置間隔及び反射角度を任意に変えることによ
り、第2の平行光の光強度分布を均一に維持したまま、
第2の平行光の幅の拡大率及び出射方向を任意に設定す
ることができる。In the light projecting unit according to claim 2, the reflecting member is constituted by arranging a plurality of divided reflecting portions for dividing and reflecting the first parallel light in a stepwise manner. Are set so as to decrease as the distance from the optical axis of the first parallel light increases. According to such a configuration, by arbitrarily changing the arrangement interval and the reflection angle of the plurality of divided reflecting portions, while maintaining the light intensity distribution of the second parallel light uniform,
The magnification of the width of the second parallel light and the emission direction can be arbitrarily set.
【0014】請求項3記載の光電センサでは、前記反射
部材は、前記第1の平行光を分割して反射させる複数の
分割反射部を段階的に並べることにより構成され、前記
各分割反射部の面積は、前記第1の平行光の光軸から離
れるに従って大きくなるように設定されていることを特
徴とする。このような構成によっても、複数の分割反射
部の面積及び反射角度を任意に変えることにより、請求
項2と同様な効果が得られる。According to a third aspect of the present invention, in the photoelectric sensor, the reflecting member is configured by arranging a plurality of divided reflecting portions for dividing and reflecting the first parallel light in a stepwise manner. The area is set so as to increase as the distance from the optical axis of the first parallel light increases. Even with such a configuration, the same effects as those of the second aspect can be obtained by arbitrarily changing the areas and the reflection angles of the plurality of divided reflecting portions.
【0015】請求項4記載の光電センサは、請求項1乃
至3の何れかに記載の投光ユニットと、この投光ユニッ
トから出射される前記第2の平行光を集光レンズにて集
光し、この集光光を受光手段にて受光する受光ユニット
と、前記受光手段が受光する前記第2の平行光の領域を
矩形スリット状に規制するスリット手段と、前記受光ユ
ニットにより受光される受光量に基づいて、前記投光ユ
ニット及び前記受光ユニット間に形成される測定用光路
の遮光状態を検出する遮光状態検出手段とを具備するこ
とを特徴とする。このような構成によれば、投光ユニッ
トから光強度分布が均一な第2の平行光が出射されるの
で、測定用光路の遮光率と受光手段での受光量とを比例
関係にすることができ、遮光状態の測定精度を向上させ
ることができる。しかも、この第2の平行光の光強度は
十分大きいので、SN比を向上させることができる。ま
た、この第2の平行光の幅は第1の平行光に比べて拡大
されているので、測定範囲を大きくすることができる。According to a fourth aspect of the present invention, there is provided a photoelectric sensor, wherein the light projecting unit according to any one of the first to third aspects and the second parallel light emitted from the light projecting unit are condensed by a condenser lens. A light receiving unit for receiving the condensed light by a light receiving means; a slit means for regulating a region of the second parallel light received by the light receiving means into a rectangular slit shape; And a light-shielding state detecting means for detecting a light-shielding state of a measuring optical path formed between the light projecting unit and the light receiving unit based on the amount. According to such a configuration, since the second parallel light having a uniform light intensity distribution is emitted from the light projecting unit, it is possible to make the light blocking ratio of the measuring optical path and the amount of light received by the light receiving means proportional. As a result, the measurement accuracy in the light-shielded state can be improved. Moreover, since the light intensity of the second parallel light is sufficiently high, the SN ratio can be improved. Further, since the width of the second parallel light is wider than that of the first parallel light, the measurement range can be increased.
【0016】[0016]
【発明の実施の形態】[一実施の形態]以下、本発明の
光電センサを被検出物体の高さ寸法を測定する光電セン
サに適用した一実施例について、図1及び図2を参照し
て説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [Embodiment] An embodiment in which the photoelectric sensor of the present invention is applied to a photoelectric sensor for measuring the height of an object to be detected will be described below with reference to FIGS. explain.
【0017】図2は、光電センサ1の構成を示すもので
ある。この図2において、高さの異なる被検出物体を流
すためのライン2側部には、次のようにして光電センサ
1が設置されている。FIG. 2 shows the structure of the photoelectric sensor 1. In FIG. 2, the photoelectric sensor 1 is installed on the side of the line 2 through which objects to be detected having different heights flow, as follows.
【0018】まず、ライン2の一方の側部には箱状のケ
ース3が設置されており、このケース3の上面部3aに
は円形状の開口部4が設けられ、この開口部4には、光
ファイバ5の端面がケース内部に位置するようにして光
ファイバ5が挿入装着されている。この光ファイバ5
は、図示しないLED光源から出射されるLED光を伝
搬するためのものであり、これらLED光源と光ファイ
バとで発光手段が構成されている。First, a box-shaped case 3 is provided on one side of the line 2, and a circular opening 4 is provided in an upper surface 3 a of the case 3. The optical fiber 5 is inserted and mounted such that the end face of the optical fiber 5 is located inside the case. This optical fiber 5
Is for transmitting LED light emitted from an LED light source (not shown), and a light emitting means is constituted by these LED light sources and an optical fiber.
【0019】また、ケース3内には、コリメートレンズ
6と反射部材7とが透明樹脂により一体成型された光学
部材8(後述)が配設されている。この光学部材8は、
コリメートレンズ6の中心部が光ファイバ5端面から出
射される放射光たるLED光の光軸に位置するように位
置決めされている。そして、反射部材7は、図1(a)
に示すように、入射する第1の平行光(後述)の進行方
向に対して反射角が90°に設定された複数の同ピッチ
の分割反射部7aが段階的に配置されて構成されてい
る。尚、このピッチとは、分割反射部7aが第1の平行
光を反射させる部分の長さのことである。また、これら
分割反射部7aの第1の平行光と平行な方向に対して垂
直な配置間隔は、出射口9から出射される第2の平行光
(後述)の光量がその光軸に垂直な面の単位面積当たり
において均一になるように、第1の平行光の光強度分布
に応じて、第2の平行光の光軸から離れるに従って小さ
くなるように設定されている。また、コリメートレンズ
6及びの出射口9の表面には、反射防止膜が施されてい
る。In the case 3, there is provided an optical member 8 (described later) in which a collimating lens 6 and a reflecting member 7 are integrally formed of a transparent resin. This optical member 8 is
The collimator lens 6 is positioned so that the center of the collimator lens 6 is positioned on the optical axis of the LED light that is emitted light emitted from the end face of the optical fiber 5. Then, the reflecting member 7 is as shown in FIG.
As shown in FIG. 7, a plurality of divided reflecting portions 7a having the same pitch and having a reflection angle of 90 ° with respect to the traveling direction of the incident first parallel light (described later) are arranged stepwise. . Here, the pitch is the length of the portion where the divided reflecting portion 7a reflects the first parallel light. The arrangement interval of the divided reflecting portions 7a perpendicular to the direction parallel to the first parallel light is such that the amount of second parallel light (described later) emitted from the exit 9 is perpendicular to the optical axis. In accordance with the light intensity distribution of the first parallel light, the distance is set to be smaller as the distance from the optical axis of the second parallel light is increased so as to be uniform per unit area of the surface. An anti-reflection film is applied to the surfaces of the collimating lens 6 and the exit 9.
【0020】図2に戻って、ケース3のライン2側に対
向する正面部3cには開口部10が設けられている。そ
して、光ファイバ5端面から出射されるLED光は、コ
リメートレンズ6にて平行化されて第1の平行光として
出射され、この第1の平行光が反射部材7にて反射さ
れ、開口部10からライン2側に向かって、第1の平行
光よりも垂直方向に幅が拡大された第2の平行光として
出射されるようになっている。このようにして、これら
発光手段及び光学部材8で投光ユニット11が構成され
ている。Returning to FIG. 2, an opening 10 is provided in a front portion 3c of the case 3 facing the line 2 side. The LED light emitted from the end face of the optical fiber 5 is collimated by the collimator lens 6 and emitted as first parallel light, and the first parallel light is reflected by the reflection member 7 and the aperture 10 From the first parallel light toward the line 2 side, and is emitted as a second parallel light whose width is expanded in the vertical direction than the first parallel light. Thus, the light emitting unit 11 is configured by the light emitting unit and the optical member 8.
【0021】次に、ライン2の投光ユニット11に対向
するもう一方の側部には矩形状のケース12が設置され
ており、このケース12のライン2に対向する正面部1
2aには、長手方向が垂直方向を指向し、第2の平行光
の光軸に中心部が位置するようにして矩形状に開口され
たスリット手段たるスリット13が形成されている。Next, a rectangular case 12 is provided on the other side of the line 2 facing the light projecting unit 11, and a front portion 1 of the case 12 facing the line 2 is provided.
2a, a slit 13 is formed as a slit means which is opened in a rectangular shape such that its longitudinal direction is oriented in the vertical direction and its center is located at the optical axis of the second parallel light.
【0022】更に、前記光軸の延長上には、夫々中心部
が位置するようにして、ケース12内部に表面に反射防
止膜が施された集光レンズ14が配置され、更にこの集
光レンズ14の焦点位置には受光手段たるフォトダイオ
ード15が装着されている。Further, a condensing lens 14 having an anti-reflection film on the surface thereof is disposed inside the case 12 so that the central portion is located on the extension of the optical axis. At a focal position of 14, a photodiode 15 as a light receiving means is mounted.
【0023】そして、フォトダイオード15では、スリ
ット13を通過した第2の平行光が全て集光され、この
集光光の光強度分布に応じて光電変換された電気信号が
出力されるようになっている。このようにして、これら
スリット13、集光レンズ14及びフォトダイオード1
5で受光ユニット16が構成されている。In the photodiode 15, all of the second parallel light passing through the slit 13 is collected, and an electric signal photoelectrically converted according to the light intensity distribution of the collected light is output. ing. In this manner, the slit 13, the condenser lens 14, and the photodiode 1
5, the light receiving unit 16 is constituted.
【0024】遮光状態検出手段たる遮光状態検出回路
は、図示はしないが、マイクロコンピュータを主体とし
た電気回路で構成されており、フォトダイオード15か
ら受信する電気信号に基づいて、被検出物体の高さ寸法
の測定が行われる。そして、測定された被検出物体の高
さに関する情報は、図示しないライン管理装置に送信さ
れ、被検出物体の区分等の制御に使用される。以上のよ
うにして、投光ユニット11、受光ユニット16及び遮
光状態検出回路で光電センサ1が構成されている。Although not shown, the light-shielding state detecting circuit, which is a light-shielding state detecting means, is constituted by an electric circuit mainly composed of a microcomputer, and the height of the object to be detected is determined based on an electric signal received from the photodiode 15. A measurement of the dimension is made. Then, information on the measured height of the detected object is transmitted to a line management device (not shown), and is used for controlling the division of the detected object. As described above, the photoelectric sensor 1 is configured by the light projecting unit 11, the light receiving unit 16, and the light blocking state detecting circuit.
【0025】<光学部材8の作用説明>次に、光学部材
8の作用について説明する。光ファイバ5端面から出射
されるLED光の光強度分布は、図7に示したように、
光軸ほど大きく、放射角が大きくなるに従って小さくな
るような不均一なものであり、そのため、コリメートレ
ンズ6にて平行化される第1の平行光の光強度分布も、
図1(b)に示すように、その光軸から離れるに従って
小さくなるような不均一なものとなる。<Description of Operation of Optical Member 8> Next, the operation of the optical member 8 will be described. The light intensity distribution of the LED light emitted from the end face of the optical fiber 5 is, as shown in FIG.
The light intensity distribution of the first parallel light that is collimated by the collimating lens 6 is also non-uniform such that it becomes larger as the optical axis and becomes smaller as the radiation angle becomes larger.
As shown in FIG. 1B, the distance becomes non-uniform as the distance from the optical axis decreases.
【0026】ところで、反射部材7の各分割反射部7a
の配置間隔は、前述したように、出射口9から出射され
る第2の平行光の光量がその光軸に垂直な面の単位面積
当たりにおいて均一になるように、第1の平行光の光強
度分布に応じて、第2の平行光の光軸から離れるに従っ
て小さくなるように設定されている。そのため、反射部
材7近傍での第2の平行光の光強度分布は、図1(c)
に示すように、光強度の極大部が光軸から離れるに従っ
て小さくなるものの、極大部の間隔が密になるようなも
のとなる。By the way, each divided reflecting portion 7a of the reflecting member 7
As described above, the arrangement interval of the first parallel light is set such that the light amount of the second parallel light emitted from the emission port 9 becomes uniform per unit area of a plane perpendicular to the optical axis. According to the intensity distribution, the distance is set to be smaller as the distance from the optical axis of the second parallel light increases. Therefore, the light intensity distribution of the second parallel light near the reflecting member 7 is as shown in FIG.
As shown in (1), although the local maximum of the light intensity decreases as the distance from the optical axis increases, the interval between the local maximums becomes closer.
【0027】そして、この第2の平行光は、投光ユニッ
ト11の開口部10から出射されるまでに第1の平行光
の僅少な広がりや散乱等の影響を受けて均一化され、開
口部10近傍での光強度分布は、図1(d)に示すよう
に、光軸から周縁に至るまで均一なものとなる。即ち、
投光ユニット11から出射される第2の平行光は、その
光軸に垂直な面の単位面積当たりの光量が均一になる。The second parallel light is uniformed under the influence of a slight spread or scattering of the first parallel light before it is emitted from the opening 10 of the light projecting unit 11, and the second parallel light is uniformed. The light intensity distribution in the vicinity of 10 becomes uniform from the optical axis to the periphery as shown in FIG. That is,
The second parallel light emitted from the light projecting unit 11 has a uniform amount of light per unit area on a surface perpendicular to the optical axis.
【0028】<光電センサ1の作用説明>次に、光電セ
ンサ1の作用について説明する。投光ユニット11の開
口部10から出射される第2の平行光は、ライン2上に
測定用光路を形成しながら受光ユニット16のスリット
13に向かって照射される。そして、スリット13と同
幅の第2の平行光のみがスリット13を通過し、集光レ
ンズ14にて集光され、この集光光がフォトダイオード
15にて受光される。続いて、フォトダイオード15で
は、集光光の光強度に応じて光電変換された電気信号
が、遮光状態検出回路に出力される。<Description of Operation of Photoelectric Sensor 1> Next, the operation of the photoelectric sensor 1 will be described. The second parallel light emitted from the opening 10 of the light projecting unit 11 is emitted toward the slit 13 of the light receiving unit 16 while forming an optical path for measurement on the line 2. Then, only the second parallel light having the same width as the slit 13 passes through the slit 13, is collected by the condenser lens 14, and the collected light is received by the photodiode 15. Subsequently, in the photodiode 15, an electric signal photoelectrically converted according to the light intensity of the condensed light is output to the light-shielded state detection circuit.
【0029】遮光状態検出回路では、受信した電気信号
に基づいて、フォトダイオード15での受光量の検出が
行われる。この場合、第2の平行光の光強度分布がその
光軸に垂直な面において均一であるために、フォトダイ
オード15での受光量は、測定光路中を被検出物体が通
過する際にその被検出物体の高さに応じて遮光される光
量の割合(遮光率)に比例する。そして、遮光されない
状態(スリット13に第2の平行光が100%入射され
る状態)で検出される受光量の受光率を100%とし、
被検出物体により遮光される場合に検出される受光率を
求めることにより、被検出物体の高さ寸法の測定が行わ
れる。In the light-shielded state detection circuit, the amount of light received by the photodiode 15 is detected based on the received electric signal. In this case, since the light intensity distribution of the second parallel light is uniform on a plane perpendicular to the optical axis, the amount of light received by the photodiode 15 is reduced when the detected object passes through the measurement optical path. It is proportional to the ratio of the amount of light blocked (the light blocking ratio) according to the height of the detection object. Then, the light receiving rate of the light receiving amount detected in a state where light is not blocked (a state in which 100% of the second parallel light is incident on the slit 13) is set to 100%,
The height dimension of the detected object is measured by calculating the light receiving ratio detected when the light is blocked by the detected object.
【0030】このように本実施例では、複数の分割反射
部7aを段階的に配置する際に、出射口9から出射され
る第2の平行光の光量がその光軸に垂直な面の単位面積
当たりにおいて均一になるように、第1の平行光の光強
度分布に応じて、その配置間隔が第2の平行光の光軸か
ら離れるに従って小さくなるようにして反射部材7を構
成するようにしたので、第2の平行光における垂直方向
の遮光寸法と第2の平行光の減少光量とを比例関係にす
ることができる。As described above, in the present embodiment, when the plurality of divided reflecting portions 7a are arranged in a stepwise manner, the amount of the second parallel light emitted from the emission port 9 is determined by the unit of the surface perpendicular to the optical axis. The reflecting member 7 is configured such that the arrangement interval becomes smaller as the distance from the optical axis of the second parallel light increases in accordance with the light intensity distribution of the first parallel light so that the light is uniform per area. Therefore, the light shielding dimension in the vertical direction of the second parallel light and the reduced light amount of the second parallel light can be in a proportional relationship.
【0031】これにより、測定用光路の遮光率とフォト
ダイオード15での受光量とを比例関係にすることがで
き、被検出物体の高さ寸法の測定精度を向上させること
ができる。しかも、この第2の平行光の光強度は十分大
きいので、SN比を向上させることができる。また、こ
の第2の平行光の径は第1の平行光に比べて拡大されて
いるので、測定範囲を大きくすることができる。This makes it possible to make the light blocking ratio of the measuring optical path and the amount of light received by the photodiode 15 proportional to each other, thereby improving the measurement accuracy of the height of the object to be detected. Moreover, since the light intensity of the second parallel light is sufficiently high, the SN ratio can be improved. Further, since the diameter of the second parallel light is larger than that of the first parallel light, the measurement range can be enlarged.
【0032】尚、本実施例では、分割反射部7aの反射
角度を90°に設定したが、これに限定されるものでは
なく、反射角度を任意に設定することにより、第2の平
行光の出射方向を任意に設定してもよい。更に、第1の
平行光に対する第2の平行光における所定方向の幅の拡
大率を変える場合には、各分割反射部7aのピッチを変
えればよい。In the present embodiment, the reflection angle of the divided reflecting portion 7a is set to 90 °. However, the present invention is not limited to this. By setting the reflection angle arbitrarily, the second parallel light can be set. The emission direction may be set arbitrarily. Further, when changing the enlargement ratio of the width of the second parallel light with respect to the first parallel light in the predetermined direction, the pitch of each divided reflecting portion 7a may be changed.
【0033】[他の実施の形態]さて、光学部材は、本
実施例で示したものに限定されるものではなく、次のよ
うな変形も可能である。[Other Embodiments] The optical members are not limited to those shown in the present embodiment, but may be modified as follows.
【0034】図3は、本実施例の光学部材8と同様にし
て、コリメートレンズ20と反射部材21とが一体成型
された光学部材22の構成を示すものである。但し、こ
の光学部材22の反射部材21は、本実施例のような各
分割反射部7a間が第1の平行光の光軸に対して平行な
面で形成されているのとは異なり、前記光軸に対して各
分割反射部21aの一部が重なるようにして鋸刃のよう
に段階的に配置されて構成されている。そして、このよ
うな構成によっても、本実施例と同様の効果が得られ
る。FIG. 3 shows the structure of an optical member 22 in which a collimating lens 20 and a reflecting member 21 are integrally formed in the same manner as the optical member 8 of the present embodiment. However, the reflecting member 21 of the optical member 22 is different from that of the present embodiment in that the space between the divided reflecting portions 7a is formed by a plane parallel to the optical axis of the first parallel light. Each of the divided reflecting portions 21a is arranged stepwise like a saw blade so that a part of each of the divided reflecting portions 21a overlaps with the optical axis. With such a configuration, the same effect as that of the present embodiment can be obtained.
【0035】また、図4は、コリメートレンズ23と反
射部材24とが個別に設けられて形成された光学部材2
5の構成を示すものである。この光学部材の分割反射部
24aは、本実施例と同様にして段階的に構成されてお
り、その表面には金属蒸着が施されている。そして、こ
のような構成によっても、本実施例と同様の効果が得ら
れる。また、発光手段に応じてコリメートレンズ23の
例えば径を変える必要が生じた場合には、コリメートレ
ンズ23と反射部材24とが個別に設けられているの
で、コリメートレンズ23だけ変えればよく、反射部材
24は同じ物が使用でき、光学部材25の製造過程にお
ける経済性を向上させることができる。FIG. 4 shows an optical member 2 in which a collimating lens 23 and a reflecting member 24 are provided separately.
5 shows the configuration of FIG. The split reflecting portion 24a of the optical member is configured in a stepwise manner as in the present embodiment, and the surface thereof is subjected to metal evaporation. With such a configuration, the same effect as that of the present embodiment can be obtained. When it is necessary to change, for example, the diameter of the collimating lens 23 according to the light emitting means, the collimating lens 23 and the reflecting member 24 are separately provided. The same member 24 can be used, and the economical efficiency in the manufacturing process of the optical member 25 can be improved.
【0036】更に、図示はしないが、反射部材は、分割
反射部の配置間隔を本実施例のように第1の平行光の光
軸から離れるに従って小さくする代わりに、分割反射部
の面積(第1の平行光を反射する部分の面積)を第1の
平行光の光軸から離れるに従って大きくするように構成
してもよく(請求項2記載の発明)、これら分割反射部
の配置間隔及び面積の両方の調整を兼ねるように構成し
てもよい。そして、このような構成によっても、本実施
例と同様の効果が得られる。Further, although not shown, the reflecting member has an area of the divided reflecting portion (the area of the divided reflecting portion instead of decreasing the arrangement interval of the divided reflecting portion away from the optical axis of the first parallel light as in this embodiment). The area of the first parallel light reflecting portion) may be made larger as the distance from the optical axis of the first parallel light increases (the invention according to claim 2), and the arrangement interval and area of these divided reflecting portions may be increased. It may be configured to serve both adjustments. With such a configuration, the same effect as that of the present embodiment can be obtained.
【0037】尚、本発明は、上記し、且つ図面に示す実
施例にのみ限定されるものではなく、次のような変形、
拡張が可能である。本発明の実施例では、各分割反射部
の大きさを同一としたが、これに限定されるものではな
く、第1の平行光の光強度分布に応じて大きさを変えて
もよい。The present invention is not limited to the embodiment described above and shown in the drawings.
Extension is possible. In the embodiment of the present invention, the size of each of the divided reflecting portions is the same, but the size is not limited to this, and the size may be changed according to the light intensity distribution of the first parallel light.
【0038】本発明の実施例では、発光手段として光フ
ァイバ端面からLED光を出射するLED光源に適用し
たが、これに限定されるものではなく、LED光源から
LED光を直接出射する構成としてもよい。また、LE
D光源の代わりに、例えばレーザ光源や一般的な電球等
を適用してもよく、要は、放射角が大きくなるに従って
光強度分布が小さくなる放射光を出射するものであれば
よい。In the embodiment of the present invention, the light emitting means is applied to the LED light source for emitting LED light from the end face of the optical fiber. However, the present invention is not limited to this. Good. Also, LE
Instead of the D light source, for example, a laser light source, a general light bulb, or the like may be applied. In short, any light source that emits radiation light whose light intensity distribution decreases as the radiation angle increases.
【0039】本発明の実施例では、受光手段をフォトダ
イオードに適用したが、これに限定されるものではな
く、例えば1次元受光素子や2次元受光素子に適用して
もよい。この場合、これらの受光素子自身がスリット手
段の機能を備えているので、スリットを省略することが
できる。また、例えば集光レンズによる集光光を光ファ
イバで一端受け、この光ファイバにより伝搬された光を
受光素子で受光するようにして受光手段を構成してもよ
い。更に、本実施例では、光電センサとして高さ寸法を
測定するものに適用したが、前記のように受光手段を選
択することによって、被検出物体を測長したり、被検出
物体の2次元的な形状認識を測定するものに適用しても
よい。In the embodiment of the present invention, the light receiving means is applied to the photodiode. However, the present invention is not limited to this. For example, the light receiving means may be applied to a one-dimensional light receiving element or a two-dimensional light receiving element. In this case, since these light receiving elements themselves have the function of the slit means, the slit can be omitted. Further, for example, the light receiving unit may be configured such that the light condensed by the condensing lens is once received by the optical fiber, and the light propagated by the optical fiber is received by the light receiving element. Further, in this embodiment, the photoelectric sensor is applied to a sensor for measuring a height dimension. However, by selecting the light receiving means as described above, the length of the object to be detected can be measured or the two-dimensional image of the object to be detected can be measured. The present invention may be applied to a device that measures complicated shape recognition.
【0040】本発明の実施例では、受光ユニットへ第2
の平行光が入射する位置にスリットを設けたが、これに
限定されるものではなく、発光手段と受光手段との間に
形成される光路上であればどの位置に設けてもよい。ま
た、スリットは必要に応じて設ければよく、要は、フォ
トダイオードにて受光される第2の平行光の領域が矩形
スリット状に規制されるように光電センサの光学系が設
定されていればよい。In the embodiment of the present invention, the light receiving unit is provided with the second
Although the slit is provided at the position where the parallel light is incident, the present invention is not limited to this. The slit may be provided at any position on the optical path formed between the light emitting unit and the light receiving unit. In addition, the slit may be provided as needed, and the point is that the optical system of the photoelectric sensor is set so that the region of the second parallel light received by the photodiode is restricted to a rectangular slit shape. I just need.
【0041】本発明の実施例では、第2の平行光の径を
垂直方向に拡大するようにしたが、これに限定されるも
のではなく、反射部材の分割反射部を2次元的に配置さ
せることにより、垂直方向及び水平方向に2次元的に拡
大するようにしてもよい。In the embodiment of the present invention, the diameter of the second parallel light is enlarged in the vertical direction. However, the present invention is not limited to this, and the divided reflecting portions of the reflecting member are arranged two-dimensionally. Thus, the image may be enlarged two-dimensionally in the vertical and horizontal directions.
【0042】[0042]
【発明の効果】以上の説明で明らかなように、本発明の
投光ユニットは、複数の分割反射部の設置間隔が第1の
平行光の光軸から離れるに従って小さくなるようにして
反射部材を構成したので、発光手段から出射される放射
光の光量を減衰させることなく大きな光強度を維持した
状態で、第2の平行光における垂直方向の遮光寸法と第
2の平行光の減少光量とを比例関係にすることができ
る。そして、この投光ユニット、受光ユニット及び遮光
状態検出手段で光電センサを構成することにより、遮光
率と受光手段での受光量とを比例関係にすることがで
き、遮光状態の測定精度を向上させることができる。As is apparent from the above description, the light projecting unit of the present invention has a structure in which the interval between the plurality of divided reflectors is reduced as the distance from the optical axis of the first parallel light is increased. With this configuration, the light shielding dimension in the vertical direction of the second parallel light and the reduced light amount of the second parallel light are maintained while maintaining a large light intensity without attenuating the light amount of the radiated light emitted from the light emitting unit. It can be proportional. By configuring the photoelectric sensor with the light projecting unit, the light receiving unit and the light shielding state detecting means, the light shielding rate and the amount of light received by the light receiving means can be made to have a proportional relationship, thereby improving the measurement accuracy of the light shielding state. be able to.
【図1】本発明の一実施の形態を示す光学部材の光学的
構成図FIG. 1 is an optical configuration diagram of an optical member according to an embodiment of the present invention.
【図2】光電センサの構成図FIG. 2 is a configuration diagram of a photoelectric sensor.
【図3】本発明の他の実施の形態を示す図1相当図FIG. 3 is a view corresponding to FIG. 1, showing another embodiment of the present invention.
【図4】図1相当図FIG. 4 is a diagram corresponding to FIG. 1;
【図5】従来例を示す図2相当図FIG. 5 is a diagram corresponding to FIG. 2 showing a conventional example.
【図6】図1相当図FIG. 6 is a diagram corresponding to FIG. 1;
【図7】光ファイバ端面から出射されるLED光の光強
度分布図FIG. 7 is a light intensity distribution diagram of LED light emitted from an optical fiber end face.
図面中、1は光電センサ、5は光ファイバ(発光手
段)、6,20,23はコリメートレンズ、7,21,
24は反射部材、7a,21a,24aは分割反射部、
8,22,25は光学部材、11は投光ユニット、13
はスリット(スリット手段)、14は集光レンズ、15
はフォトダイオード(受光手段)、16は受光ユニット
を示す。In the drawings, 1 is a photoelectric sensor, 5 is an optical fiber (light emitting means), 6, 20, and 23 are collimating lenses, 7, 21, and
24 is a reflection member, 7a, 21a and 24a are divided reflection portions,
8, 22, 25 are optical members, 11 is a light emitting unit, 13
Is a slit (slit means), 14 is a condenser lens, 15
Denotes a photodiode (light receiving means), and 16 denotes a light receiving unit.
Claims (4)
なるに従って光強度分布が小さくなる放射光をコリメー
トレンズにて平行化し、この平行化により形成された第
1の平行光を反射部材にて反射させることにより前記第
1の平行光よりも所定方向の幅を拡大させた第2の平行
光を出射する投光ユニットにおいて、 前記反射部材は、前記第2の平行光の光軸に垂直な面に
おける単位面積当たりの光量が均一になるように構成さ
れていることを特徴とする投光ユニット。1. A collimating lens collimates radiated light radiated from a light emitting means and having a light intensity distribution that becomes smaller as the radiation angle increases, and a first parallel light formed by the collimation is reflected by a reflecting member. In the light projecting unit that emits a second parallel light whose width in a predetermined direction is larger than that of the first parallel light by reflecting the light, the reflecting member is perpendicular to an optical axis of the second parallel light. A light projecting unit characterized in that a light amount per unit area on a surface is configured to be uniform.
割して反射させる複数の分割反射部を段階的に並べるこ
とにより構成され、 前記各分割反射部の配置間隔は、前記第1の平行光の光
軸から離れるに従って小さくなるように設定されている
ことを特徴とする請求項1記載の投光ユニット。2. The reflecting member is configured by arranging a plurality of divided reflecting portions for dividing and reflecting the first parallel light in a stepwise manner. 2. The light projecting unit according to claim 1, wherein the light emitting unit is set so as to become smaller as the distance from the optical axis of the parallel light increases.
割して反射させる複数の分割反射部を段階的に並べるこ
とにより構成され、 前記各分割反射部の面積は、前記第1の平行光の光軸か
ら離れるに従って大きくなるように設定されていること
を特徴とする請求項1記載の投光ユニット。3. The reflecting member is configured by arranging a plurality of divided reflecting portions for dividing and reflecting the first parallel light in a stepwise manner. 2. The light emitting unit according to claim 1, wherein the light emitting unit is set to increase as the distance from the optical axis of the parallel light increases.
ニットと、 この投光ユニットから出射される前記第2の平行光を集
光レンズにて集光し、この集光光を受光手段にて受光す
る受光ユニットと、 前記受光手段が受光する前記第2の平行光の領域を矩形
スリット状に規制するスリット手段と、 前記受光ユニットにより受光される受光量に基づいて、
前記投光ユニット及び前記受光ユニット間に形成される
測定用光路の遮光状態を検出する遮光状態検出手段とを
具備することを特徴とする光電センサ。4. The light projecting unit according to claim 1, wherein said second parallel light emitted from said light projecting unit is condensed by a condensing lens, and said condensed light is condensed. A light receiving unit for receiving light by the light receiving means, a slit means for regulating a region of the second parallel light received by the light receiving means into a rectangular slit shape, and a light receiving amount received by the light receiving unit,
A photoelectric sensor comprising: a light-shielding state detecting unit that detects a light-shielding state of a measurement optical path formed between the light projecting unit and the light receiving unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000397639A JP3593030B2 (en) | 2000-12-27 | 2000-12-27 | Light emitting unit and photoelectric sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000397639A JP3593030B2 (en) | 2000-12-27 | 2000-12-27 | Light emitting unit and photoelectric sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002195880A true JP2002195880A (en) | 2002-07-10 |
JP3593030B2 JP3593030B2 (en) | 2004-11-24 |
Family
ID=18862743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000397639A Expired - Fee Related JP3593030B2 (en) | 2000-12-27 | 2000-12-27 | Light emitting unit and photoelectric sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3593030B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7034284B2 (en) | 2002-12-25 | 2006-04-25 | Keyence Corporation | Optical sensor having light projecting prism |
JP2009076765A (en) * | 2007-09-21 | 2009-04-09 | Disco Abrasive Syst Ltd | Cutting blade detection mechanism for cutting device |
-
2000
- 2000-12-27 JP JP2000397639A patent/JP3593030B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7034284B2 (en) | 2002-12-25 | 2006-04-25 | Keyence Corporation | Optical sensor having light projecting prism |
JP2009076765A (en) * | 2007-09-21 | 2009-04-09 | Disco Abrasive Syst Ltd | Cutting blade detection mechanism for cutting device |
Also Published As
Publication number | Publication date |
---|---|
JP3593030B2 (en) | 2004-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6833909B2 (en) | Device for optical distance measurement of distance over a large measuring range | |
EP2701209B1 (en) | Reflective photoelectric sensor | |
KR101990447B1 (en) | A ridar for sensing multi-distance point | |
US20180017668A1 (en) | Ranging system, integrated panoramic reflector and panoramic collector | |
CN107576394B (en) | Device for defining an angle of incidence on a spectrometer and method for operating the device | |
US5479010A (en) | Photoelectric encoder having a plane mirror disposed parallel to the optical axis of a concave mirror | |
JPH10221064A (en) | Optical distance-measuring device | |
JP6460445B2 (en) | Laser range finder | |
JP2002198568A (en) | Light projecting unit and photoelectric sensor | |
JP5452245B2 (en) | Lightwave distance measuring device | |
JP3752538B2 (en) | Optical coupling device | |
JP4127579B2 (en) | Light wave distance meter | |
KR102020038B1 (en) | LiDAR sensor module | |
JP7336695B2 (en) | optical device | |
JP2015158388A (en) | photoelectric sensor | |
JP2002195880A (en) | Floodlight unit and photoelectric sensor | |
JPH04248509A (en) | Multipoint range finder | |
JPH0829542A (en) | Optical apparatus and light receiving method | |
JP2002286414A (en) | Optical displacement meter | |
WO2019235260A1 (en) | Distance measuring device | |
KR102072623B1 (en) | Optical beam forming unit, distance measuring device and laser illuminator | |
JP2004125554A (en) | Mirror angle detection device | |
JP2000121725A (en) | Distance measuring apparatus | |
JP7483016B2 (en) | Distance measuring device | |
KR102207069B1 (en) | Rain Sensor for Multi-area |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040826 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070903 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100903 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110903 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110903 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120903 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120903 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120903 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130903 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |