WO2019151092A1 - Scanning device and distance measuring device - Google Patents

Scanning device and distance measuring device Download PDF

Info

Publication number
WO2019151092A1
WO2019151092A1 PCT/JP2019/002155 JP2019002155W WO2019151092A1 WO 2019151092 A1 WO2019151092 A1 WO 2019151092A1 JP 2019002155 W JP2019002155 W JP 2019002155W WO 2019151092 A1 WO2019151092 A1 WO 2019151092A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
light
region
reflecting surface
reflecting
Prior art date
Application number
PCT/JP2019/002155
Other languages
French (fr)
Japanese (ja)
Inventor
加園 修
佐藤 充
柳澤 琢麿
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2019151092A1 publication Critical patent/WO2019151092A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a scanning device and a distance measuring device that perform optical distance measuring.
  • a distance measuring device that scans light within a target area and measures the distance to an object.
  • a distance measuring device has, for example, a light source that emits a laser pulse, a scanning mechanism that reflects and scans the laser pulse, and a light receiving unit that receives the laser pulse reflected by an object. .
  • the distance measuring device measures the distance to the object based on the emission time of the laser pulse emitted by the light source and the light reception time of the laser pulse received by the light receiving unit.
  • an optical scanning unit that has a light reflecting surface and can perform Lissajous scanning of light incident on the light reflecting surface within a target region, and pulsed light emitted from the light source unit is reflected by an object.
  • a light receiving section that receives the reflected light, and a distance measuring section that measures the distance of the object based on the emission timing of the pulsed light from the light source section and the reception timing of the reflected light from the light receiving section.
  • a distance device is disclosed.
  • distance measurement is performed by so-called Lissajous scanning in which pulsed light is irradiated along a Lissajous locus.
  • the Lissajous locus has a low scanning locus density in the central region of the scanning region and a high scanning locus density in the edge region.
  • the present invention has been made in view of the above points, and one object of the present invention is to provide a distance measuring device capable of distance measurement by a scanning mode having a locus of a desired density distribution within an area for distance measurement. It is said.
  • the light is emitted toward the first region and the second region adjacent to each other by periodically changing the light emitting direction and the irradiation direction of the light.
  • An optical scanning unit to be irradiated, and a second scanning that is directed toward the first scanning region from the optical scanning unit to the first scanning region and is irradiated toward the second region
  • An optical path control unit that guides light to a second scanning region, and the optical path control unit changes the optical path of the first scanning light and the second scanning light to change the first scanning region and
  • the scanning device is configured to be able to change the positional relationship of the second scanning region.
  • the light is emitted toward the first region and the second region adjacent to each other by periodically changing the light emitting direction and the irradiation direction of the light.
  • An optical scanning unit to be irradiated, and a second scanning that is directed toward the first scanning region from the optical scanning unit to the first scanning region and is irradiated toward the second region
  • An optical path controller that guides light to the second scanning region, and reflected light reflected by the first scanning light or the second scanning light reflected by an object existing in the first scanning region or the second scanning region
  • a distance measuring unit that measures the distance to the object based on the reflected light received by the light receiving unit, and the optical path control unit includes the first scanning light and the second scanning light.
  • FIG. 1 is a block diagram illustrating the configuration of the distance measuring apparatus according to the embodiment.
  • FIG. 2A is a top view of the scanning unit according to the embodiment.
  • FIG. 2B is a cross-sectional view of the scanning unit according to the embodiment.
  • FIG. 3 is an explanatory diagram illustrating a scanning mode of the scanning unit of the distance measuring apparatus according to the embodiment.
  • FIG. 4 is an explanatory diagram illustrating an example of a waveform of a drive signal applied to the scanning unit according to the embodiment and a scanning trajectory of pulsed light by the scanning unit.
  • FIG. 5 is an explanatory diagram showing an aspect in which the scanning light is reflected by the reflecting mirror section.
  • FIG. 6 is an explanatory diagram showing an aspect of emitted light reflected by the reflecting mirror section.
  • FIG. 1 is a block diagram illustrating the configuration of the distance measuring apparatus according to the embodiment.
  • FIG. 2A is a top view of the scanning unit according to the embodiment.
  • FIG. 2B is a cross-
  • FIG. 7 is a diagram showing the locus of the emitted light irradiated on the scanning plane in FIG.
  • FIG. 8 is a view showing a region of the locus of the emitted light irradiated on the scanning plane of FIG.
  • FIG. 9 is a diagram showing a locus region of the emitted light irradiated on the scanning surface in FIG.
  • FIG. 10 is an explanatory diagram illustrating an aspect in which the scanning light is reflected by the reflecting mirror portion of the scanning device according to the second embodiment.
  • FIG. 11 is an explanatory diagram illustrating an aspect of emitted light reflected by the reflecting mirror portion of the scanning device according to the second embodiment.
  • FIG. 12 is a diagram showing the locus of the emitted light irradiated on the scanning surface in FIG.
  • FIG. 13 is a perspective view illustrating a configuration example of the reflecting mirror portion of the scanning device according to the third embodiment.
  • the distance measuring device 10 is a distance measuring device that optically measures the distance to the object OB. Specifically, the distance measuring device 10 irradiates light toward a predetermined spatial region, that is, the scanning target region R. In addition, the distance measuring device 10 receives the light reflected by the object OB, and measures the distance from the object OB, that is, measures the distance.
  • the light source 20 is a light emitting element such as a laser diode capable of emitting the pulsed light L1, and functions as an emitting unit.
  • the optical system OS is provided on the optical path of the pulsed light L1.
  • the optical system OS includes an optical member such as a collimator lens, and converts the pulsed light L1 emitted from the light source 20 into parallel light.
  • a beam splitter BS is provided on the optical path of the pulsed light L1. Specifically, the pulsed light L1 emitted from the light source 20 is converted into parallel light by the optical system OS and passes through the beam splitter BS.
  • the beam splitter BS is arranged to transmit or reflect incident light incident on the beam splitter BS in a predetermined direction. In this embodiment, the beam splitter BS transmits the pulsed light L1 emitted from the light source 20.
  • the MEMS (Micro Electro Mechanical Systems) mirror device 30 is provided on the optical path of the pulsed light L1. Specifically, the pulsed light L1 is applied to the MEMS mirror device 30 after passing through the optical system OS and the beam splitter BS.
  • the MEMS mirror device 30 has a reflective surface 30S that reflects the pulsed light L1.
  • the reflective surface 30S is made of, for example, a light reflecting film that reflects the pulsed light L1.
  • the MEMS mirror device 30 generates the scanning light L2 by reflecting the pulsed light L1 with a reflecting member. In addition, the MEMS mirror device 30 continuously changes the emission direction of the scanning light L2 by swinging the reflecting member.
  • the light source control unit 13 is a drive circuit that drives the light source 20.
  • the light source controller 13 has a timing table (not shown) for emitting the pulsed light L1 from the light source 20.
  • the light source control unit 13 provides a drive signal to the light source 20 with reference to the timing table.
  • the scanning control unit 14 generates a drive signal for swinging the reflecting member of the MEMS mirror device 30 and supplies the generated drive signal to the MEMS mirror device 30.
  • the reflecting member swings based on the drive signal generated by the scanning control unit 14. Therefore, the direction in which the pulsed light L1 is reflected by the MEMS mirror device 30, that is, the irradiation direction, changes sequentially.
  • the MEMS mirror device 30 reflects the pulsed light L1 to generate the scanning light L2. Specifically, the MEMS mirror device 30 generates, as first scanning light, scanning light L2 that is emitted toward a first region in a virtual surface SS1 described later. Further, the MEMS mirror device 30 generates, as the second scanning light, the scanning light L2 that is emitted toward the second region of the virtual surface SS1 described later. That is, the light source 20 and the MEMS mirror device 30 function as an optical scanning unit that scans the scanning light L2 in a predetermined irradiation direction.
  • the reflecting mirror unit 40 is a mirror member disposed in the irradiation range of the scanning light L2 generated by the MEMS mirror device 30.
  • the reflecting mirror unit 40 has a reflecting surface 41 on the surface facing the MEMS mirror device 30.
  • the scanning light L ⁇ b> 2 is reflected by the reflecting surface 41 of the reflecting mirror unit 40 and is emitted toward the scanning target region R. Accordingly, the reflecting mirror unit 40 functions as an optical path control unit (reflecting unit) that controls the optical path of the scanning light L2.
  • the scanning light L2 emitted from the MEMS mirror device 30 is directly applied to the reflecting mirror unit 40.
  • the scanning light L2 emitted from the MEMS mirror device 30 may be indirectly irradiated onto the reflecting mirror unit 40.
  • the scanning light L2 emitted from the MEMS mirror device 30 may be applied to the reflecting mirror unit 40 via an optical member such as a mirror. That is, when the scanning light L ⁇ b> 2 is indirectly applied to the reflecting mirror unit 40, the reflecting mirror unit 40 may not have the reflecting surface 41 on the surface facing the MEMS mirror device 30.
  • a virtual surface that is separated from the MEMS mirror device 30 in the scanning target region R by a predetermined distance is shown as a scanning target surface S1. Note that the scan target surface S1 does not actually exist, but is illustrated for the purpose of explaining the present embodiment.
  • the emission direction of the scanning light L2 emitted from the MEMS mirror device 30 continuously changes over time due to the oscillation of the reflective surface 30S of the MEMS mirror device 30. Accordingly, the locus of the emitted light L3 is drawn on the scanning target surface S.
  • the irradiation range with respect to the reflective mirror part 40 of the scanning light L2 is determined according to the angular range in which the reflective member of the MEMS mirror apparatus 30 can swing.
  • the emitted light L3 is reflected by the object OB.
  • the reflected light L4 obtained by reflecting the emitted light L3 by the object OB is reflected again by the reflecting surface 41 of the reflecting mirror section 40 and enters the MEMS mirror device 30.
  • the reflected light L4 reflected by the reflective surface 30S of the MEMS mirror device 30 is reflected again by the beam splitter BS and enters the light receiving unit 50.
  • the light receiving unit 50 is disposed on the optical path of the reflected light L4 reflected by the beam splitter BS.
  • the light receiving unit 50 is a photodetector that generates a light reception signal based on the intensity of light incident on the light receiving unit 50.
  • a photodetector a light receiving element such as an avalanche photodiode can be used.
  • the reflected light L4 reflected by the beam splitter BS is converted into a received light signal by the light receiving unit 50.
  • the changed received light signal is supplied to the distance measuring unit 60.
  • the distance measuring unit 60 measures the distance between the light receiving unit 50 and the object OB based on the pulsed light L1 emitted from the light source 20 and the reflected light L4 received by the light receiving unit 50.
  • the distance measuring unit 60 includes a signal processing circuit, and calculates distance data of the object OB by calculation.
  • a time-of-flight method can be used.
  • the light source control unit 13 supplies an emission signal including the time (timing) when the light source 20 emits the pulsed light L1 to the distance measuring unit 60.
  • the light reception signal generated by the light receiving unit 50 includes the timing at which the reflected light L4 is received.
  • the distance measuring unit 60 measures the distance from the distance measuring device 10 to the object OB based on the difference between the timing at which the light source 20 emits the pulsed light L1 and the timing at which the light receiving unit 50 receives the reflected light L4. To do.
  • FIG. 2A is a schematic top view of the MEMS mirror device 30.
  • 2B is a cross-sectional view taken along line VV in FIG. 2A.
  • the fixing portion 31 includes a fixed substrate B1 and a fixed frame B2 that is an annular frame formed on the fixed substrate B1.
  • the fixed substrate B1 has a protrusion B1P having a frame-like planar shape on the upper surface B1S of the fixed substrate B1 in a region facing the fixed frame B2, and is fixed on the protrusion B1P.
  • the frame B2 is placed.
  • the movable portion 32 is disposed inside the fixed frame B2, and includes a swing plate SY and a swing frame SX surrounding the swing plate SY.
  • a circular light reflecting film 33 is provided on the rocking plate SY as the reflecting member.
  • the upper surface of the light reflecting film 33 that is, the center of the reflecting surface 30S is described as AC.
  • the swing frame SX is connected to the fixed frame B2 by the first torsion bar TX.
  • the first torsion bar TX is a pair of long plate-like structural portions that extend along a first swing axis AX that passes through the center AC of the reflective surface 30S and extends in the in-plane direction of the reflective surface 30S.
  • the first torsion bar TX is twisted, and the swing frame SX is centered on the first swing axis AX, that is, the first swing axis AX is moved. It swings as the swing center axis.
  • the swing frame SX has a line-symmetric shape about the first swing axis AX.
  • the swing plate SY is connected to the swing frame SX by the second torsion bar TY.
  • the second torsion bar TY passes through the center AC of the light reflecting film, extends in the in-plane direction of the reflecting surface 30S, and extends along the second swing axis AY that is orthogonal to the first swing axis AX. It is a pair of elongated plate-like structural parts.
  • the second torsion bar TY is twisted, and the swing plate SY is centered on the second swing axis AY, that is, the second swing shaft AY is moved. It swings as the swing center axis.
  • the swing plate SY has a line-symmetric shape about the swing axis AY.
  • the swing plate SY swings about swing axes AX and AY orthogonal to each other.
  • the direction in which the reflecting surface 30S faces is changed by the swing of the swing plate SY.
  • the movable portion 32 is connected to the fixed frame B2, and the fixed portion B2 is placed on the protruding portion B1P of the fixed substrate B1. Therefore, the movable part 32 is separated from the upper surface B1S of the fixed substrate B1.
  • the swing frame SX swings about the swing axis AX and the swing plate SY swings about the swing axis AY
  • the movable portion 32 swings so as to tilt with respect to the fixed frame B2.
  • the protruding portion B1P is formed with a sufficient height such that the movable portion 32 does not contact the upper surface B1S due to the swinging.
  • the fixed frame B2 and the movable portion 32 may have an integrated structure formed by processing from one semiconductor substrate.
  • the driving force generator 34 includes a permanent magnet MG1 and a permanent magnet MG2 disposed outside the protrusion B1P on the fixed substrate B1, and a metal drawn around the outer periphery of the swing frame SX on the swing frame SX.
  • a wiring (first coil) CX and a metal wiring (second coil) CY routed along the outer periphery of the swing plate SY on the swing plate SY are included.
  • Permanent magnet MG1 is a pair of magnet pieces arranged on swinging axis AX and provided to face each other with movable part 32 interposed therebetween.
  • the permanent magnet MG2 is a pair of magnet pieces that are arranged on the swing axis AY and are opposed to each other with the movable portion 32 interposed therebetween. Therefore, in this embodiment, four magnet pieces are arranged so as to surround the movable portion 32.
  • the two magnet pieces constituting the permanent magnet MG1 are arranged so that the portions having opposite polarities are opposed to each other.
  • the two magnet pieces constituting the permanent magnet M2 are arranged such that portions having opposite polarities are opposed to each other.
  • the scanning control unit 14 is connected to the metal wirings CX and CY.
  • the scanning control unit 14 supplies current (drive signal) to the metal wirings CX and CY.
  • the driving force generator 34 generates an electromagnetic force that swings the swing frame SX and the swing plate SY of the movable unit 32 by applying the drive signal.
  • FIG. 3 shows a mode in which the scanning light L2 is emitted from the MEMS mirror device 30.
  • the pulsed light L1 when the pulsed light L1 is incident on the MEMS mirror device 30, it is reflected by the reflective surface 30S to generate the scanning light L2.
  • the reflecting mirror unit 40 is arranged in a spatial region in the irradiation direction as viewed from the MEMS mirror device 30.
  • the position of the swing plate SY when no voltage is applied to the MEMS mirror device 30 is defined as a reference position.
  • the optical axis AZ is the axis of the scanning light L2 at which the pulsed light L1 is reflected by the reflecting surface 30S at the reference position of the swing plate SY.
  • FIG. 3 it is assumed that the scanning light L ⁇ b> 2 is transmitted through the reflecting mirror portion 40 in the emission direction of the scanning light L ⁇ b> 2 emitted from the MEMS mirror device 30 and behind the reflecting surface 41 of the reflecting mirror portion 41.
  • a virtual plane SS1 which is a scanning plane in this case is shown.
  • transmitted light L2 ' that is the scanning light L2 when the scanning light L2 is assumed to pass through the reflecting mirror section 40 is depicted. Note that the virtual surface SS1 and the transmitted light L2 'do not actually exist, but are illustrated for explanation of the present embodiment.
  • the virtual surface SS1 has a first region and a second region that are adjacent to each other.
  • the first region is a region to which transmitted light L2 'transmitted through a first reflecting surface 41L described later is irradiated.
  • the second region is a region irradiated with transmitted light L2 'that has passed through a second reflecting surface 41R described later.
  • FIG. 4 shows the relationship between the drive signals DX and DY generated by the scanning control unit 14 when the MEMS mirror device 30 performs the Lissajous scanning, and the scanning locus of the scanning light L2 scanned by the MEMS mirror device 30 based on this. Is schematically shown.
  • the drive signal DX will be described as a drive signal generated by the scanning control unit 14 and supplied to the metal wiring CX.
  • the swing frame SX swings around the swing axis AX.
  • the drive signal DY will be described as a drive signal generated by the scanning control unit 14 and supplied to the metal wiring CY.
  • the swing plate SY swings around the swing axis AY.
  • FIG. 4A shows a scanning locus TR of the transmitted light L2 'drawn on the virtual surface SS1 shown in FIG. AX1 and AY1 in the figure correspond to the swing axis AX and the swing axis AY of the MEMS mirror device 30, respectively. That is, the swing of the MEMS mirror device 30 about the swing axis AX corresponds to the change in the scanning position in the direction along AY1 in the virtual plane SS1. Further, the swing of the MEMS mirror device 30 about the swing axis AY corresponds to a change in the scanning position in the AX1 direction on the virtual surface SS1.
  • FIG. 4B schematically shows the waveform of the drive signal DX at the time of the Lissajous scanning shown in FIG.
  • the variable ⁇ 1 corresponds to the drive signal DX corresponding to the natural frequency of the swing frame SX and the swing plate SY supported by the fixed frame B 2 by the first torsion bar TX of the MEMS mirror device 30. It is set to be a sine wave of the frequency to be used.
  • FIG. 4C schematically shows the waveform of the drive signal DY during the Lissajous scanning shown in FIG.
  • the drive signal DY is, corresponds to the natural frequency of the oscillating plate SY of the MEMS mirror device 30, it is set this to a sine wave of a frequency to resonate.
  • the swing frame SX and the swing plate SY are swung while resonating around the swing axis AX by the drive signal DX. That is, it is driven in the resonance mode operation mode around the swing axis AX. Further, the swing plate SY is swung while resonating around the swing axis AY by the drive signal DY. Therefore, the swing plate SY swings about the swing axis AX and swings about the swing axis AY.
  • the direction in which the light reflecting film 33 faces changes according to the swing of the swing plate SY.
  • the pulsed light L1 emitted from the light source 20 is reflected by the light reflecting film 33, and is emitted toward the reflecting mirror unit 40 as the scanning light L2 while changing the emission direction according to the oscillation of the oscillation plate SY. .
  • the swing plate SY swings while resonating around the swing axis AX and the swing axis AY. Accordingly, the trajectory TR of the irradiation point (spot position) of the transmitted light L2 'on the virtual surface SS1 is drawn along the Lissajous curve.
  • a dense region having a high locus density is formed in the end region in the direction along the axis AX1 of the virtual surface SS1.
  • a sparse region having a low trajectory density is formed in the central region arranged near the center in the direction along the axis AX1 of the virtual surface SS1. That is, as the distance from the end region approaches the central region, the distance between the tracks becomes wider than that of the end region. Further, when the pulsed light L1 is emitted at equal intervals, the scanning speed is slower in the end region than in the central region, so that the spatial spacing of the pulsed light is high in the end region, and the density in the central region. Lower.
  • the reflecting mirror section 40 has a first member 40a formed in a rectangular plate shape and a second member 40b formed in a rectangular plate shape.
  • the first member 40a and the second member 40b are connected to each other via a hinge H.
  • the reflective surface 41 is provided on the surface of the first member 40a and the second member 40b facing the MEMS mirror device 30.
  • the reflecting surface 41 is made of a light reflecting film.
  • the reflection surface 41 is disposed so as to face the reflection surface 30 ⁇ / b> S of the MEMS mirror device 30.
  • the reflecting surface 41 of the reflecting mirror section 40 has a first reflecting surface 41L and a second reflecting surface 41R.
  • the first reflecting surface 41L is provided on the surface of the first member 40a facing the MEMS mirror device 30.
  • the second reflecting surface 41R is provided on the surface of the second member 40b facing the MEMS mirror device 30.
  • the second reflecting surface 41R is configured by the first member 40a.
  • the first reflecting surface 41L is configured by the second member 40b.
  • the hinge H includes a shaft SH formed along the axial direction of the rotation axis AR1, a first connecting portion (not shown) that is rotatable around the axis of the shaft SH, and an axis around the shaft SH.
  • a second connection portion (not shown) that is rotatable and provided at a predetermined angle with the first connection portion.
  • the 1st member 40a of the reflective mirror part 40 is connected to the 1st connection part, and the 2nd member 40b of the reflective mirror part 40 is connected to the 2nd connection part. That is, the second reflecting surface 41R and the first reflecting surface 41L are connected so as to be rotatable with respect to each other.
  • the first connecting portion and the second connecting portion include a stopper (not shown) that can be fixed at a desired angular position formed by the first member 40a and the second member 40b.
  • the first member 40a and the second member 40b are connected to each other via the hinge H. Accordingly, the second reflecting surface 41R and the first reflecting surface 41L are variable in angle with respect to each other, and the second reflecting surface 41R and the first reflecting surface are controlled by an actuator (not shown) controlled by the reflecting mirror control unit 15. The angle with the surface 41L can be controlled.
  • FIG. 5 shows an aspect of the scanning light L2 reflected by the reflecting mirror unit 40 as viewed from the direction along the axis AR1 of the reflecting mirror unit 40.
  • the thickness of the arrow in the figure depends on the density of the trajectory. That is, a thick arrow indicates that the locus density is high, and a thin arrow indicates that the locus density is low.
  • first scanning light L2F the scanning light L2 traveling toward the first reflecting surface 41L
  • second scanning light L2S the scanning light L2 traveling toward the second reflecting surface 41R.
  • the scanning light L2S emitted at one maximum oscillation angle.
  • the ray is L2R
  • the ray of the scanning light L2F emitted at the other maximum swing angle is L2L.
  • the angle formed by the two rays L2R and L2L that is, the irradiation angle that is the irradiation range of the scanning light L2 around the oscillation axis AY is defined as an angle ⁇ .
  • the angle facing the emitting direction of the emitted light L3 is defined as an angle D1.
  • the angle D1 is an angle formed by the first reflecting surface 41L and the second reflecting surface 41R with respect to the incident direction of the first scanning light L2F or the second scanning light L2S to the reflecting mirror section 40. is there.
  • An angle obtained by subtracting the angle D1 from 180 degrees is defined as an angle Y.
  • the two first reflecting surfaces 41L and the second reflecting surface 41R are arranged so as to be line symmetric with respect to the optical axis AZ.
  • An example of setting the angle formed by the first reflecting surface 41L and the second reflecting surface 41R is that the angle D1 is smaller than a flat angle (180 degrees).
  • the scanning light L2R is reflected by the second reflecting surface 41R, it is emitted in the same direction as the axis AZ on the projection surface of FIG. 5 viewed from the direction along the axis AR1.
  • the scanning light L2L is reflected by the first reflecting surface 41L, the scanning light L2L is emitted in the same direction as the axis AZ on the projection surface of FIG. 5 viewed from the direction along the axis AR1.
  • the outgoing light L3 reflected by the reflecting mirror section 40 is emitted toward the scanning target region R.
  • the light beam L3 is emitted toward the scanning target region R so that the density of the locus of the outgoing light L3 is high in the central region of the scanning target surface S1. That is, of the scanning trajectory TR drawn by the transmitted light L2 ′ on the virtual surface SS1, the scanning light L2 depicting a dense region having a high trajectory density is directed toward the central region of the scanning target region R, and the sparseness having a low trajectory density is obtained.
  • the angles of the second reflecting surfaces 41R and 41L are set so that the scanning light L2 that draws the region (the central portion in the scanning locus TR) is directed toward the end of the scanning target region R.
  • the optical path of the emitted light L3 reflected by the first reflecting surface 41L is set so as to go directly to the scanning target region R.
  • the optical path of the emitted light L3 reflected by the first reflecting surface 41L may not be an optical path directly toward the scanning target region R.
  • an optical member such as a mirror is provided between the reflecting mirror section 40 and the scanning target region R, and the light path is indirectly set so that the emitted light L3 reflected by the first reflecting surface 41L is directed to the scanning target region R. It may be set.
  • the optical path of the outgoing light L3 reflected by the second reflecting surface 41R may not be an optical path directly toward the scanning target region R.
  • an optical member such as a mirror may be provided between the reflecting mirror section 40 and the scanning target region R, and the optical path may be set indirectly so that the emitted light L3 is directed to the scanning target region R.
  • FIG. 6 shows an emission mode of the scanning light L2 reflected by the reflecting mirror section 40 as viewed from the direction along the axis AR1.
  • the thickness of the arrow in the figure depends on the density of the trajectory. That is, a thick arrow indicates that the locus density is high, and a thin arrow indicates that the locus density is low.
  • the distance between the MEMS mirror device 30 and the reflecting mirror unit 40 is very short compared to the distance between the scanning target surface S1 and the reflecting mirror unit 40. Therefore, it can be said that the scanning light L2 is emitted from the reflecting mirror portion 40, that is, the light emission point, when viewed macroscopically.
  • the scanning light L2 reflected by the reflecting mirror section 40 is irradiated toward the scanning target surface S1. Specifically, the scanning light L2 is irradiated so that the locus density is highest in the central region of the scanning target surface S1. Further, the scanning light L2 is irradiated so that the density gradually decreases toward the end region along the axis AX1 of the scanning target surface S1.
  • FIG. 7 shows the locus of the scanning light L2 irradiated on the scanning plane S1 in FIG.
  • the scanning target surface S ⁇ b> 1 is reflected by the scanning locus region S ⁇ b> 1 ⁇ / b> L drawn by the scanning light L ⁇ b> 2 reflected by the second reflecting surface 41 ⁇ / b> R of the reflecting surface 41 and the first reflecting surface 41 ⁇ / b> L of the reflecting surface 41.
  • a scanning locus region S1R drawn by the scanned light L2 is shown.
  • the locus of the scanning light L2 reflected by the second reflecting surface 41R of the reflecting surface 41 is drawn in the scanning region S1L with the positional relationship reversed.
  • the locus of the scanning light L2 reflected by the first reflecting surface 41L is drawn in the scanning region S1R with the positional relationship reversed. That is, in the locus of the scanning light L2 irradiated to the scanning surface S1, the positional relationship between the sparse region and the dense region of the locus changes from the positional relationship in the reflecting mirror unit 40.
  • the reflecting mirror unit 40 can change the positional relationship between the first scanning region Ra and the second scanning region Rb.
  • a sparse region having a low trajectory density of the scanning light L2 is disposed in the central region, and a dense region having a high trajectory density of the scanning light L2 is disposed in the end region.
  • scanning light L2 that describes a dense region having a high trajectory density in the virtual surface SS1 is disposed in the central region of the scanning surface target S1, and the end region of the scanning target surface S1 is in the virtual surface SS1.
  • Scanning light L2 depicting a sparse region with a low locus density is disposed.
  • FIG. 8 shows a scanning locus region S1L and a scanning locus region S1R of the scanning target surface S1 in FIG. That is, of the scanning trajectory regions S1L and S1R, the regions with dense scanning trajectories partially overlap.
  • FIG. 8 shows a scanning locus region in which a range in which the scanning locus region S1L and the scanning locus region S1R overlap each other (hereinafter referred to as an overlapping range) is set small. In the overlap range, the distance measuring device 10 can obtain data of both the scanning locus area S1L and the scanning locus area S1R.
  • the distance measuring device 10 measures data in the other area even if some data may not be obtained in any one of the areas S1L and S1R of the scanning trajectory in the overlap range. It can be used for distance. For this reason, it is possible to reliably obtain distance measurement data in the overlap range.
  • FIG. 9 shows a scanning locus region S1L and a scanning locus region S1R of the scanning plane S1 in FIG.
  • a scanning locus region in which the overlap range is set large is shown.
  • the distance measuring device 10 can obtain data of both the scanning locus area S1L and the scanning locus area S1R.
  • the overlap range becomes larger, the number of scanning lights L2 irradiated on the range also increases. Therefore, it is possible to improve the detection rate of the object OB in the overlap range.
  • the light source control unit 13 may perform control so that the scanning light L2 is not irradiated onto the hinge H.
  • the angle formed between the second reflecting surface 41R irradiated with the two scanning lights L2 emitted at the maximum swing angle around the axis AX and the first reflecting surface 41L changes.
  • the reflecting mirror part 40 was configured.
  • the reflecting mirror portion is changed so that the angle formed between the second reflecting surface 41R irradiated with the two scanning lights L2 emitted at the maximum swing angle around the axis AY and the first reflecting surface 41L changes.
  • 40 may be configured.
  • the reflecting mirror unit 40 When the reflecting mirror unit 40 is configured in this way, it is possible to scan by changing the positional relationship between the dense and sparse regions of the locus formed in the axis AY1 direction (or the axis AX1 direction).
  • the hinges H of the reflecting mirror part 40 may be provided at a plurality of locations.
  • the reflecting mirror unit 40 may be configured by combining two reflecting surfaces 41 having different directions in which the angles formed by the second reflecting surface 41R and the first reflecting surface 41L described above are different from each other.
  • two scanning lights emitted at the maximum swing angle of the swing plate SY of the MEMS mirror device 30 or the maximum swing angle of the swing plate SX are L2R and L2L. There is no denying that light is not emitted in the vicinity of the maximum oscillation angle and is emitted within a maximum emission angle smaller than the maximum oscillation angle. In this case, the two scanning lights emitted at the maximum emission angle may be read as L2R and L2L.
  • the reflecting mirror unit 40 When the reflecting mirror unit 40 is configured in this way, scanning can be performed while changing the positional relationship between the dense and sparse regions of the locus formed in the directions of the axes AX1 and AY1.
  • the setting condition of the first member 40a and the second member 40b of the reflector part 40 (that is, the first member 40a and the first member 40b of the reflector part 40) is set.
  • the angle formed by the second member 40b) can be freely changed.
  • the scanning light L2 is reflected by the reflecting mirror unit 40, thereby making it possible to scan by changing the positional relationship between the dense region and the sparse region.
  • the scanning light L2 is reflected by the reflecting mirror unit 40, so that the positional relationship between the dense region and the sparse region can be changed and scanned.
  • the dense region of the region and the region S1R, the dense region of the region S1L, and the sparse region of the region S1R are bulky and overlap with each other, and in the multiple of ⁇ / 4 ⁇ Y ⁇ / 2, A part of the dense region overlaps.
  • the distance measuring apparatus of the present embodiment it is possible to perform distance measurement by a scanning mode having a desired density distribution locus in the scanning target region R which is a region for distance measurement. For this reason, it is possible to obtain a good distance measurement state, and it is possible to perform the distance measurement of the object OB in the scanning target region R with higher accuracy.
  • the angle D1 changes within 180 degrees with respect to the angle facing the emission direction of the emitted light L3 among the angles formed by the second reflection surface 41R and the first reflection surface 41L.
  • the angle D1 may be further changed to 180 degrees or more.
  • FIG. 10 shows an aspect of the scanning light L2 reflected by the reflecting mirror section 40 as viewed from the direction along the axis AR1 of the reflecting mirror section 40.
  • the thickness of the arrow in the figure depends on the density of the trajectory. That is, a thick arrow indicates that the locus density is high, and a thin arrow indicates that the locus density is low.
  • first scanning light L2F the scanning light L2 traveling toward the first reflecting surface 41L
  • second scanning light L2S the scanning light L2 traveling toward the second reflecting surface 41R.
  • the reflecting surface 41 of the reflecting mirror section 40 is configured so that the emitted light L3 reflected by the second reflecting surface 41R and the emitted light L3 reflected by the first reflecting surface 41L are emitted in directions away from each other. Is formed.
  • the two first reflection surfaces 41L and the second reflection surface 41R of the reflection surface 41 have an angle D1 that faces the MEMS mirror device 30 out of angles relative to each other larger than a flat angle (180 degrees). It has become.
  • An angle obtained by subtracting the angle D1 from 180 degrees is defined as an angle Y.
  • the angle Y is a negative value Y ⁇ 0.
  • the outgoing light L3 reflected by the reflecting mirror section 40 is emitted toward the scanning target region R.
  • the scanning target region R includes a first scanning region Ra and a second scanning region Rb that are spaced apart from each other.
  • the first scanning region Ra and the second scanning region Rb are separated from each other in the direction along the swing axis AX or the axis AY of the reflecting member of the MEMS mirror device 30.
  • the optical path of the emitted light L3 reflected by the first reflecting surface 41L is directed to the first scanning region Ra in the scanning target region R. Further, the optical path of the emitted light L3 reflected by the second reflecting surface 41R is directed to the second scanning region Rb.
  • the size of the angle D1 defines the interval between the first scanning region Ra and the second scanning region Rb, and the larger the angle D1, the wider the interval between the regions Ra and Rb.
  • the magnitude of the irradiation angle ⁇ with respect to the reflecting mirror section 40 of the MEMS mirror device 30 is the first scanning region Ra and the second scanning region. This is reflected in the size of Rb.
  • FIG. 11 shows an emission mode of the scanning light L2 reflected by the reflecting mirror section 40 as viewed from the direction along the axis AR1.
  • the thickness of the arrow in the figure depends on the density of the trajectory. That is, a thick arrow indicates that the locus density is high, and a thin arrow indicates that the locus density is low.
  • the distance between the MEMS mirror device 30 and the reflecting mirror unit 40 is very short compared to the distance between the scanning target surface S and the reflecting mirror unit 40. Therefore, it can be said that the scanning light L2 is emitted from the reflecting mirror portion 40, that is, the light emission point, when viewed macroscopically.
  • the scanning light L2 reflected by the reflecting mirror unit 40 is emitted toward the scanning target surface S as outgoing light L3.
  • the scanning target surface S includes a first scanning surface Sa disposed on the first scanning region Ra side and a second scanning surface Sb disposed on the second scanning region Rb side.
  • the outgoing light L3 obtained by reflecting the scanning light L2 on the first reflecting surface 41L is irradiated toward the first scanning region Ra.
  • the emitted light L3 reflected by the scanning light L2 by the second reflecting surface 41R is irradiated toward the second scanning region Rb.
  • FIG. 12 shows the locus of the emitted light L3 irradiated on the scanning target surface S in FIG.
  • the scanning target surface S is reflected by the region S1L where the scanning locus is drawn by the emitted light L3 reflected by the second reflecting surface 41R of the reflecting surface 41 and the first reflecting surface 41L of the reflecting surface 41.
  • a region S1R in which a scanning locus is drawn by the emitted light L3 is shown.
  • the reflecting surface 41 is bent so that the angle D1 between the first reflecting surface 41L and the second reflecting surface 41R facing the MEMS mirror device 30 is 180 degrees or more, that is, Y ⁇ 0.
  • the first scanning region Ra and the second scanning region Rb in different directions are scanned.
  • the MEMS mirror device 30 scans when the scanning target region R is scanned by emitting the scanning light L2 at the maximum swing angle around the axis AX or AY of the light reflecting surface 30S. It is possible to scan the first scanning region Ra and the second scanning region Rb, which are regions that cannot be separated from each other.
  • the distance measuring device 10 of the present invention scans the scanning target region R by reflecting the scanning light L2 emitted from the MEMS mirror device 30 with the reflecting mirror unit 40.
  • the optical path of the outgoing light L3 reflected by the second reflecting surface 41R is set so as to be directed to the first scanning region Ra in the scanning target region R. Further, the optical path of the emitted light L3 reflected by the first reflecting surface 41L is set so as to go to the second scanning region Rb.
  • the MEMS mirror device 30 scans the scanning target region R by emitting the scanning light L2 at the maximum swing angle around the first swing axis AX or the second swing axis AY of the light reflecting surface 30S.
  • the MEMS mirror device 30 scans the first scanning region Ra and the second scanning region Rb that are separated from each other, which are regions that cannot be scanned.
  • the first scanning region Ra and the second scanning region Rb that are separated from each other can be scanned by one MEMS mirror device 30.
  • the first scanning region Ra and the second scanning region Rb are set under the condition that the angle D1 between the first reflecting surface 41L and the second reflecting surface 41R is 180 degrees or more, that is, Y ⁇ 0. Said about the separation. Even if Y> ⁇ / 2 in the configuration of the first embodiment, the first scanning region Ra and the second scanning region Rb can be separated from each other, and this is not denied. In this case, when viewed macroscopically, the first scanning region Ra and the second scanning region Rb are reversed.
  • Example 1 the first member 40a and the second member 40b of the reflecting mirror part 40 are connected via a hinge H.
  • the configuration of the reflecting mirror section 40 is not limited to the configuration as long as the second reflecting surface 41R and the first reflecting surface 41L have relatively variable angles with respect to each other.
  • FIG. 13 shows a configuration example of the reflecting mirror unit 40 according to the present embodiment.
  • the reflecting mirror part 40 shown in FIG. 13 is different from the reflecting mirror part 40 shown in FIG. Since other configurations are the same, the same reference numerals are given and description thereof is omitted.
  • the first member 40a has a rod-shaped first shaft SH1 formed along the axial direction of the first rotation axis AR1.
  • One end of the first shaft SH1 is connected to an actuator (not shown), and is rotatable around the first rotation axis AR1. That is, the first member 40a is configured to be rotatable around the axis of the first shaft SH1.
  • the second reflecting surface 41R is provided so as to be rotatable about the first rotation axis AR1.
  • the second member 40b has a second shaft SH2 formed along the axial direction of the second rotation axis AR2 parallel to the first rotation axis.
  • One end of the second shaft SH2 is connected to an actuator (not shown) and is rotatable around the second rotation axis AR2.
  • the second member 40b is configured to be rotatable around the axis of the second shaft SH2.
  • the first reflecting surface 41L is provided to be rotatable about the second rotation axis AR2.
  • a gap may be provided between the first member 40a and the second member 40b so as not to prevent the rotation of each member.
  • the light source control unit 13 may control so that the gap between the first member 40a and the second member 40b is not irradiated with the scanning light L2.
  • the first rotation axis AR1 is provided on the proximal side when viewed from the second member 40b of the first member 40a.
  • the second rotation axis AR2 may be provided on the proximal side when viewed from the first member 40 of the second member 40b.
  • the gap between the first member 40a and the second member 40b is: It is preferable to provide at least the spot diameter of the scanning light L2.
  • the first member 40a and the second member 40b are rotated using an actuator.
  • the mechanism for rotating the first member 40a and the second member 40b is not limited to the actuator, and may be, for example, an electromagnetic mechanism.
  • the setting conditions for the first member 40a and the second member 40b of the reflecting mirror section 40 can be freely changed. In other words, it is possible to perform scanning and ranging according to the situation.
  • the scanning light L2 is reflected by the reflecting mirror unit 40, thereby changing the positional relationship between the dense region and the sparse region. It becomes possible to do.
  • scanning can be performed so that the scanning locus region S1L and the scanning locus region S1R overlap each other.
  • the first scanning region Ra and the second scanning region Rb that are separated from each other can be scanned by one MEMS mirror device 30. .
  • the angle of the second reflecting surface 41R and the first reflecting surface 41L of the reflecting mirror section 40 relative to each other is variable, and the angle is obtained by being driven by an actuator (not shown). Can be changed dynamically. Accordingly, by changing the angles of the second reflecting surface 41R and the first reflecting surface 41L, the density distribution of the scanning trajectory in the scanning target region R is changed (when the angle D1 is smaller than the flat angle), or scanning. Can be changed (when the angle D1 is larger than the flat angle).
  • the distance measuring device 10 changes the overlap of the scanning trajectory by adjusting the angles of the second reflecting surface 41R and the first reflecting surface 41L according to the surrounding environment and the purpose of use, for example. Also good. Specifically, when the distance measuring device 10 is mounted on a moving body, it is necessary to perform a detailed distance measuring operation on the central portion (front portion) as viewed from the distance measuring device 10 in the scanning target region R. In a case (for example, when the moving body travels on a highway or moves at a high speed), the scanning locus region S1L and the scanning locus region S1R are scanned so as to overlap each other.

Abstract

Provided is a scanning device which can measure distance within a distance-measurement region by means of a scanning mode having a desirable density distribution locus. This scanning device has: an emission unit that emits light; an optical scanning unit that transmits the light towards a first region and a second region, which are adjacent to each other, by cyclically changing the transmission direction of the light; and an optical path control unit that guides a first scanning light to a first scanning region, said first scanning light having been transmitted from the optical scanning part towards the first region, and that guides a second scanning light to a second scanning region, said second scanning light having been transmitted towards the second region. The optical path control unit is configured so as to be able to change the positional relationship of the first scanning region and the second scanning region by changing the optical path of the first scanning light and the second scanning light.

Description

走査装置及び測距装置Scanning device and distance measuring device
 本発明は、光学的な測距を行う走査装置及び測距装置に関する。 The present invention relates to a scanning device and a distance measuring device that perform optical distance measuring.
 光を対象領域内で走査して、物体までの距離を計測する測距装置が知られている。このような測距装置は、例えば、レーザパルスを出射する光源と、当該レーザパルスを反射させて走査する走査機構と、物体によって反射されたレーザパルスを受光する受光部と、を有している。そして、当該測距装置は、光源によって出射されたレーザパルスの出射時刻と、受光部によって受光されたレーザパルスの受光時刻に基づいて対象物までの距離を計測する。 A distance measuring device that scans light within a target area and measures the distance to an object is known. Such a distance measuring device has, for example, a light source that emits a laser pulse, a scanning mechanism that reflects and scans the laser pulse, and a light receiving unit that receives the laser pulse reflected by an object. . The distance measuring device measures the distance to the object based on the emission time of the laser pulse emitted by the light source and the light reception time of the laser pulse received by the light receiving unit.
 例えば、特許文献1には、光反射面を有し、当該光反射面に入射される光を対象領域内でリサージュ走査できる光走査部と、光源部から出射されたパルス光が物体によって反射された反射光を受光する受光部と、前記光源部によるパルス光の出射タイミングと前記受光部による反射光の受光タイミングとに基づいて、前記物体の距離を計測する測距部と、を備える光測距装置が開示されている。 For example, in Patent Document 1, an optical scanning unit that has a light reflecting surface and can perform Lissajous scanning of light incident on the light reflecting surface within a target region, and pulsed light emitted from the light source unit is reflected by an object. A light receiving section that receives the reflected light, and a distance measuring section that measures the distance of the object based on the emission timing of the pulsed light from the light source section and the reception timing of the reflected light from the light receiving section. A distance device is disclosed.
特開2011-53137号公報JP 2011-53137 A
 上記したような測距装置においては、リサージュ軌跡に沿ってパルス光を照射する、いわゆるリサージュ走査によって測距が行われる。リサージュ軌跡は、走査領域の中央領域において走査軌跡の密度が低く、縁部領域において走査軌跡の密度が高い。 In the distance measuring apparatus as described above, distance measurement is performed by so-called Lissajous scanning in which pulsed light is irradiated along a Lissajous locus. The Lissajous locus has a low scanning locus density in the central region of the scanning region and a high scanning locus density in the edge region.
 例えば、測距装置においては、走査領域の中央領域において詳細な測距を行う必要がある場合が多い。このような場合にリサージュ軌跡のような、領域によって走査密度の異なる走査方法による測距では、走査密度が高い領域に所望の品質の測距が困難であること等が、課題の一例として挙げられる。 For example, in a distance measuring device, it is often necessary to perform detailed distance measurement in the central region of the scanning region. In such a case, it is difficult to measure a desired quality in an area having a high scanning density, such as a Lissajous trajectory. .
 本発明は上記した点に鑑みてなされたものであり、測距を行う領域内において、所望の密度分布の軌跡を有する走査態様によって測距可能な測距装置を提供することを目的の一つとしている。 The present invention has been made in view of the above points, and one object of the present invention is to provide a distance measuring device capable of distance measurement by a scanning mode having a locus of a desired density distribution within an area for distance measurement. It is said.
 本願請求項1に記載の発明は、光を出射する出射部と、前記光の照射方向を周期的に変化させることで、前記光を互いに隣接する第1の領域と第2の領域へ向けて照射させる光走査部と、前記光走査部から前記第1の領域に向けて照射された第1走査光を第1の走査領域へ導き、前記第2の領域に向けて照射された第2走査光を第2の走査領域へ導く光路制御部と、を有し、前記光路制御部は、前記第1走査光と前記第2走査光の光路を変化させることで、前記第1の走査領域と前記第2の走査領域の位置関係を変化させることができるよう構成されていることを特徴とする走査装置である。 According to the first aspect of the present invention, the light is emitted toward the first region and the second region adjacent to each other by periodically changing the light emitting direction and the irradiation direction of the light. An optical scanning unit to be irradiated, and a second scanning that is directed toward the first scanning region from the optical scanning unit to the first scanning region and is irradiated toward the second region An optical path control unit that guides light to a second scanning region, and the optical path control unit changes the optical path of the first scanning light and the second scanning light to change the first scanning region and The scanning device is configured to be able to change the positional relationship of the second scanning region.
 本願請求項7に記載の発明は、光を出射する出射部と、前記光の照射方向を周期的に変化させることで、前記光を互いに隣接する第1の領域と第2の領域へ向けて照射させる光走査部と、前記光走査部から前記第1の領域に向けて照射された第1走査光を第1の走査領域へ導き、前記第2の領域に向けて照射された第2走査光を第2の走査領域へ導く光路制御部と、前記第1走査光又は前記第2走査光が、第1の走査領域又は第2の走査領域に存在する対象物で反射した反射光を受光する受光部と、前記受光部が受光した反射光に基づいて、前記対象物までの距離を測定する測距部と、を有し、前記光路制御部は、前記第1走査光と前記第2走査光の光路を変化させることで、前記第1の走査領域と前記第2の走査領域の位置関係を変化させることができるよう構成されていることを特徴とする測距装置である。 According to the seventh aspect of the present invention, the light is emitted toward the first region and the second region adjacent to each other by periodically changing the light emitting direction and the irradiation direction of the light. An optical scanning unit to be irradiated, and a second scanning that is directed toward the first scanning region from the optical scanning unit to the first scanning region and is irradiated toward the second region An optical path controller that guides light to the second scanning region, and reflected light reflected by the first scanning light or the second scanning light reflected by an object existing in the first scanning region or the second scanning region And a distance measuring unit that measures the distance to the object based on the reflected light received by the light receiving unit, and the optical path control unit includes the first scanning light and the second scanning light. By changing the optical path of the scanning light, the positional relationship between the first scanning region and the second scanning region is changed. It is distance measuring apparatus according to claim are configured to allow Rukoto.
図1は、実施例に係る測距装置の構成を示すブロック図である。FIG. 1 is a block diagram illustrating the configuration of the distance measuring apparatus according to the embodiment. 図2Aは、実施例に係る走査部の上面図である。FIG. 2A is a top view of the scanning unit according to the embodiment. 図2Bは、実施例に係る走査部の断面図である。FIG. 2B is a cross-sectional view of the scanning unit according to the embodiment. 図3は、実施例に係る測距装置の走査部の走査の態様を示す説明図である。FIG. 3 is an explanatory diagram illustrating a scanning mode of the scanning unit of the distance measuring apparatus according to the embodiment. 図4は、実施例に係る走査部に印加される駆動信号の波形及び当該走査部によるパルス光の走査軌跡の例を示す説明図である。FIG. 4 is an explanatory diagram illustrating an example of a waveform of a drive signal applied to the scanning unit according to the embodiment and a scanning trajectory of pulsed light by the scanning unit. 図5は、反射鏡部において走査光が反射される態様を示す説明図である。FIG. 5 is an explanatory diagram showing an aspect in which the scanning light is reflected by the reflecting mirror section. 図6は、反射鏡部で反射された出射光の態様を示す説明図である。FIG. 6 is an explanatory diagram showing an aspect of emitted light reflected by the reflecting mirror section. 図7は、図6の走査面に照射される出射光の軌跡を示した図である。FIG. 7 is a diagram showing the locus of the emitted light irradiated on the scanning plane in FIG. 図8は、図6の走査面に照射される出射光の軌跡の領域を示した図である。FIG. 8 is a view showing a region of the locus of the emitted light irradiated on the scanning plane of FIG. 図9は、図6の走査面に照射される出射光の軌跡の領域を示した図である。FIG. 9 is a diagram showing a locus region of the emitted light irradiated on the scanning surface in FIG. 図10は、実施例2に係る走査装置の反射鏡部において走査光が反射される態様を示す説明図である。FIG. 10 is an explanatory diagram illustrating an aspect in which the scanning light is reflected by the reflecting mirror portion of the scanning device according to the second embodiment. 図11は、実施例2に係る走査装置の反射鏡部で反射された出射光の態様を示す説明図である。FIG. 11 is an explanatory diagram illustrating an aspect of emitted light reflected by the reflecting mirror portion of the scanning device according to the second embodiment. 図12は、図11の走査面に照射される出射光の軌跡を示した図である。FIG. 12 is a diagram showing the locus of the emitted light irradiated on the scanning surface in FIG. 図13は、実施例3に係る走査装置の反射鏡部の構成例を示す斜視図である。FIG. 13 is a perspective view illustrating a configuration example of the reflecting mirror portion of the scanning device according to the third embodiment.
 図1を参照しつつ、実施例に係る測距装置10の構成について説明する。測距装置10は、対象物OBまでの距離を光学的に計測する測距装置である。具体的には、測距装置10は、所定の空間領域、すなわち、走査対象領域Rに向かって光を照射する。また、測距装置10は、当該光が対象物OBによって反射された光を受光し、当該対象物OBとの距離を計測、すなわち測距する。 The configuration of the distance measuring apparatus 10 according to the embodiment will be described with reference to FIG. The distance measuring device 10 is a distance measuring device that optically measures the distance to the object OB. Specifically, the distance measuring device 10 irradiates light toward a predetermined spatial region, that is, the scanning target region R. In addition, the distance measuring device 10 receives the light reflected by the object OB, and measures the distance from the object OB, that is, measures the distance.
 光源20は、例えばパルス光L1を出射可能なレーザダイオード等の発光素子であり、出射部として機能する。 The light source 20 is a light emitting element such as a laser diode capable of emitting the pulsed light L1, and functions as an emitting unit.
 光学系OSは、パルス光L1の光路上に設けられている。光学系OSは、例えばコリメータレンズ等の光学部材を含み、光源20から出射されたパルス光L1を平行光に変換する。 The optical system OS is provided on the optical path of the pulsed light L1. The optical system OS includes an optical member such as a collimator lens, and converts the pulsed light L1 emitted from the light source 20 into parallel light.
 パルス光L1の光路上には、ビームスプリッタBSが設けられている。具体的には、光源20から出射されたパルス光L1は、光学系OSによって平行光に変換され、ビームスプリッタBSを透過する。ビームスプリッタBSは、ビームスプリッタBSに入射される入射光を所定の方向に透過又は反射するように配置されている。本実施例においては、ビームスプリッタBSは光源20から出射されたパルス光L1を透過するようになっている。 A beam splitter BS is provided on the optical path of the pulsed light L1. Specifically, the pulsed light L1 emitted from the light source 20 is converted into parallel light by the optical system OS and passes through the beam splitter BS. The beam splitter BS is arranged to transmit or reflect incident light incident on the beam splitter BS in a predetermined direction. In this embodiment, the beam splitter BS transmits the pulsed light L1 emitted from the light source 20.
 MEMS(Micro Electro Mechanical Systems)ミラー装置30は、パルス光L1の光路上に設けられている。具体的には、パルス光L1は、光学系OS及びビームスプリッタBSを透過した後にMEMSミラー装置30に照射される。MEMSミラー装置30は、パルス光L1を反射する反射表面30Sを有する。反射表面30Sは、例えば、パルス光L1を反射する光反射膜からなっている。 The MEMS (Micro Electro Mechanical Systems) mirror device 30 is provided on the optical path of the pulsed light L1. Specifically, the pulsed light L1 is applied to the MEMS mirror device 30 after passing through the optical system OS and the beam splitter BS. The MEMS mirror device 30 has a reflective surface 30S that reflects the pulsed light L1. The reflective surface 30S is made of, for example, a light reflecting film that reflects the pulsed light L1.
 MEMSミラー装置30は、パルス光L1を反射部材で反射させて走査光L2を生成する。また、MEMSミラー装置30は、反射部材を揺動させることで走査光L2の出射方向を連続的に変化させる。 The MEMS mirror device 30 generates the scanning light L2 by reflecting the pulsed light L1 with a reflecting member. In addition, the MEMS mirror device 30 continuously changes the emission direction of the scanning light L2 by swinging the reflecting member.
 光源制御部13は、光源20を駆動する駆動回路である。光源制御部13は、光源20からパルス光L1を出射するタイミングテーブル(図示せず)を有している。光源制御部13は、タイミングテーブルを参照して、光源20に駆動信号を提供する。 The light source control unit 13 is a drive circuit that drives the light source 20. The light source controller 13 has a timing table (not shown) for emitting the pulsed light L1 from the light source 20. The light source control unit 13 provides a drive signal to the light source 20 with reference to the timing table.
 走査制御部14は、MEMSミラー装置30の反射部材を揺動させるための駆動信号を生成し、生成した駆動信号をMEMSミラー装置30に供給する。 The scanning control unit 14 generates a drive signal for swinging the reflecting member of the MEMS mirror device 30 and supplies the generated drive signal to the MEMS mirror device 30.
 MEMSミラー装置30は、走査制御部14が生成した駆動信号に基づいて反射部材が揺動する。従って、パルス光L1がMEMSミラー装置30によって反射される方向、すなわち照射方向が逐次変化する。このように、MEMSミラー装置30は、パルス光L1を反射させて走査光L2を生成する。具体的には、MEMSミラー装置30は、後述する仮想面SS1のうちの第1の領域へ向けて照射する走査光L2を第1走査光として生成する。また、MEMSミラー装置30は、後述する仮想面SS1のうちの第2の領域へ向けて照射する走査光L2を第2走査光として生成する。すなわち、光源20及びMEMSミラー装置30は、所定の照射方向に向けて走査光L2を走査する光走査部として機能する。 In the MEMS mirror device 30, the reflecting member swings based on the drive signal generated by the scanning control unit 14. Therefore, the direction in which the pulsed light L1 is reflected by the MEMS mirror device 30, that is, the irradiation direction, changes sequentially. As described above, the MEMS mirror device 30 reflects the pulsed light L1 to generate the scanning light L2. Specifically, the MEMS mirror device 30 generates, as first scanning light, scanning light L2 that is emitted toward a first region in a virtual surface SS1 described later. Further, the MEMS mirror device 30 generates, as the second scanning light, the scanning light L2 that is emitted toward the second region of the virtual surface SS1 described later. That is, the light source 20 and the MEMS mirror device 30 function as an optical scanning unit that scans the scanning light L2 in a predetermined irradiation direction.
 反射鏡部40は、MEMSミラー装置30によって生成される走査光L2の照射範囲に配されている鏡部材である。反射鏡部40は、MEMSミラー装置30と対向する面に反射面41を有している。走査光L2は、反射鏡部40の反射面41によって反射されて、走査対象領域Rに向けて出射される。従って、反射鏡部40は、走査光L2の光路を制御する光路制御部(反射部)として機能する。 The reflecting mirror unit 40 is a mirror member disposed in the irradiation range of the scanning light L2 generated by the MEMS mirror device 30. The reflecting mirror unit 40 has a reflecting surface 41 on the surface facing the MEMS mirror device 30. The scanning light L <b> 2 is reflected by the reflecting surface 41 of the reflecting mirror unit 40 and is emitted toward the scanning target region R. Accordingly, the reflecting mirror unit 40 functions as an optical path control unit (reflecting unit) that controls the optical path of the scanning light L2.
 尚、本実施例においては、MEMSミラー装置30から出射された走査光L2は、直接的に反射鏡部40に照射される。しかし、MEMSミラー装置30から出射された走査光L2は、間接的に反射鏡部40に照射されるようにしてもよい。例えば、MEMSミラー装置30から出射された走査光L2は、ミラー等の光学部材を介して反射鏡部40に照射されるようにしてもよい。すなわち、走査光L2が間接的に反射鏡部40に照射される場合、反射鏡部40は、MEMSミラー装置30と対向する面に反射面41を有していなくてもよい。 In the present embodiment, the scanning light L2 emitted from the MEMS mirror device 30 is directly applied to the reflecting mirror unit 40. However, the scanning light L2 emitted from the MEMS mirror device 30 may be indirectly irradiated onto the reflecting mirror unit 40. For example, the scanning light L2 emitted from the MEMS mirror device 30 may be applied to the reflecting mirror unit 40 via an optical member such as a mirror. That is, when the scanning light L <b> 2 is indirectly applied to the reflecting mirror unit 40, the reflecting mirror unit 40 may not have the reflecting surface 41 on the surface facing the MEMS mirror device 30.
 ここで、図1には、走査対象領域R内におけるMEMSミラー装置30から所定の距離だけ離れた仮想の面が走査対象面S1として示されている。尚、走査対象面S1は実在するわけではなく、本実施例の説明のために図示したものである。 Here, in FIG. 1, a virtual surface that is separated from the MEMS mirror device 30 in the scanning target region R by a predetermined distance is shown as a scanning target surface S1. Note that the scan target surface S1 does not actually exist, but is illustrated for the purpose of explaining the present embodiment.
 MEMSミラー装置30から出射される走査光L2の出射方向は、MEMSミラー装置30の反射表面30Sの揺動によって時間の経過と共に連続的に変化する。従って、走査対象面Sにおいて出射光L3の軌跡が描かれることになる。尚、走査光L2の反射鏡部40に対する照射範囲は、MEMSミラー装置30の反射部材が揺動可能な角度範囲に応じて定まる。 The emission direction of the scanning light L2 emitted from the MEMS mirror device 30 continuously changes over time due to the oscillation of the reflective surface 30S of the MEMS mirror device 30. Accordingly, the locus of the emitted light L3 is drawn on the scanning target surface S. In addition, the irradiation range with respect to the reflective mirror part 40 of the scanning light L2 is determined according to the angular range in which the reflective member of the MEMS mirror apparatus 30 can swing.
 走査対象領域Rの出射光L3の光路上に対象物OB(出射光L3を反射する性質を持った物体)が存在する場合、出射光L3が対象物OBで反射される。 When there is an object OB (an object having a property of reflecting the emitted light L3) on the optical path of the emitted light L3 in the scanning target region R, the emitted light L3 is reflected by the object OB.
 出射光L3が対象物OBで反射された反射光L4は、反射鏡部40の反射面41で再び反射されMEMSミラー装置30に入射する。MEMSミラー装置30の反射表面30Sで反射された反射光L4は、ビームスプリッタBSで再び反射され受光部50に入射する。 The reflected light L4 obtained by reflecting the emitted light L3 by the object OB is reflected again by the reflecting surface 41 of the reflecting mirror section 40 and enters the MEMS mirror device 30. The reflected light L4 reflected by the reflective surface 30S of the MEMS mirror device 30 is reflected again by the beam splitter BS and enters the light receiving unit 50.
 受光部50は、ビームスプリッタBSによって反射される反射光L4の光路上に配されている。受光部50は、受光部50に入射された光の強度に基づいた受光信号を生成する光検出器である。このような光検出器としては、アバランシェフォトダイオード等の受光素子を用いることができる。 The light receiving unit 50 is disposed on the optical path of the reflected light L4 reflected by the beam splitter BS. The light receiving unit 50 is a photodetector that generates a light reception signal based on the intensity of light incident on the light receiving unit 50. As such a photodetector, a light receiving element such as an avalanche photodiode can be used.
 ビームスプリッタBSによって反射された反射光L4は、受光部50によって受光信号に変換される。変化された受光信号は、測距部60に供給される。 The reflected light L4 reflected by the beam splitter BS is converted into a received light signal by the light receiving unit 50. The changed received light signal is supplied to the distance measuring unit 60.
 測距部60は、光源20が出射したパルス光L1と、受光部50が受光した反射光L4に基づいて、受光部50と対象物OBとの間の距離を計測する。例えば、測距部60は、信号処理回路を含み、演算によって対象物OBの距離データを算出する。距離データを算出する例としては、タイムオブフライト法を用いることができる。 The distance measuring unit 60 measures the distance between the light receiving unit 50 and the object OB based on the pulsed light L1 emitted from the light source 20 and the reflected light L4 received by the light receiving unit 50. For example, the distance measuring unit 60 includes a signal processing circuit, and calculates distance data of the object OB by calculation. As an example of calculating the distance data, a time-of-flight method can be used.
 具体的には、光源制御部13は、光源20がパルス光L1を出射した時刻(タイミング)を含む出射信号を測距部60に供給する。また、受光部50が生成する受光信号には、反射光L4を受光したタイミングが含まれている。測距部60は、光源20がパルス光L1を出射したタイミングと、受光部50が反射光L4を受光したタイミングと、の差に基づいて、測距装置10から対象物OBまでの距離を計測する。 Specifically, the light source control unit 13 supplies an emission signal including the time (timing) when the light source 20 emits the pulsed light L1 to the distance measuring unit 60. The light reception signal generated by the light receiving unit 50 includes the timing at which the reflected light L4 is received. The distance measuring unit 60 measures the distance from the distance measuring device 10 to the object OB based on the difference between the timing at which the light source 20 emits the pulsed light L1 and the timing at which the light receiving unit 50 receives the reflected light L4. To do.
 図2A及び図2Bを参照しつつ、MEMSミラー装置30の構成例について説明する。図2Aは、MEMSミラー装置30の模式的な上面図である。図2Bは、図2AのV-V線に沿った断面図である。 A configuration example of the MEMS mirror device 30 will be described with reference to FIGS. 2A and 2B. FIG. 2A is a schematic top view of the MEMS mirror device 30. 2B is a cross-sectional view taken along line VV in FIG. 2A.
 図2A及び図2Bに示すように、固定部31は、固定基板B1及び固定基板B1上に形成された環状の枠体である固定枠B2を含む。図2Bに示すように、固定基板B1は、固定基板B1の上面B1Sに、固定枠B2と対向する領域に枠状の平面形状を有する突出部B1Pを有しており、突出部B1P上に固定枠B2が載置されている構成になっている。 As shown in FIGS. 2A and 2B, the fixing portion 31 includes a fixed substrate B1 and a fixed frame B2 that is an annular frame formed on the fixed substrate B1. As shown in FIG. 2B, the fixed substrate B1 has a protrusion B1P having a frame-like planar shape on the upper surface B1S of the fixed substrate B1 in a region facing the fixed frame B2, and is fixed on the protrusion B1P. The frame B2 is placed.
 可動部32は、固定枠B2の内側に配されており、揺動板SYと、揺動板SYを囲む揺動枠SXとを含んでいる。反射部材としての揺動板SY上には、円形の光反射膜33が設けられている。以下、光反射膜33の上面、すなわち反射表面30Sの中心をACとして説明する。 The movable portion 32 is disposed inside the fixed frame B2, and includes a swing plate SY and a swing frame SX surrounding the swing plate SY. A circular light reflecting film 33 is provided on the rocking plate SY as the reflecting member. Hereinafter, the upper surface of the light reflecting film 33, that is, the center of the reflecting surface 30S is described as AC.
 揺動枠SXは、第1のトーションバーTXによって固定枠B2に接続されている。第1のトーションバーTXは、反射表面30Sの中心ACを通りかつ反射表面30Sの面内方向に伸長する第1の揺動軸AXに沿って伸長する一対の長板状の構造部分である。揺動枠SXに揺動軸AX周りの力がかかると、第1のトーションバーTXがねじれ、揺動枠SXは第1の揺動軸AXを中心に、すなわち第1の揺動軸AXを揺動中心軸として揺動する。揺動枠SXは、第1の揺動軸AXを中心に線対称な形状を有している。 The swing frame SX is connected to the fixed frame B2 by the first torsion bar TX. The first torsion bar TX is a pair of long plate-like structural portions that extend along a first swing axis AX that passes through the center AC of the reflective surface 30S and extends in the in-plane direction of the reflective surface 30S. When a force around the swing axis AX is applied to the swing frame SX, the first torsion bar TX is twisted, and the swing frame SX is centered on the first swing axis AX, that is, the first swing axis AX is moved. It swings as the swing center axis. The swing frame SX has a line-symmetric shape about the first swing axis AX.
 揺動板SYは、第2のトーションバーTYによって、揺動枠SXに接続されている。第2のトーションバーTYは、光反射膜の中心ACを通り、反射表面30Sの面内方向に伸長しかつ第1の揺動軸AXと直交している第2の揺動軸AYに沿って伸長する一対の長板状の構造部分である。揺動板SYに揺動軸AY周りの力がかかると、第2のトーションバーTYがねじれ、揺動板SYは第2の揺動軸AYを中心に、すなわち第2の揺動軸AYを揺動中心軸として揺動する。揺動板SYは、揺動軸AYを中心に線対称な形状を有している。 The swing plate SY is connected to the swing frame SX by the second torsion bar TY. The second torsion bar TY passes through the center AC of the light reflecting film, extends in the in-plane direction of the reflecting surface 30S, and extends along the second swing axis AY that is orthogonal to the first swing axis AX. It is a pair of elongated plate-like structural parts. When a force around the swing axis AY is applied to the swing plate SY, the second torsion bar TY is twisted, and the swing plate SY is centered on the second swing axis AY, that is, the second swing shaft AY is moved. It swings as the swing center axis. The swing plate SY has a line-symmetric shape about the swing axis AY.
 従って、揺動板SYは、互いに直交する揺動軸AX及びAYを中心に揺動するようになっている。この揺動板SYの揺動によって、反射表面30Sの向く方向が変化するようになっている。 Therefore, the swing plate SY swings about swing axes AX and AY orthogonal to each other. The direction in which the reflecting surface 30S faces is changed by the swing of the swing plate SY.
 上述したように、可動部32は固定枠B2に接続されており、固定部B2は固定基板B1の突出部B1P上に載置されている構成になっている。従って、可動部32は、固定基板B1の上面B1Sから離間している。そして、揺動枠SXが揺動軸AX周りに揺動し、揺動板SYが揺動軸AY周りに揺動すると、可動部32が固定枠B2に対して傾斜するように揺動する。突出部B1Pは、可動部32が当該揺動によって上面B1Sに接触しない十分な高さで形成されている。なお、例えば、固定枠B2及び可動部32は、1の半導体基板から加工して形成された一体構造であり得る。 As described above, the movable portion 32 is connected to the fixed frame B2, and the fixed portion B2 is placed on the protruding portion B1P of the fixed substrate B1. Therefore, the movable part 32 is separated from the upper surface B1S of the fixed substrate B1. When the swing frame SX swings about the swing axis AX and the swing plate SY swings about the swing axis AY, the movable portion 32 swings so as to tilt with respect to the fixed frame B2. The protruding portion B1P is formed with a sufficient height such that the movable portion 32 does not contact the upper surface B1S due to the swinging. Note that, for example, the fixed frame B2 and the movable portion 32 may have an integrated structure formed by processing from one semiconductor substrate.
 駆動力生成部34は、固定基板B1上の突出部B1Pの外側に配置された永久磁石MG1及び永久磁石MG2と、揺動枠SX上において揺動枠SXの外周に沿って引き回された金属配線(第1のコイル)CXと、揺動板SY上において揺動板SYの外周に沿って引き回された金属配線(第2のコイル)CYとを含む。 The driving force generator 34 includes a permanent magnet MG1 and a permanent magnet MG2 disposed outside the protrusion B1P on the fixed substrate B1, and a metal drawn around the outer periphery of the swing frame SX on the swing frame SX. A wiring (first coil) CX and a metal wiring (second coil) CY routed along the outer periphery of the swing plate SY on the swing plate SY are included.
 永久磁石MG1は、揺動軸AX上に配されかつ、可動部32を挟んで対向するように設けられた一対の磁石片である。また、永久磁石MG2は、揺動軸AY上に配されかつ、可動部32を挟んで対向するように設けられた一対の磁石片である。従って、本実施例においては、4つの磁石片が、可動部32を囲むように夫々配置されている。 Permanent magnet MG1 is a pair of magnet pieces arranged on swinging axis AX and provided to face each other with movable part 32 interposed therebetween. The permanent magnet MG2 is a pair of magnet pieces that are arranged on the swing axis AY and are opposed to each other with the movable portion 32 interposed therebetween. Therefore, in this embodiment, four magnet pieces are arranged so as to surround the movable portion 32.
 また、永久磁石MG1を構成する2つの磁石片は、互いに反対の極性を示す部分が対向するように配置されている。同様に、永久磁石M2を構成する2つの磁石片は、互いに反対の極性を示す部分が対向するように配置されている。 Further, the two magnet pieces constituting the permanent magnet MG1 are arranged so that the portions having opposite polarities are opposed to each other. Similarly, the two magnet pieces constituting the permanent magnet M2 are arranged such that portions having opposite polarities are opposed to each other.
 走査制御部14は、金属配線CX及びCYに接続されている。走査制御部14は、金属配線CX及びCYに電流(駆動信号)を供給する。駆動力生成部34は、当該駆動信号の印加によって、可動部32の揺動枠SX及び揺動板SYを揺動させる電磁気力を生成する。 The scanning control unit 14 is connected to the metal wirings CX and CY. The scanning control unit 14 supplies current (drive signal) to the metal wirings CX and CY. The driving force generator 34 generates an electromagnetic force that swings the swing frame SX and the swing plate SY of the movable unit 32 by applying the drive signal.
 具体的には、金属配線CXに電流が流れると、当該電流と、揺動軸AYに沿った方向に配置された永久磁石MG1の2つの磁石片によって生じた磁界との相互作用によって、揺動枠SXに揺動軸AX周りの力がかかる。それによって、第1のトーションバーTXが揺動軸AX周りにねじれ、揺動枠SXが揺動軸AXを中心に揺動する。 Specifically, when a current flows through the metal wiring CX, the current and the magnetic field generated by the two magnet pieces of the permanent magnet MG1 arranged in the direction along the swing axis AY are swung. A force around the swing axis AX is applied to the frame SX. Accordingly, the first torsion bar TX is twisted around the swing axis AX, and the swing frame SX swings around the swing axis AX.
 また、金属配線CYに電流が流れると、当該電流と、揺動軸AXに沿った方向に配置された永久磁石MG2の2つの磁石片による磁界との相互作用によって、揺動板SYに揺動軸AY周りの力がかかる。それによって、第2のトーションバーTYが揺動軸AY周りにねじれ、揺動板SYが揺動軸AYを中心に揺動する。 Further, when a current flows through the metal wiring CY, the current swings on the swing plate SY due to the interaction between the current and the magnetic field generated by the two magnet pieces of the permanent magnet MG2 disposed in the direction along the swing axis AX. A force around the axis AY is applied. As a result, the second torsion bar TY is twisted around the swing axis AY, and the swing plate SY swings about the swing axis AY.
 図3は、MEMSミラー装置30から走査光L2が出射される態様を示している。図3において、パルス光L1は、MEMSミラー装置30に入射すると、反射表面30Sで反射して走査光L2が生成される。 FIG. 3 shows a mode in which the scanning light L2 is emitted from the MEMS mirror device 30. In FIG. 3, when the pulsed light L1 is incident on the MEMS mirror device 30, it is reflected by the reflective surface 30S to generate the scanning light L2.
 反射鏡部40は、MEMSミラー装置30から見て照射方向にある空間領域に配されている。ここで、MEMSミラー装置30に電圧が印加されていないときの揺動板SYの位置を基準位置とする。パルス光L1が、揺動板SYの基準位置において、反射表面30Sで反射された走査光L2の軸を光軸AZとする。 The reflecting mirror unit 40 is arranged in a spatial region in the irradiation direction as viewed from the MEMS mirror device 30. Here, the position of the swing plate SY when no voltage is applied to the MEMS mirror device 30 is defined as a reference position. The optical axis AZ is the axis of the scanning light L2 at which the pulsed light L1 is reflected by the reflecting surface 30S at the reference position of the swing plate SY.
 図3において、MEMSミラー装置30から出射される走査光L2の出射方向であって、反射鏡部41の反射面41の裏側には、走査光L2が反射鏡部40を透過するものと仮定した場合の走査面である仮想面SS1が示されている。仮想面SS1と反射鏡部40との間には、走査光L2が反射鏡部40を透過するものと仮定した場合の走査光L2である透過光L2’が描かれている。尚、仮想面SS1及び透過光L2’は実在するわけではなく、本実施例の説明のために図示したものである。 In FIG. 3, it is assumed that the scanning light L <b> 2 is transmitted through the reflecting mirror portion 40 in the emission direction of the scanning light L <b> 2 emitted from the MEMS mirror device 30 and behind the reflecting surface 41 of the reflecting mirror portion 41. A virtual plane SS1 which is a scanning plane in this case is shown. Between the virtual surface SS1 and the reflecting mirror section 40, transmitted light L2 'that is the scanning light L2 when the scanning light L2 is assumed to pass through the reflecting mirror section 40 is depicted. Note that the virtual surface SS1 and the transmitted light L2 'do not actually exist, but are illustrated for explanation of the present embodiment.
 仮想面SS1は、互いに隣接する第1の領域と第2の領域を有している。第1の領域は、本実施例においては、後述する第1の反射面41Lを透過した透過光L2’が照射される領域である。また、第2の領域は、本実施例においては、後述する第2の反射面41Rを透過した透過光L2’が照射される領域である。 The virtual surface SS1 has a first region and a second region that are adjacent to each other. In the present embodiment, the first region is a region to which transmitted light L2 'transmitted through a first reflecting surface 41L described later is irradiated. In the present embodiment, the second region is a region irradiated with transmitted light L2 'that has passed through a second reflecting surface 41R described later.
 図4は、MEMSミラー装置30がリサージュ走査で走査する際に走査制御部14が生成する駆動信号DX及びDYと、これに基づいてMEMSミラー装置30が走査する走査光L2の走査軌跡との関係を模式的に示している。 FIG. 4 shows the relationship between the drive signals DX and DY generated by the scanning control unit 14 when the MEMS mirror device 30 performs the Lissajous scanning, and the scanning locus of the scanning light L2 scanned by the MEMS mirror device 30 based on this. Is schematically shown.
 以下の説明において、駆動信号DXは、走査制御部14によって生成されて金属配線CXに供給される駆動信号として説明する。これによって、揺動枠SXが揺動軸AX周りに揺動する。また、駆動信号DYは、走査制御部14によって生成されて金属配線CYに供給される駆動信号として説明する。これによって、揺動板SYが揺動軸AY周りに揺動する。 In the following description, the drive signal DX will be described as a drive signal generated by the scanning control unit 14 and supplied to the metal wiring CX. As a result, the swing frame SX swings around the swing axis AX. The drive signal DY will be described as a drive signal generated by the scanning control unit 14 and supplied to the metal wiring CY. As a result, the swing plate SY swings around the swing axis AY.
 また、以下の説明において、駆動信号DX及び駆動信号DYの振幅はすべて同等(図中、AMP=1)であるものとしている。 In the following description, the amplitudes of the drive signal DX and the drive signal DY are all equivalent (AMP = 1 in the figure).
 図4において(a)は、図3に示した仮想面SS1において描かれる透過光L2’の走査軌跡TRを示している。図中のAX1及びAY1は、MEMSミラー装置30の揺動軸AX及び揺動軸AYにそれぞれ対応している。すなわち、MEMSミラー装置30の揺動軸AX周りの揺動は、仮想面SS1におけるAY1に沿った方向の走査位置の変化に対応する。また、MEMSミラー装置30の揺動軸AY周りの揺動は、仮想面SS1におけるAX1方向の走査位置の変化に対応する。 4A shows a scanning locus TR of the transmitted light L2 'drawn on the virtual surface SS1 shown in FIG. AX1 and AY1 in the figure correspond to the swing axis AX and the swing axis AY of the MEMS mirror device 30, respectively. That is, the swing of the MEMS mirror device 30 about the swing axis AX corresponds to the change in the scanning position in the direction along AY1 in the virtual plane SS1. Further, the swing of the MEMS mirror device 30 about the swing axis AY corresponds to a change in the scanning position in the AX1 direction on the virtual surface SS1.
 図4(b)は、図4(a)に示したリサージュ走査の際の駆動信号DXの波形を模式的に示している。図4(b)の駆動信号DXは、A及びBを定数とし、θを変数としたとき、DX(θ)=Asin(θ+B)の式で示される正弦波の信号である。変数θは、駆動信号DXが、MEMSミラー装置30の第1のトーションバーTXによって固定枠B2に支持されている揺動枠SX及び揺動板SYの固有振動数に対応し、これらを共振させる周波数の正弦波となるように設定される。 FIG. 4B schematically shows the waveform of the drive signal DX at the time of the Lissajous scanning shown in FIG. The drive signal DX in FIG. 4B is a sine wave represented by the formula DX (θ 1 ) = A 1 sin (θ 1 + B 1 ), where A 1 and B 1 are constants and θ 1 is a variable. Signal. The variable θ 1 corresponds to the drive signal DX corresponding to the natural frequency of the swing frame SX and the swing plate SY supported by the fixed frame B 2 by the first torsion bar TX of the MEMS mirror device 30. It is set to be a sine wave of the frequency to be used.
 図4(c)は、図4(a)に示したリサージュ走査の際の駆動信号DYの波形を模式的に示している。駆動信号DYは、A及びBを定数とし、θを変数としたとき、DY(θ)=Asin(θ+B)の式で示される正弦波の信号である。変数θは、駆動信号DYが、MEMSミラー装置30の揺動板SYの固有振動数に対応し、これを共振させる周波数の正弦波となるように設定される。 FIG. 4C schematically shows the waveform of the drive signal DY during the Lissajous scanning shown in FIG. The drive signal DY is a sine wave signal represented by an equation DY (θ 2 ) = A 2 sin (θ 2 + B 2 ), where A 2 and B 2 are constants and θ 2 is a variable. Variable theta 2, the drive signal DY is, corresponds to the natural frequency of the oscillating plate SY of the MEMS mirror device 30, it is set this to a sine wave of a frequency to resonate.
 従って、揺動枠SX及び揺動板SYは、駆動信号DXによって揺動軸AX周りに共振しつつ揺動させられる。すなわち、揺動軸AX周りに共振モードの動作モードで駆動される。また、揺動板SYは、駆動信号DYによって揺動軸AY周りに共振しつつ揺動させられる。従って、揺動板SYは、揺動軸AX周りに揺動し、かつ揺動軸AY周りに揺動する。揺動板SYの揺動に応じて、光反射膜33の向く方向が変化する。従って、光源20から出射されたパルス光L1は光反射膜33に反射され、揺動板SYの揺動に応じて出射方向を変化させつつ走査光L2として反射鏡部40へ向けて出射される。 Therefore, the swing frame SX and the swing plate SY are swung while resonating around the swing axis AX by the drive signal DX. That is, it is driven in the resonance mode operation mode around the swing axis AX. Further, the swing plate SY is swung while resonating around the swing axis AY by the drive signal DY. Therefore, the swing plate SY swings about the swing axis AX and swings about the swing axis AY. The direction in which the light reflecting film 33 faces changes according to the swing of the swing plate SY. Accordingly, the pulsed light L1 emitted from the light source 20 is reflected by the light reflecting film 33, and is emitted toward the reflecting mirror unit 40 as the scanning light L2 while changing the emission direction according to the oscillation of the oscillation plate SY. .
 図4(a)に示すように、上述のように揺動板SYが揺動軸AX及び揺動軸AYの周りに共振しつつ揺動する。従って、透過光L2’の仮想面SS1における照射点(スポット位置)の軌跡TRは、リサージュ曲線に沿って描かれる。 As shown in FIG. 4A, as described above, the swing plate SY swings while resonating around the swing axis AX and the swing axis AY. Accordingly, the trajectory TR of the irradiation point (spot position) of the transmitted light L2 'on the virtual surface SS1 is drawn along the Lissajous curve.
 仮想面SS1の軸AX1に沿った方向の端部領域は、軌跡の密度が高い密領域が形成されている。仮想面SS1の軸AX1に沿った方向の中央付近に配される中央領域は、軌跡の密度が低い疎領域が形成されている。すなわち、端部領域から中央領域に近づくにつれて当該端部領域よりも軌跡同士の間隔が広くなっている。さらに、パルス光L1を等間隔で出射する場合、端部領域では中央領域に比べて走査速度が遅くなるため空間的なパルス光の間隔も、端部領域では密度が高く、中央領域では密度が低くなる。 In the end region in the direction along the axis AX1 of the virtual surface SS1, a dense region having a high locus density is formed. A sparse region having a low trajectory density is formed in the central region arranged near the center in the direction along the axis AX1 of the virtual surface SS1. That is, as the distance from the end region approaches the central region, the distance between the tracks becomes wider than that of the end region. Further, when the pulsed light L1 is emitted at equal intervals, the scanning speed is slower in the end region than in the central region, so that the spatial spacing of the pulsed light is high in the end region, and the density in the central region. Lower.
 図3に戻って、反射鏡部40は、矩形板状に形成された第1の部材40aと、矩形板状に形成された第2の部材40bとを有している。第1の部材40aと第2の部材40bとは、互いにヒンジHを介して接続されている。 Referring back to FIG. 3, the reflecting mirror section 40 has a first member 40a formed in a rectangular plate shape and a second member 40b formed in a rectangular plate shape. The first member 40a and the second member 40b are connected to each other via a hinge H.
 第1の部材40a及び第2の部材40bのMEMSミラー装置30に臨む面には反射面41が設けられている。反射面41は、光反射膜からなっている。反射面41は、MEMSミラー装置30の反射表面30Sと対向するように配されている。 The reflective surface 41 is provided on the surface of the first member 40a and the second member 40b facing the MEMS mirror device 30. The reflecting surface 41 is made of a light reflecting film. The reflection surface 41 is disposed so as to face the reflection surface 30 </ b> S of the MEMS mirror device 30.
 反射鏡部40の反射面41は、第1の反射面41Lと、第2の反射面41Rとを有している。第1の反射面41Lは、第1の部材40aのMEMSミラー装置30と対向する面に設けられている。第2の反射面41Rは、第2の部材40bのMEMSミラー装置30と対向する面に設けられている。言い換えれば、第2の反射面41Rは、第1の部材40aによって構成されている。第1の反射面41Lは、第2の部材40bによって構成されている。 The reflecting surface 41 of the reflecting mirror section 40 has a first reflecting surface 41L and a second reflecting surface 41R. The first reflecting surface 41L is provided on the surface of the first member 40a facing the MEMS mirror device 30. The second reflecting surface 41R is provided on the surface of the second member 40b facing the MEMS mirror device 30. In other words, the second reflecting surface 41R is configured by the first member 40a. The first reflecting surface 41L is configured by the second member 40b.
 ヒンジHは、回動軸AR1の軸方向に沿って形成されているシャフトSHと、シャフトSHの軸周りに回動自在な第1の接続部(図示せず)と、シャフトSHの軸周りに回動自在でありかつ、第1の接続部と所定の角度を有して設けられている第2の接続部(図示せず)と、を有する。第1の接続部には、反射鏡部40の第1の部材40aが接続され、第2の接続部には、反射鏡部40の第2の部材40bが接続されている。すなわち、第2の反射面41Rと第1の反射面41Lとは、互いに対して回動可能に接続されている。尚、第1の接続部と第2の接続部とは、第1の部材40aと第2の部材40bとが互いになす所望の角度位置で固定可能なストッパ(図示せず)を備えている。 The hinge H includes a shaft SH formed along the axial direction of the rotation axis AR1, a first connecting portion (not shown) that is rotatable around the axis of the shaft SH, and an axis around the shaft SH. A second connection portion (not shown) that is rotatable and provided at a predetermined angle with the first connection portion. The 1st member 40a of the reflective mirror part 40 is connected to the 1st connection part, and the 2nd member 40b of the reflective mirror part 40 is connected to the 2nd connection part. That is, the second reflecting surface 41R and the first reflecting surface 41L are connected so as to be rotatable with respect to each other. The first connecting portion and the second connecting portion include a stopper (not shown) that can be fixed at a desired angular position formed by the first member 40a and the second member 40b.
 このように、第1の部材40aと第2の部材40bとはヒンジHを介して互いに接続されている。したがって、第2の反射面41Rと第1の反射面41Lとは、互いに対する角度が可変であり、反射鏡制御部15によって制御される図示しないアクチュエータによって第2の反射面41Rと第1の反射面41Lとの角度を制御することができる。 Thus, the first member 40a and the second member 40b are connected to each other via the hinge H. Accordingly, the second reflecting surface 41R and the first reflecting surface 41L are variable in angle with respect to each other, and the second reflecting surface 41R and the first reflecting surface are controlled by an actuator (not shown) controlled by the reflecting mirror control unit 15. The angle with the surface 41L can be controlled.
 図5は、反射鏡部40の軸AR1に沿った方向から見た反射鏡部40で反射された走査光L2の態様を示している。図中の矢印の太さは、軌跡の密度に応じている。すなわち、太い矢印は軌跡の密度が高いことを示し、細い矢印は軌跡の密度が低いことを示している。また、第1の反射面41Lに向かう走査光L2を第1走査光L2Fとし、第2の反射面41Rに向かう走査光L2を第2走査光L2Sとする。 FIG. 5 shows an aspect of the scanning light L2 reflected by the reflecting mirror unit 40 as viewed from the direction along the axis AR1 of the reflecting mirror unit 40. The thickness of the arrow in the figure depends on the density of the trajectory. That is, a thick arrow indicates that the locus density is high, and a thin arrow indicates that the locus density is low. Further, the scanning light L2 traveling toward the first reflecting surface 41L is referred to as first scanning light L2F, and the scanning light L2 traveling toward the second reflecting surface 41R is referred to as second scanning light L2S.
 図5において、MEMSミラー装置30の揺動軸AY回りの揺動板SYの最大揺動角において出射される2つの走査光L2のうち、一方の最大揺動角において出射された走査光L2Sの射線をL2Rとし、他方の最大揺動角において出射された走査光L2Fの射線をL2Lとする。 In FIG. 5, of the two scanning lights L2 emitted at the maximum oscillation angle of the oscillation plate SY around the oscillation axis AY of the MEMS mirror device 30, the scanning light L2S emitted at one maximum oscillation angle. The ray is L2R, and the ray of the scanning light L2F emitted at the other maximum swing angle is L2L.
 2つの射線L2R、L2Lが互いになす角度、すなわち、揺動軸AY周りの走査光L2の照射範囲である照射角度を角度θとする。第1の反射面41Lが第2の反射面41Rと成す角度のうち出射光L3の出射方向に臨む角度を角度D1とする。 The angle formed by the two rays L2R and L2L, that is, the irradiation angle that is the irradiation range of the scanning light L2 around the oscillation axis AY is defined as an angle θ. Of the angles formed by the first reflecting surface 41L and the second reflecting surface 41R, the angle facing the emitting direction of the emitted light L3 is defined as an angle D1.
 言い換えれば、角度D1は、第1の反射面41Lと第2の反射面41Rとが反射鏡部40への第1走査光L2F又は第2の走査光L2Sの入射方向に対して互いに成す角度である。また、180度から角度D1を引いた角度を角度Yとする。 In other words, the angle D1 is an angle formed by the first reflecting surface 41L and the second reflecting surface 41R with respect to the incident direction of the first scanning light L2F or the second scanning light L2S to the reflecting mirror section 40. is there. An angle obtained by subtracting the angle D1 from 180 degrees is defined as an angle Y.
 本実施例では、光軸AZに対して線対称となるように、2つの第1の反射面41Lと第2の反射面41Rとを配置している。 In the present embodiment, the two first reflecting surfaces 41L and the second reflecting surface 41R are arranged so as to be line symmetric with respect to the optical axis AZ.
 第1の反射面41Lが第2の反射面41Rとなす角度の設定例としては、角度D1が平角(180度)よりも小さくすることが挙げられる。この場合、走査光L2Rは、第2の反射面41Rで反射すると、軸AR1に沿った方向から見た図5の投影面において軸AZと同一の方向に出射される。同様に走査光L2Lは、第1の反射面41Lで反射すると、軸AR1に沿った方向から見た図5の投影面において軸AZと同一の方向に出射される。 An example of setting the angle formed by the first reflecting surface 41L and the second reflecting surface 41R is that the angle D1 is smaller than a flat angle (180 degrees). In this case, when the scanning light L2R is reflected by the second reflecting surface 41R, it is emitted in the same direction as the axis AZ on the projection surface of FIG. 5 viewed from the direction along the axis AR1. Similarly, when the scanning light L2L is reflected by the first reflecting surface 41L, the scanning light L2L is emitted in the same direction as the axis AZ on the projection surface of FIG. 5 viewed from the direction along the axis AR1.
 反射鏡部40で反射された出射光L3は、走査対象領域Rに向けて出射される。このような条件においては、走査対象面S1の中央領域において出射光L3の軌跡の密度が高くなるように走査対象領域Rに向けて出射されるようになっている。すなわち、仮想面SS1において透過光L2’によって描かれる走査軌跡TRのうち、軌跡の密度が高い密領域を描く走査光L2を走査対象領域Rの中央領域に向かうようにし、軌跡の密度が低い疎領域(走査軌跡TRにおける中央部分)を描く走査光L2を走査対象領域Rの端部へ向かうように第2の反射面41R及び41Lの角度を設定している。 The outgoing light L3 reflected by the reflecting mirror section 40 is emitted toward the scanning target region R. Under such conditions, the light beam L3 is emitted toward the scanning target region R so that the density of the locus of the outgoing light L3 is high in the central region of the scanning target surface S1. That is, of the scanning trajectory TR drawn by the transmitted light L2 ′ on the virtual surface SS1, the scanning light L2 depicting a dense region having a high trajectory density is directed toward the central region of the scanning target region R, and the sparseness having a low trajectory density is obtained. The angles of the second reflecting surfaces 41R and 41L are set so that the scanning light L2 that draws the region (the central portion in the scanning locus TR) is directed toward the end of the scanning target region R.
 本実施例において、第1の反射面41Lで反射した出射光L3の光路は、直接的に走査対象領域Rに向かうように設定される。しかし、第1の反射面41Lで反射した出射光L3の光路は直接的に走査対象領域Rに向かう光路でなくてもよい。例えば、反射鏡部40と走査対象領域Rとの間にミラー等の光学部材を設けて、第1の反射面41Lで反射した出射光L3が走査対象領域Rに向かうように間接的に光路を設定してもよい。 In this embodiment, the optical path of the emitted light L3 reflected by the first reflecting surface 41L is set so as to go directly to the scanning target region R. However, the optical path of the emitted light L3 reflected by the first reflecting surface 41L may not be an optical path directly toward the scanning target region R. For example, an optical member such as a mirror is provided between the reflecting mirror section 40 and the scanning target region R, and the light path is indirectly set so that the emitted light L3 reflected by the first reflecting surface 41L is directed to the scanning target region R. It may be set.
 同様に、第2の反射面41Rで反射した出射光L3の光路は、直接的に走査対象領域Rに向かう光路でなくてもよい。例えば、反射鏡部40と走査対象領域Rとの間にミラー等の光学部材を設けて出射光L3が走査対象領域Rに向かうように間接的に光路を設定してもよい。 Similarly, the optical path of the outgoing light L3 reflected by the second reflecting surface 41R may not be an optical path directly toward the scanning target region R. For example, an optical member such as a mirror may be provided between the reflecting mirror section 40 and the scanning target region R, and the optical path may be set indirectly so that the emitted light L3 is directed to the scanning target region R.
 図6は、軸AR1に沿った方向から見た反射鏡部40で反射された走査光L2の出射態様を示している。図中の矢印の太さは、軌跡の密度に応じている。すなわち、太い矢印は軌跡の密度が高いことを示し、細い矢印は軌跡の密度が低いことを示している。 FIG. 6 shows an emission mode of the scanning light L2 reflected by the reflecting mirror section 40 as viewed from the direction along the axis AR1. The thickness of the arrow in the figure depends on the density of the trajectory. That is, a thick arrow indicates that the locus density is high, and a thin arrow indicates that the locus density is low.
 図6において、走査対象面S1と反射鏡部40との距離に比べると、MEMSミラー装置30と反射鏡部40との距離は非常に短い。従って、走査光L2は、巨視的に見れば反射鏡部40、すなわち光出射点から出射されているといえる。 In FIG. 6, the distance between the MEMS mirror device 30 and the reflecting mirror unit 40 is very short compared to the distance between the scanning target surface S1 and the reflecting mirror unit 40. Therefore, it can be said that the scanning light L2 is emitted from the reflecting mirror portion 40, that is, the light emission point, when viewed macroscopically.
 反射鏡部40で反射された走査光L2は、走査対象面S1に向けて照射される。具体的には、走査光L2は、走査対象面S1の中央領域において軌跡の密度が最も高くなるように照射される。また、走査光L2は、走査対象面S1の軸AX1に沿った端部領域に向かうに従い、徐々に密度が低くなるように照射される。 The scanning light L2 reflected by the reflecting mirror section 40 is irradiated toward the scanning target surface S1. Specifically, the scanning light L2 is irradiated so that the locus density is highest in the central region of the scanning target surface S1. Further, the scanning light L2 is irradiated so that the density gradually decreases toward the end region along the axis AX1 of the scanning target surface S1.
 図7は、図6の走査面S1において照射される走査光L2の軌跡を示している。図7において、走査対象面S1は、反射面41の第2の反射面41Rで反射された走査光L2によって描かれた走査軌跡の領域S1Lと、反射面41の第1の反射面41Lで反射された走査光L2によって描かれた走査軌跡の領域S1Rと、を示している。 FIG. 7 shows the locus of the scanning light L2 irradiated on the scanning plane S1 in FIG. In FIG. 7, the scanning target surface S <b> 1 is reflected by the scanning locus region S <b> 1 </ b> L drawn by the scanning light L <b> 2 reflected by the second reflecting surface 41 </ b> R of the reflecting surface 41 and the first reflecting surface 41 </ b> L of the reflecting surface 41. A scanning locus region S1R drawn by the scanned light L2 is shown.
 反射面41の第2の反射面41Rで反射された走査光L2の軌跡は、位置関係が反転して走査領域S1Lで描かれる。同様に、第1の反射面41Lで反射された走査光L2の軌跡は、位置関係が反転して走査領域S1Rで描かれる。すなわち、走査面S1対して照射される走査光L2の軌跡は、軌跡の疎領域と密領域の位置関係が反射鏡部40における位置関係と変化する。言い換えれば、反射鏡部40は、第1の走査領域Raと第2の走査領域Rbの位置関係を変化させることができる。 The locus of the scanning light L2 reflected by the second reflecting surface 41R of the reflecting surface 41 is drawn in the scanning region S1L with the positional relationship reversed. Similarly, the locus of the scanning light L2 reflected by the first reflecting surface 41L is drawn in the scanning region S1R with the positional relationship reversed. That is, in the locus of the scanning light L2 irradiated to the scanning surface S1, the positional relationship between the sparse region and the dense region of the locus changes from the positional relationship in the reflecting mirror unit 40. In other words, the reflecting mirror unit 40 can change the positional relationship between the first scanning region Ra and the second scanning region Rb.
 具体的には、図4(a)においては、中央領域に走査光L2の軌跡の密度が低い疎領域が配され、端部領域において走査光L2の軌跡の密度が高い密領域が配されている。これは仮想面SS1における走査光L2の軌跡と対応する。これに対して、走査面対象S1の中央領域へは、仮想面SS1における軌跡の密度が高い密領域を描く走査光L2が配され、走査対象面S1の端部領域へは、仮想面SS1における軌跡の密度が低い疎領域を描く走査光L2が配される。 Specifically, in FIG. 4A, a sparse region having a low trajectory density of the scanning light L2 is disposed in the central region, and a dense region having a high trajectory density of the scanning light L2 is disposed in the end region. Yes. This corresponds to the locus of the scanning light L2 on the virtual surface SS1. On the other hand, scanning light L2 that describes a dense region having a high trajectory density in the virtual surface SS1 is disposed in the central region of the scanning surface target S1, and the end region of the scanning target surface S1 is in the virtual surface SS1. Scanning light L2 depicting a sparse region with a low locus density is disposed.
 ところで、図5において示された角度Y及び角度θが、Y=θ/2の条件を満たす場合、図7に示すように、走査面S1の中央領域において、走査軌跡の領域S1L及び走査軌跡の領域S1Rは互いに接するように配される。このような条件は、密領域が走査対象領域Rの中央領域に配されるため、当該中央領域における対象物OBの測距精度の向上を図ることが可能となる。 By the way, when the angle Y and the angle θ shown in FIG. 5 satisfy the condition of Y = θ / 2, as shown in FIG. 7, in the central region of the scanning plane S1, the region S1L of the scanning locus and the scanning locus The region S1R is arranged so as to be in contact with each other. In such a condition, since the dense region is arranged in the central region of the scanning target region R, it becomes possible to improve the distance measurement accuracy of the object OB in the central region.
 角度Y及び角度θの条件は、Y=θ/2には限られず、ユーザが注視したい位置に合わせて適宜調整するとよい。例えば、走査対象領域Rの中央領域の対象物OBの測距精度のさらなる向上、又は対象物OBさらに細かく見ることを目的とする場合、走査対象領域Rの中央領域において、走査軌跡の領域S1L及び走査軌跡の領域S1Rを互いにオーバーラップするようにして走査するとよい。具体的には、Y>θ/2を満たすように条件を設定するとよい。 The conditions of the angle Y and the angle θ are not limited to Y = θ / 2, and may be appropriately adjusted according to the position that the user wants to watch. For example, when it is intended to further improve the distance measurement accuracy of the object OB in the central region of the scanning target region R, or to look more closely at the target object OB, in the central region of the scanning target region R, the region S1L of the scanning locus The scanning trajectory region S1R may be scanned so as to overlap each other. Specifically, the conditions may be set so as to satisfy Y> θ / 2.
 図8は、図6の走査対象面S1の走査軌跡の領域S1L及び走査軌跡の領域S1Rを示している。すなわち、走査軌跡の領域S1L及び領域S1Rのうち、走査軌跡が密な領域が一部オーバーラップしている。図8において、走査軌跡の領域S1L及び走査軌跡の領域S1Rを互いにオーバーラップする範囲(以下、オーバーラップ範囲とする)を小さく設定した走査軌跡の領域が示されている。オーバーラップ範囲においては、測距装置10は、走査軌跡の領域S1L及び走査軌跡の領域S1Rの両方のデータを得ることができる。 FIG. 8 shows a scanning locus region S1L and a scanning locus region S1R of the scanning target surface S1 in FIG. That is, of the scanning trajectory regions S1L and S1R, the regions with dense scanning trajectories partially overlap. FIG. 8 shows a scanning locus region in which a range in which the scanning locus region S1L and the scanning locus region S1R overlap each other (hereinafter referred to as an overlapping range) is set small. In the overlap range, the distance measuring device 10 can obtain data of both the scanning locus area S1L and the scanning locus area S1R.
 例えば、測距装置10は、オーバーラップ範囲の走査軌跡の領域S1L,S1Rのうち、いずれか一方の領域において一部のデータが得られない場合があったとしても、他方の領域のデータを測距に用いることが可能となる。このため、確実にオーバーラップ範囲の測距データを得ることが可能となる。 For example, the distance measuring device 10 measures data in the other area even if some data may not be obtained in any one of the areas S1L and S1R of the scanning trajectory in the overlap range. It can be used for distance. For this reason, it is possible to reliably obtain distance measurement data in the overlap range.
 図9は、図6の走査面S1の走査軌跡の領域S1L及び走査軌跡の領域S1Rを示している。図9において、オーバーラップ範囲を大きく設定した走査軌跡の領域が示されている。オーバーラップ範囲においては、測距装置10は、走査軌跡の領域S1L及び走査軌跡の領域S1Rの両方のデータを得ることができる。 FIG. 9 shows a scanning locus region S1L and a scanning locus region S1R of the scanning plane S1 in FIG. In FIG. 9, a scanning locus region in which the overlap range is set large is shown. In the overlap range, the distance measuring device 10 can obtain data of both the scanning locus area S1L and the scanning locus area S1R.
 また、オーバーラップ範囲が大きくなるにつれて、当該範囲に照射される走査光L2の数も増加する。従って、オーバーラップ範囲における対象物OBの検出率の向上を図ることが可能となる。 Further, as the overlap range becomes larger, the number of scanning lights L2 irradiated on the range also increases. Therefore, it is possible to improve the detection rate of the object OB in the overlap range.
 尚、オーバーラップ範囲において照射される走査光L2の出射間隔を短くすることで、更に多くのデータを得ることが可能となる。このように走査光L2の出射間隔を短くすることにより、オーバーラップ範囲における対象物OBの詳細な情報を得ることが可能となる。 Note that more data can be obtained by shortening the emission interval of the scanning light L2 irradiated in the overlap range. Thus, by shortening the emission interval of the scanning light L2, it is possible to obtain detailed information of the object OB in the overlap range.
 ところで、例えば反射鏡部40のヒンジHに走査光L2を照射すると、走査対象領域Rの特定の位置のみに走査光L2を照射することが困難となる。従って、光源制御部13は、ヒンジHに対して走査光L2を照射しないように制御するとよい。 By the way, for example, when the scanning light L2 is irradiated onto the hinge H of the reflecting mirror part 40, it is difficult to irradiate only the specific position of the scanning target region R with the scanning light L2. Therefore, the light source control unit 13 may perform control so that the scanning light L2 is not irradiated onto the hinge H.
 また、本実施例において、軸AX周りの最大揺動角で出射される2つの走査光L2が照射される第2の反射面41Rと、第1の反射面41Lとが互いになす角度が変化するように反射鏡部40を構成した。しかし、軸AY周りの最大揺動角で出射される2つの走査光L2が照射される第2の反射面41Rと、第1の反射面41Lとが互いになす角度が変化するように反射鏡部40を構成してもよい。 In the present embodiment, the angle formed between the second reflecting surface 41R irradiated with the two scanning lights L2 emitted at the maximum swing angle around the axis AX and the first reflecting surface 41L changes. Thus, the reflecting mirror part 40 was configured. However, the reflecting mirror portion is changed so that the angle formed between the second reflecting surface 41R irradiated with the two scanning lights L2 emitted at the maximum swing angle around the axis AY and the first reflecting surface 41L changes. 40 may be configured.
 このようにして反射鏡部40を構成した場合、軸AY1方向(又は軸AX1方向)に形成されている軌跡の密領域及び疎領域の位置関係を変更して走査することが可能となる。 When the reflecting mirror unit 40 is configured in this way, it is possible to scan by changing the positional relationship between the dense and sparse regions of the locus formed in the axis AY1 direction (or the axis AX1 direction).
 このように反射鏡部40の第2の反射面41Rと、第1の反射面41Lとが互いになす角度が変化する例として2つの例を挙げた。ここで、反射鏡部40のヒンジHは、複数個所に設けられているようにしてもよい。例えば、上述した第2の反射面41Rと第1の反射面41Lとが互いになす角度が変化する方向が互いに異なる2つの反射面41を組み合わせて反射鏡部40を構成してもよい。 Two examples are given as examples in which the angle formed between the second reflecting surface 41R of the reflecting mirror section 40 and the first reflecting surface 41L changes as described above. Here, the hinges H of the reflecting mirror part 40 may be provided at a plurality of locations. For example, the reflecting mirror unit 40 may be configured by combining two reflecting surfaces 41 having different directions in which the angles formed by the second reflecting surface 41R and the first reflecting surface 41L described above are different from each other.
 これらの実施例においてMEMSミラー装置30の揺動板SYの最大揺動角、もしくは揺動板SXの最大揺動角において出射される2つの走査光をL2R、L2Lとしたが、パルス光L1は最大揺動角付近では出射せず、最大揺動角より小さな最大出射角以内において出射することも否定しない。この場合最大出射角において出射される2つの走査光をL2R、L2Lと読み替えても良い。 In these embodiments, two scanning lights emitted at the maximum swing angle of the swing plate SY of the MEMS mirror device 30 or the maximum swing angle of the swing plate SX are L2R and L2L. There is no denying that light is not emitted in the vicinity of the maximum oscillation angle and is emitted within a maximum emission angle smaller than the maximum oscillation angle. In this case, the two scanning lights emitted at the maximum emission angle may be read as L2R and L2L.
 このようにして反射鏡部40を構成した場合、軸AX1及び軸AY1方向に形成されている軌跡の密領域及び疎領域の位置関係を変更して走査することが可能となる。 When the reflecting mirror unit 40 is configured in this way, scanning can be performed while changing the positional relationship between the dense and sparse regions of the locus formed in the directions of the axes AX1 and AY1.
 以上のように、本実施例の走査装置によれば、反射鏡部40の第1の部材40aと第2の部材40bとの設定条件(すなわち、反射鏡部40の第1の部材40aと第2の部材40bとがなす角度)を自由に変更することが可能となる。 As described above, according to the scanning device of the present embodiment, the setting condition of the first member 40a and the second member 40b of the reflector part 40 (that is, the first member 40a and the first member 40b of the reflector part 40) is set. The angle formed by the second member 40b) can be freely changed.
 具体的には、Y=θ/2の条件を満たす場合、走査光L2を反射鏡部40で反射させることにより、密領域及び疎領域の位置関係を変更して走査することが可能となる。すなわち、走査光L2を反射鏡部40で反射させることにより、密領域及び疎領域の位置関係を変更して走査することが可能となる。 More specifically, when the condition of Y = θ / 2 is satisfied, the scanning light L2 is reflected by the reflecting mirror unit 40, thereby making it possible to scan by changing the positional relationship between the dense region and the sparse region. In other words, the scanning light L2 is reflected by the reflecting mirror unit 40, so that the positional relationship between the dense region and the sparse region can be changed and scanned.
 領域S1L及び領域S1Rのオーバーラップ範囲は、角度Y及び角度θの条件を変化させることで決めることができる。具体的には、0<Y<θ/4とした場合には領域S1Lの疎領域と領域S1Rの疎領域とが一部重複する状態となり、Y=θ/4の場合には領域S1Lの粗領域と領域S1Rの密領域、領域S1Lの密領域と領域S1Rの疎領域がかさなり全体が重複する状態となり、θ/4<Y<θ/2の倍位には領域S1Lの密領域と領域S1Rの密領域とが一部重複する状態となる。 The overlap range of the region S1L and the region S1R can be determined by changing the conditions of the angle Y and the angle θ. Specifically, when 0 <Y <θ / 4, the sparse region of the region S1L and the sparse region of the region S1R partially overlap, and when Y = θ / 4, the coarse region of the region S1L The dense region of the region and the region S1R, the dense region of the region S1L, and the sparse region of the region S1R are bulky and overlap with each other, and in the multiple of θ / 4 <Y <θ / 2, A part of the dense region overlaps.
 また、本実施例の測距装置によれば、測距を行う領域である走査対象領域R内において、所望の密度分布の軌跡を有する走査態様によって測距することが可能となる。このため、良好な測距状況を得ることができ、走査対象領域R内の対象物OBの測距をより高い精度で行うことが可能となる。 In addition, according to the distance measuring apparatus of the present embodiment, it is possible to perform distance measurement by a scanning mode having a desired density distribution locus in the scanning target region R which is a region for distance measurement. For this reason, it is possible to obtain a good distance measurement state, and it is possible to perform the distance measurement of the object OB in the scanning target region R with higher accuracy.
 実施例1においては、第2の反射面41R及び第1の反射面41Lが成す角度のうち出射光L3の出射方向に臨む角度を角度D1が180度以内で変化する場合の例を説明した。しかし、角度D1を、更に180度以上に変化させることができるように構成してもよい。 In the first embodiment, an example has been described in which the angle D1 changes within 180 degrees with respect to the angle facing the emission direction of the emitted light L3 among the angles formed by the second reflection surface 41R and the first reflection surface 41L. However, the angle D1 may be further changed to 180 degrees or more.
 図10は、反射鏡部40の軸AR1に沿った方向から見た反射鏡部40で反射された走査光L2の態様を示している。図中の矢印の太さは、軌跡の密度に応じている。すなわち、太い矢印は軌跡の密度が高いことを示し、細い矢印は軌跡の密度が低いことを示している。また、第1の反射面41Lに向かう走査光L2を第1走査光L2Fとし、第2の反射面41Rに向かう走査光L2を第2走査光L2Sとする。 FIG. 10 shows an aspect of the scanning light L2 reflected by the reflecting mirror section 40 as viewed from the direction along the axis AR1 of the reflecting mirror section 40. The thickness of the arrow in the figure depends on the density of the trajectory. That is, a thick arrow indicates that the locus density is high, and a thin arrow indicates that the locus density is low. Further, the scanning light L2 traveling toward the first reflecting surface 41L is referred to as first scanning light L2F, and the scanning light L2 traveling toward the second reflecting surface 41R is referred to as second scanning light L2S.
 反射鏡部40の反射面41は、第2の反射面41Rで反射された出射光L3と、第1の反射面41Lで反射された出射光L3とが互いに離間する方向に出射されるように形成されている。 The reflecting surface 41 of the reflecting mirror section 40 is configured so that the emitted light L3 reflected by the second reflecting surface 41R and the emitted light L3 reflected by the first reflecting surface 41L are emitted in directions away from each other. Is formed.
 本実施例において、反射面41の2つの第1の反射面41Lと第2の反射面41Rとは、互いに対する角度のうちMEMSミラー装置30に対向する角度D1が平角(180度)よりも大きくなっている。180度から角度D1を引いた角度を角度Yとする。本実施例においては、角度Yは負の値Y<0となる。 In the present embodiment, the two first reflection surfaces 41L and the second reflection surface 41R of the reflection surface 41 have an angle D1 that faces the MEMS mirror device 30 out of angles relative to each other larger than a flat angle (180 degrees). It has become. An angle obtained by subtracting the angle D1 from 180 degrees is defined as an angle Y. In the present embodiment, the angle Y is a negative value Y <0.
 反射鏡部40で反射された出射光L3は、走査対象領域Rに向けて出射される。走査対象領域Rは、互いに離間して配された第1の走査領域Ra及び第2の走査領域Rbを有する。第1の走査領域Ra及び第2の走査領域Rbは、例えば、MEMSミラー装置30の反射部材の揺動軸AX又は軸AYに沿った方向に互いに離間している。 The outgoing light L3 reflected by the reflecting mirror section 40 is emitted toward the scanning target region R. The scanning target region R includes a first scanning region Ra and a second scanning region Rb that are spaced apart from each other. For example, the first scanning region Ra and the second scanning region Rb are separated from each other in the direction along the swing axis AX or the axis AY of the reflecting member of the MEMS mirror device 30.
 角度D1が平角より大きくなっていることで、第1の反射面41Lで反射した出射光L3の光路は、走査対象領域Rのうち第1の走査領域Raに向かう。また、第2の反射面41Rで反射した出射光L3の光路は、第2の走査領域Rbに向かう。 Since the angle D1 is larger than the flat angle, the optical path of the emitted light L3 reflected by the first reflecting surface 41L is directed to the first scanning region Ra in the scanning target region R. Further, the optical path of the emitted light L3 reflected by the second reflecting surface 41R is directed to the second scanning region Rb.
 なお、角度D1の大きさが、第1の走査領域Raと第2の走査領域Rbとの間隔を規定し、角度D1が大きいほど両領域Ra,Rbの間隔は広くなる。また、MEMSミラー装置30の反射鏡部40に対する照射角度θの大きさ(すなわち、MEMSミラー装置30の反射表面30Sの搖動角度の大きさ)は、第1の走査領域Raと第2の走査領域Rbの大きさに反映される。 It should be noted that the size of the angle D1 defines the interval between the first scanning region Ra and the second scanning region Rb, and the larger the angle D1, the wider the interval between the regions Ra and Rb. The magnitude of the irradiation angle θ with respect to the reflecting mirror section 40 of the MEMS mirror device 30 (that is, the magnitude of the swing angle of the reflecting surface 30S of the MEMS mirror device 30) is the first scanning region Ra and the second scanning region. This is reflected in the size of Rb.
 図11は、軸AR1に沿った方向から見た反射鏡部40で反射された走査光L2の出射態様を示している。図中の矢印の太さは、軌跡の密度に応じている。すなわち、太い矢印は軌跡の密度が高いことを示し、細い矢印は軌跡の密度が低いことを示している。 FIG. 11 shows an emission mode of the scanning light L2 reflected by the reflecting mirror section 40 as viewed from the direction along the axis AR1. The thickness of the arrow in the figure depends on the density of the trajectory. That is, a thick arrow indicates that the locus density is high, and a thin arrow indicates that the locus density is low.
 図11において、走査対象面Sと反射鏡部40との距離に比べると、MEMSミラー装置30と反射鏡部40との距離は非常に短い。従って、走査光L2は、巨視的に見れば反射鏡部40、すなわち光出射点から出射されているといえる。 In FIG. 11, the distance between the MEMS mirror device 30 and the reflecting mirror unit 40 is very short compared to the distance between the scanning target surface S and the reflecting mirror unit 40. Therefore, it can be said that the scanning light L2 is emitted from the reflecting mirror portion 40, that is, the light emission point, when viewed macroscopically.
 反射鏡部40で反射された走査光L2は、走査対象面Sに向けて出射光L3として出射される。走査対象面Sは、第1の走査領域Ra側に配される第1の走査面Saと、第2の走査領域Rb側に配される第2の走査面Sbと、を有する。 The scanning light L2 reflected by the reflecting mirror unit 40 is emitted toward the scanning target surface S as outgoing light L3. The scanning target surface S includes a first scanning surface Sa disposed on the first scanning region Ra side and a second scanning surface Sb disposed on the second scanning region Rb side.
 走査光L2が第1の反射面41Lで反射した出射光L3は、第1の走査領域Raに向けて照射される。同様に、走査光L2が第2の反射面41Rで反射した出射光L3は、第2の走査領域Rbに向けて照射される。 The outgoing light L3 obtained by reflecting the scanning light L2 on the first reflecting surface 41L is irradiated toward the first scanning region Ra. Similarly, the emitted light L3 reflected by the scanning light L2 by the second reflecting surface 41R is irradiated toward the second scanning region Rb.
 図12は、図11の走査対象面Sにおいて照射される出射光L3の軌跡を示している。図12において、走査対象面Sは、反射面41の第2の反射面41Rで反射された出射光L3によって走査軌跡が描かれる領域S1Lと、反射面41の第1の反射面41Lで反射された出射光L3によって走査軌跡が描かれる領域S1Rと、を示している。 FIG. 12 shows the locus of the emitted light L3 irradiated on the scanning target surface S in FIG. In FIG. 12, the scanning target surface S is reflected by the region S1L where the scanning locus is drawn by the emitted light L3 reflected by the second reflecting surface 41R of the reflecting surface 41 and the first reflecting surface 41L of the reflecting surface 41. A region S1R in which a scanning locus is drawn by the emitted light L3 is shown.
 すなわち、MEMSミラー装置30に対向する、第1の反射面41Lと第2の反射面41Rとの角度D1が180度以上となるように、すなわちY<0となるように、反射面41が屈曲することにより、異なる方向にある第1の走査領域Ra及び第2の走査領域Rbが走査される。 That is, the reflecting surface 41 is bent so that the angle D1 between the first reflecting surface 41L and the second reflecting surface 41R facing the MEMS mirror device 30 is 180 degrees or more, that is, Y <0. As a result, the first scanning region Ra and the second scanning region Rb in different directions are scanned.
 このような条件に設定することにより、MEMSミラー装置30は、その光反射面30Sの軸AX又はAY周りの最大揺動角で走査光L2を出射して走査対象領域Rを走査した場合では走査できない領域である、互いに離間した第1の走査領域Ra及び第2の走査領域Rbを走査することが可能となる。 By setting such a condition, the MEMS mirror device 30 scans when the scanning target region R is scanned by emitting the scanning light L2 at the maximum swing angle around the axis AX or AY of the light reflecting surface 30S. It is possible to scan the first scanning region Ra and the second scanning region Rb, which are regions that cannot be separated from each other.
 尚、走査対象領域Rの第1の走査領域Ra及び第2の走査領域Rb間の領域については、例えば、他の測距装置によって走査することにより対象物OBの測距を行ってもよい。このようにすることで、例えば、走査対象領域Rの第1の走査領域Ra及び第2の走査領域Rb間の領域の走査を行うと共に、第1の走査領域Ra及び第2の走査領域Rbの走査を同時に行うことが可能となる。 In addition, about the area | region between 1st scanning area | region Ra and 2nd scanning area | region Rb of the scanning object area | region R, you may measure the target object OB by scanning with another ranging device, for example. In this way, for example, the region between the first scanning region Ra and the second scanning region Rb in the scanning target region R is scanned, and the first scanning region Ra and the second scanning region Rb are scanned. Scanning can be performed simultaneously.
 以上のように、本発明の測距装置10は、MEMSミラー装置30から出射された走査光L2を反射鏡部40で反射させて走査対象領域Rを走査する。 As described above, the distance measuring device 10 of the present invention scans the scanning target region R by reflecting the scanning light L2 emitted from the MEMS mirror device 30 with the reflecting mirror unit 40.
 そして、第2の反射面41Rで反射した出射光L3の光路は、走査対象領域Rのうち第1の走査領域Raに向かうように設定されている。また、第1の反射面41Lで反射した出射光L3の光路は、第2の走査領域Rbに向かうように設定されている。 The optical path of the outgoing light L3 reflected by the second reflecting surface 41R is set so as to be directed to the first scanning region Ra in the scanning target region R. Further, the optical path of the emitted light L3 reflected by the first reflecting surface 41L is set so as to go to the second scanning region Rb.
 従って、MEMSミラー装置30は、その光反射面30Sの第1の揺動軸AX又は第2の揺動軸AY周りの最大揺動角で走査光L2を出射して走査対象領域Rを走査した場合では走査できない領域である、互いに離間した第1の走査領域Ra及び第2の走査領域Rbを走査することが可能となる。この結果、互いに離隔した第1の走査領域Ra,第2の走査領域Rbを1つのMEMSミラー装置30で走査することが可能となる。 Therefore, the MEMS mirror device 30 scans the scanning target region R by emitting the scanning light L2 at the maximum swing angle around the first swing axis AX or the second swing axis AY of the light reflecting surface 30S. In this case, it is possible to scan the first scanning region Ra and the second scanning region Rb that are separated from each other, which are regions that cannot be scanned. As a result, the first scanning region Ra and the second scanning region Rb that are separated from each other can be scanned by one MEMS mirror device 30.
 なお本実施例では,第1の反射面41Lと第2の反射面41Rとの角度D1が180度以上、すなわちY<0となる条件で、第1の走査領域Raと第2の走査領域Rbが離間することについて述べた。実施例1の構成でY>θ/2とすることでも、第1の走査領域Raと、第2の走査領域Rbを離間することも可能であり、これを否定するものではない。この場合、巨視的に見て、第1の走査領域Raと、第2の走査領域Rbは逆転する。 In the present embodiment, the first scanning region Ra and the second scanning region Rb are set under the condition that the angle D1 between the first reflecting surface 41L and the second reflecting surface 41R is 180 degrees or more, that is, Y <0. Said about the separation. Even if Y> θ / 2 in the configuration of the first embodiment, the first scanning region Ra and the second scanning region Rb can be separated from each other, and this is not denied. In this case, when viewed macroscopically, the first scanning region Ra and the second scanning region Rb are reversed.
 実施例1においては、反射鏡部40の第1の部材40aと第2の部材40bとは、ヒンジHを介して接続されているようにした。しかし、反射鏡部40の構成は、第2の反射面41R及び第1の反射面41Lが相対的に互いに対する角度が可変であれば、当該構成に限定されるものではない。 In Example 1, the first member 40a and the second member 40b of the reflecting mirror part 40 are connected via a hinge H. However, the configuration of the reflecting mirror section 40 is not limited to the configuration as long as the second reflecting surface 41R and the first reflecting surface 41L have relatively variable angles with respect to each other.
 図13は、本実施例に係る反射鏡部40の構成例を示している。図13において示された反射鏡部40は、ヒンジHを有しない点で図3に示した反射鏡部40と異なる。その他の構成については、同一であるので同一符号を付して説明を省略する。 FIG. 13 shows a configuration example of the reflecting mirror unit 40 according to the present embodiment. The reflecting mirror part 40 shown in FIG. 13 is different from the reflecting mirror part 40 shown in FIG. Since other configurations are the same, the same reference numerals are given and description thereof is omitted.
 第1の部材40aは、第1の回動軸AR1の軸方向に沿って形成された棒状の第1のシャフトSH1を有している。第1のシャフトSH1の一端はアクチューエータ(図示せず)に接続され、第1の回動軸AR1の軸周りに回動可能となっている。すなわち、第1の部材40aは、第1のシャフトSH1の軸周りに回動自在に構成されている。言い換えれば、第2の反射面41Rは、第1の回動軸AR1を中心として回動可能に設けられている。 The first member 40a has a rod-shaped first shaft SH1 formed along the axial direction of the first rotation axis AR1. One end of the first shaft SH1 is connected to an actuator (not shown), and is rotatable around the first rotation axis AR1. That is, the first member 40a is configured to be rotatable around the axis of the first shaft SH1. In other words, the second reflecting surface 41R is provided so as to be rotatable about the first rotation axis AR1.
 第2の部材40bは、第1の回動軸と平行な第2の回動軸AR2の軸方向に沿って形成された第2のシャフトSH2を有している。第2のシャフトSH2の一端はアクチューエータ(図示せず)に接続され、第2の回動軸AR2の軸周りに回動可能となっている。第2の部材40bは、この第2のシャフトSH2の軸周りに回動自在に構成されている。言い換えれば、第1の反射面41Lは、第2の回動軸AR2を中心として回動可能に設けられている。 The second member 40b has a second shaft SH2 formed along the axial direction of the second rotation axis AR2 parallel to the first rotation axis. One end of the second shaft SH2 is connected to an actuator (not shown) and is rotatable around the second rotation axis AR2. The second member 40b is configured to be rotatable around the axis of the second shaft SH2. In other words, the first reflecting surface 41L is provided to be rotatable about the second rotation axis AR2.
 第1の回動軸AR1及び第2の回動軸AR2は、実施例1及び実施例2で説明した第2の反射面41Rと第1の反射面41Lとの設定条件であるY=θ/2、Y>θ/2 又は、Y<θ/2のいずれかを満たすことができる態様であれば、どのように設定されていても構わない。すなわち、第1の回動軸AR1は、第1の部材40aの第2の部材40bからみて近位側にあってもよいし、第1の部材40aの第2の部材40bからみて遠位側にあってもよい。同様に、第2の回動軸AR2は、第2の部材40bの第1の部材40aからみて近位側にあってもよいし、第2の部材40bの第1の部材40aからみて遠位側にあってもよい。 The first rotation axis AR1 and the second rotation axis AR2 are set conditions for the second reflection surface 41R and the first reflection surface 41L described in the first and second embodiments, Y = θ / 2, Y> θ / 2 or Y <θ / 2 may be set as long as the aspect can be satisfied. That is, the first rotation axis AR1 may be on the proximal side as viewed from the second member 40b of the first member 40a, or on the distal side as viewed from the second member 40b of the first member 40a. May be. Similarly, the second rotation axis AR2 may be proximal to the first member 40a of the second member 40b or distal to the first member 40a of the second member 40b. May be on the side.
 第1の部材40aと第2の部材40bとの間には、それぞれの部材の回動を妨げないように間隙が設けられていてもよい。光源制御部13は、第1の部材40aと第2の部材40bとの間の間隙に対して走査光L2を照射しないように制御するとよい。尚、第1の部材40aと第2の部材40bとの間に間隙がない場合は、第1の回動軸AR1を第1の部材40aの第2の部材40bからみて近位側に設けると共に、第2の回動軸AR2を第2の部材40bの第1の部材40からみて近位側に設けるとよい。このようにすることで、第1の部材40aと第2の部材40bとが互いに干渉することを防止することができる。 A gap may be provided between the first member 40a and the second member 40b so as not to prevent the rotation of each member. The light source control unit 13 may control so that the gap between the first member 40a and the second member 40b is not irradiated with the scanning light L2. When there is no gap between the first member 40a and the second member 40b, the first rotation axis AR1 is provided on the proximal side when viewed from the second member 40b of the first member 40a. The second rotation axis AR2 may be provided on the proximal side when viewed from the first member 40 of the second member 40b. By doing in this way, it can prevent that the 1st member 40a and the 2nd member 40b mutually interfere.
 また第1の反射面41Lと第2の反射面41Rとの両方に走査光L2が照射されることを防止するために、第1の部材40aと第2の部材40bとの間の間隙は、少なくとも走査光L2のスポット径以上を有して設けるとよい。 Further, in order to prevent the scanning light L2 from being irradiated to both the first reflection surface 41L and the second reflection surface 41R, the gap between the first member 40a and the second member 40b is: It is preferable to provide at least the spot diameter of the scanning light L2.
 尚、本実施例においては、アクチュエータを用いて第1の部材40aと第2の部材40bとを回動させた。しかし、第1の部材40aと第2の部材40bとを回動させる機構は、アクチュエータに限られず例えば、電磁的な機構であってもよい。 In the present embodiment, the first member 40a and the second member 40b are rotated using an actuator. However, the mechanism for rotating the first member 40a and the second member 40b is not limited to the actuator, and may be, for example, an electromagnetic mechanism.
 以上のように、本実施例の走査装置によれば、反射鏡部40の第1の部材40aと第2の部材40bとの設定条件を自由に変更することが可能となる。すなわち、状況に即した走査及び測距を行うことが可能となる。 As described above, according to the scanning device of the present embodiment, the setting conditions for the first member 40a and the second member 40b of the reflecting mirror section 40 can be freely changed. In other words, it is possible to perform scanning and ranging according to the situation.
 具体的には、実施例1と同様に、Y=θ/2の条件を満たす場合、走査光L2を反射鏡部40で反射させることにより、密領域及び疎領域の位置関係を変更して走査することが可能となる。 Specifically, as in the first embodiment, when the condition of Y = θ / 2 is satisfied, the scanning light L2 is reflected by the reflecting mirror unit 40, thereby changing the positional relationship between the dense region and the sparse region. It becomes possible to do.
 また、0<Y<θ/2の条件を満たす場合、走査軌跡の領域S1L及び走査軌跡の領域S1Rを互いにオーバーラップするようにして走査することが可能となる。 When the condition of 0 <Y <θ / 2 is satisfied, scanning can be performed so that the scanning locus region S1L and the scanning locus region S1R overlap each other.
 さらに実施例2と同様に、Y<0の条件を満たす場合、互いに離隔した第1の走査領域Raと、第2の走査領域Rbとを1つのMEMSミラー装置30で走査することが可能となる。 Further, similarly to the second embodiment, when the condition of Y <0 is satisfied, the first scanning region Ra and the second scanning region Rb that are separated from each other can be scanned by one MEMS mirror device 30. .
変形例Modified example
 実施例1~3によれば、反射鏡部40の第2の反射面41R及び第1の反射面41Lは、互いに対する角度が可変となっており、図示しないアクチュエータによって駆動させることで、その角度を動的に変化させることができる。従って、第2の反射面41R及び第1の反射面41Lの角度を変化させることにより、走査対象領域Rにおける走査軌跡の密度の分布を変化させたり(角度D1が平角よりも小さい場合)、走査が行われる位置を変化させたり(角度D1が平角よりも大きい場合)することができる。 According to the first to third embodiments, the angle of the second reflecting surface 41R and the first reflecting surface 41L of the reflecting mirror section 40 relative to each other is variable, and the angle is obtained by being driven by an actuator (not shown). Can be changed dynamically. Accordingly, by changing the angles of the second reflecting surface 41R and the first reflecting surface 41L, the density distribution of the scanning trajectory in the scanning target region R is changed (when the angle D1 is smaller than the flat angle), or scanning. Can be changed (when the angle D1 is larger than the flat angle).
 そこで、測距装置10は、例えば周囲の環境や、使用目的に応じて、第2の反射面41R及び第1の反射面41Lの角度を調整することで、走査軌跡のオーバーラップを変化させても良い。具体的には、測距装置10を移動体に搭載したような場合において、走査対象領域Rの測距装置10からみて中央部分(正面部分)に対して詳細な測距動作を行う必要がある場合(例えば、移動体が高速道路を走行する場合、又は高速移動している場合)には、走査軌跡の領域S1L及び走査軌跡の領域S1Rを互いにオーバーラップするようにして走査する。 Therefore, the distance measuring device 10 changes the overlap of the scanning trajectory by adjusting the angles of the second reflecting surface 41R and the first reflecting surface 41L according to the surrounding environment and the purpose of use, for example. Also good. Specifically, when the distance measuring device 10 is mounted on a moving body, it is necessary to perform a detailed distance measuring operation on the central portion (front portion) as viewed from the distance measuring device 10 in the scanning target region R. In a case (for example, when the moving body travels on a highway or moves at a high speed), the scanning locus region S1L and the scanning locus region S1R are scanned so as to overlap each other.
 一方、走査対象領域Rの測距装置10からみて側方に測距を行う対象が存在する場合(例えば、移動体が歩行者の多い道路を走行している場合、又は低速移動している場合)には、第2の反射面41R及び第1の反射面41Lの角度D1を平角よりも大きくすることで、移動体の側方に存在する物体との距離を適切に検出できるようになる。更に、MEMSミラー装置30による走査周期毎に、角度D1を変化させることで、より広い範囲の測距対象領域Rとして走査するようにしてもよい。角度D1の変化を周期的に行うことにより、従来のMEMSミラー装置1台で走査できる範囲よりも、より広い範囲を走査対象として測距を行うことができるようになる。 On the other hand, when there is an object for distance measurement as viewed from the distance measuring device 10 in the scanning target region R (for example, when the moving body is traveling on a road with many pedestrians, or when moving slowly ), By making the angle D1 of the second reflecting surface 41R and the first reflecting surface 41L larger than the flat angle, it becomes possible to appropriately detect the distance from the object existing on the side of the moving body. Further, by changing the angle D1 for each scanning period by the MEMS mirror device 30, scanning may be performed as a wider range-finding region R. By periodically changing the angle D1, distance measurement can be performed with a wider range than the range that can be scanned by one conventional MEMS mirror device.
10 測距装置
30 MEMSミラー装置
40 反射鏡部
40a 第1の部材
40b 第2の部材
41L 第1の反射面
41R 第2の反射面
50 受光部
60 測距部
AR1 第1の回動軸
AR2 第2の回動軸
 
DESCRIPTION OF SYMBOLS 10 Distance measuring device 30 MEMS mirror device 40 Reflective mirror part 40a 1st member 40b 2nd member 41L 1st reflective surface 41R 2nd reflective surface 50 Light-receiving part 60 Distance measuring part AR1 1st rotation axis AR2 1st 2 pivots

Claims (7)

  1.  光を出射する出射部と、
     前記光の照射方向を周期的に変化させることで、前記光を互いに隣接する第1の領域と第2の領域へ向けて照射させる光走査部と、
     前記光走査部から前記第1の領域に向けて照射された第1走査光を第1の走査領域へ導き、前記第2の領域に向けて照射された第2走査光を第2の走査領域へ導く光路制御部と、
     を有し、
     前記光路制御部は、前記第1走査光と前記第2走査光の光路を変化させることで、前記第1の走査領域と前記第2の走査領域の位置関係を変化させることができるよう構成されていることを特徴とする走査装置。
    An emission part for emitting light;
    An optical scanning unit that irradiates the light toward the first region and the second region adjacent to each other by periodically changing the irradiation direction of the light;
    The first scanning light emitted toward the first region from the optical scanning unit is guided to the first scanning region, and the second scanning light emitted toward the second region is supplied to the second scanning region. An optical path controller that leads to
    Have
    The optical path control unit is configured to change a positional relationship between the first scanning region and the second scanning region by changing an optical path of the first scanning light and the second scanning light. A scanning device characterized by comprising:
  2.  前記光路制御部は、前記光走査部から照射される光を反射させる第1の反射面と第2の反射面を有し、
     前記第1の反射面と前記第2の反射面とが、前記光路制御部への前記光の入射方向に対して互いになす角度を変化させることができるように構成されていることを特徴とする請求項1に記載の走査装置。
    The optical path control unit includes a first reflection surface and a second reflection surface that reflect light emitted from the optical scanning unit,
    The first reflecting surface and the second reflecting surface are configured to be able to change an angle formed with respect to an incident direction of the light to the optical path control unit. The scanning device according to claim 1.
  3.  前記第1の反射面と前記第2の反射面とが互いになす角度を変化させる駆動手段を有することを特徴とする請求項2に記載の走査装置。 3. The scanning apparatus according to claim 2, further comprising a driving unit that changes an angle formed by the first reflecting surface and the second reflecting surface.
  4.  前記第1の反射面と前記第2の反射面とがヒンジで接続されることで、前記光路制御部への前記光の入射方向に対する角度を変化させることができるように構成されていることを特徴とする請求項2又は請求項3に記載の走査装置。 The first reflection surface and the second reflection surface are connected by a hinge so that an angle with respect to an incident direction of the light to the optical path control unit can be changed. The scanning device according to claim 2 or 3, wherein the scanning device is characterized in that:
  5.  前記第1の反射面と前記第2の反射面の各々を回転させることで、前記光の入射方向に対する角度を変化させることができるように構成されていることを特徴とする請求項3に記載の走査装置。 4. The structure according to claim 3, wherein an angle with respect to an incident direction of the light can be changed by rotating each of the first reflecting surface and the second reflecting surface. 5. Scanning device.
  6.  前記第1の反射面と前記第2の反射面とが互いになす角度を周期的に変化させることを特徴とする請求項2乃至請求項5いずれかに記載の走査装置。 6. The scanning device according to claim 2, wherein an angle formed by the first reflecting surface and the second reflecting surface is periodically changed.
  7.  光を出射する出射部と、
     前記光の照射方向を周期的に変化させることで、前記光を互いに隣接する第1の領域と第2の領域へ向けて照射させる光走査部と、
     前記光走査部から前記第1の領域に向けて照射された第1走査光を第1の走査領域へ導き、前記第2の領域に向けて照射された第2走査光を第2の走査領域へ導く光路制御部と、
     前記第1走査光又は前記第2走査光が、第1の走査領域又は第2の走査領域に存在する対象物で反射した反射光を受光する受光部と、
     前記受光部が受光した反射光に基づいて、前記対象物までの距離を測定する測距部と、
     を有し、
     前記光路制御部は、前記第1走査光と前記第2走査光の光路を変化させることで、前記第1の走査領域と前記第2の走査領域の位置関係を変化させることができるよう構成されていることを特徴とする測距装置。
    An emission part for emitting light;
    An optical scanning unit that irradiates the light toward the first region and the second region adjacent to each other by periodically changing the irradiation direction of the light;
    The first scanning light emitted toward the first region from the optical scanning unit is guided to the first scanning region, and the second scanning light emitted toward the second region is supplied to the second scanning region. An optical path controller that leads to
    A light receiving unit that receives reflected light reflected by an object existing in the first scanning region or the second scanning region, the first scanning light or the second scanning light;
    A distance measuring unit that measures a distance to the object based on reflected light received by the light receiving unit;
    Have
    The optical path control unit is configured to change a positional relationship between the first scanning region and the second scanning region by changing an optical path of the first scanning light and the second scanning light. A distance measuring device characterized by that.
PCT/JP2019/002155 2018-01-30 2019-01-24 Scanning device and distance measuring device WO2019151092A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018014015 2018-01-30
JP2018-014015 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019151092A1 true WO2019151092A1 (en) 2019-08-08

Family

ID=67479914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002155 WO2019151092A1 (en) 2018-01-30 2019-01-24 Scanning device and distance measuring device

Country Status (1)

Country Link
WO (1) WO2019151092A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757501A (en) * 1995-08-17 1998-05-26 Hipp; Johann Apparatus for optically sensing obstacles in front of vehicles
JP2004528583A (en) * 2001-06-05 2004-09-16 イーベーエーオー アウトモビール センサー ゲーエムベーハー Detection method and detection device
JP2010151809A (en) * 2008-11-26 2010-07-08 Denso Wave Inc Laser radar device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757501A (en) * 1995-08-17 1998-05-26 Hipp; Johann Apparatus for optically sensing obstacles in front of vehicles
JP2004528583A (en) * 2001-06-05 2004-09-16 イーベーエーオー アウトモビール センサー ゲーエムベーハー Detection method and detection device
JP2010151809A (en) * 2008-11-26 2010-07-08 Denso Wave Inc Laser radar device

Similar Documents

Publication Publication Date Title
KR102568116B1 (en) 2D SCANNING HIGH PRECISION LiDAR USING COMBINATION OF ROTATING CONCAVE MIRROR AND BEAM STEERING DEVICES
JP6111617B2 (en) Laser radar equipment
TW201734501A (en) Ladar transmitter with improved gaze on scan area portions
CN108490420A (en) A kind of micro mirror scanning optics
JP2022159464A (en) Ranging device
JP2022165971A (en) Scanning device and ranging device
JP2019128232A (en) Lidar apparatus
JP6414349B1 (en) Light emitting device, object information detecting device, optical path adjusting method, object information detecting method, and light modulation unit
CN107797273B (en) Scanning mirror
JP5499502B2 (en) Optical device
JP2022097530A (en) Methods for manufacturing ranging device and scanning device
CN112859048A (en) Light beam scanning apparatus, laser radar including the same, and control method
JP4517744B2 (en) Optical scanner
WO2019151092A1 (en) Scanning device and distance measuring device
JP2022022390A (en) Ranging device
JP7152147B2 (en) rangefinder
JP2012118125A (en) Optical scanning apparatus and driving method thereof
CN114265041A (en) Scanning device and scanning method
JP2019132667A (en) Scanner and distance measuring device
JP2022033137A (en) Optical scanning device and range finding device
CN113039462B (en) Prism lens, light deflection device and LiDAR device
JP2020148632A (en) Inner diameter measuring apparatus
JP2019095354A (en) Ranging device
KR102511118B1 (en) Lidar optical apparatus
US20230194675A1 (en) Light scanning apparatus, adjustment method of light scanning apparatus, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP