JPH0665944B2 - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPH0665944B2
JPH0665944B2 JP201486A JP201486A JPH0665944B2 JP H0665944 B2 JPH0665944 B2 JP H0665944B2 JP 201486 A JP201486 A JP 201486A JP 201486 A JP201486 A JP 201486A JP H0665944 B2 JPH0665944 B2 JP H0665944B2
Authority
JP
Japan
Prior art keywords
refrigerant
boiling point
temperature
way valve
point refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP201486A
Other languages
Japanese (ja)
Other versions
JPS62162853A (en
Inventor
弘章 松嶋
弘勝 香曽我部
博樹 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP201486A priority Critical patent/JPH0665944B2/en
Publication of JPS62162853A publication Critical patent/JPS62162853A/en
Publication of JPH0665944B2 publication Critical patent/JPH0665944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は混合冷媒を用いた冷凍サイクルに関する。The present invention relates to a refrigeration cycle using a mixed refrigerant.

〔発明の背景〕[Background of the Invention]

冷凍サイクルに用いられている冷媒は、通常は単一成分
であるが、この場合、ヒートポンプ式空気調和機に用い
た場合、低外気温度の能力低下の問題がある。外気温度
が低下すると蒸発器内の冷媒圧力が低下し、圧縮機入口
の冷媒の比容積が大きくなり、能力が低下する。低外気
温度の能力増加する手段として圧縮機回転数を制御する
手段があるが、外気温度が著しく低下すると第2図に示
すように、回転数を増加させても、圧力損失が大きくな
り、能力の増加が少なくなるという欠点がある。一方、
低外気温度でも能力低下の少ない低沸点冷媒を用いた場
合、高能力時には、吐出圧力が高くなるとともに、効率
の低下が生じる欠点がある。また、除霜運転時には、圧
力損失が大きく、冷媒循環量が少ない。このため、圧縮
器入力が小さく、圧縮機から流出する冷媒の熱エネルギ
が小さくなり、除霜時間が長くかかる欠点がある。この
ため、高沸点冷媒と低沸点冷媒からなる混合冷媒を用
い、冷房運転時及び外気温度が高い場合の暖房運転時に
は高沸点冷媒で運転し、低外気温時及び除霜運転時は低
沸点冷媒を加えた冷凍サイクルが知られている。
The refrigerant used in the refrigeration cycle usually has a single component, but in this case, when used in a heat pump type air conditioner, there is a problem of low capacity at low outside air temperature. When the outside air temperature decreases, the refrigerant pressure inside the evaporator decreases, the specific volume of the refrigerant at the compressor inlet increases, and the capacity decreases. As a means for increasing the capacity of low outside air temperature, there is a means for controlling the compressor rotation speed. However, if the outside air temperature significantly decreases, as shown in Fig. 2, even if the rotation speed is increased, the pressure loss increases and the capacity decreases. The disadvantage is that the increase in on the other hand,
When a low boiling point refrigerant whose capacity is not significantly reduced even at low outside air temperature is used, the discharge pressure becomes high and the efficiency is lowered when the capacity is high. Further, during the defrosting operation, the pressure loss is large and the refrigerant circulation amount is small. Therefore, the compressor input is small, the heat energy of the refrigerant flowing out of the compressor is small, and the defrosting time is long. Therefore, using a mixed refrigerant consisting of a high-boiling point refrigerant and a low-boiling point refrigerant, operating at high boiling point refrigerant during cooling operation and heating operation when the outside air temperature is high, low boiling point refrigerant at low outside air temperature and defrosting operation A refrigeration cycle to which is added is known.

高沸点冷媒と低沸点冷媒を分離する方法としては、分溜
器による方法が知られている(特開昭59−197761号公
報,特開昭59−197763号公報,特開昭54−2561号公
報)。
As a method for separating a high-boiling-point refrigerant and a low-boiling-point refrigerant, a method using a distiller is known (JP-A-59-197761, JP-A-59-197763, JP-A-54-2561). Gazette).

しかし、分溜器で行う方法では、装置が複雑になる。However, the method using a distiller complicates the apparatus.

〔発明の目的〕[Object of the Invention]

本発明の目的は、上記した問題点をなくし、簡単な構造
で、外気温度及び運転条件によって、低沸点冷媒の濃度
を変え、低温度での能力低下が少なく除霜時間の短かい
冷凍サイクルを提供することにある。
The object of the present invention is to eliminate the above problems, a simple structure, depending on the outside air temperature and operating conditions, the concentration of the low boiling point refrigerant is changed, the capacity deterioration at low temperature is small and the defrosting time is short and the refrigeration cycle is short. To provide.

〔発明の概要〕[Outline of Invention]

上記の目的を達成するために、蒸発器出口と圧縮機入口
の任意の点に、低沸点冷媒のみを選択吸着できる吸着材
を入れた容器をバイパスさせ、通常運転時は吸着材に低
沸点冷媒を吸着させ、高沸点冷媒のみで運転し、低外気
温時及び除霜運転時には、吸着材を加熱し、低沸点冷媒
を放出させて混合冷媒で運転を行う。吸着材として、た
とえばゼオライトを用いた場合、ゼオライトの孔径以上
の分子径の物質を吸着しないという性質を利用して、高
沸点冷媒としてたとえばR115、低沸点冷媒としてたとえ
ばR13B1を用いることにより、分子径の小さいR13B1のみ
を選択吸着が可能となる。また、吸着材を加熱すること
により、吸着した冷媒を再放出することができる。
In order to achieve the above object, at any point of the evaporator outlet and the compressor inlet, bypass the container containing the adsorbent that can selectively adsorb only the low boiling point refrigerant, and during normal operation, the low boiling point refrigerant in the adsorbent Is adsorbed and is operated only with the high-boiling-point refrigerant, and the adsorbent is heated to release the low-boiling-point refrigerant and operate with the mixed refrigerant at the time of low outside temperature and defrosting operation. As the adsorbent, for example, when using zeolite, by utilizing the property of not adsorbing a substance having a molecular diameter larger than the pore size of zeolite, by using, for example, R115 as a high boiling point refrigerant, for example R13B1 as a low boiling point refrigerant, the molecular diameter Only R13B1 having a small value can be selectively adsorbed. Further, by heating the adsorbent, the adsorbed refrigerant can be released again.

第3図に、外気温度が変化した場合の暖房能力の変化を
示す。R115単独の場合には、外気温の低下とともに、能
力も低下し特に低外気温時には、能力低下、効率低下が
著しい。しかし、低沸点冷媒を10%加えたものでは、低
外気温時の能力低下が少なく、また効率も高い。しか
し、外気温度が高くなると、蒸発潜熱が小さくなり効率
が低下するとともに、圧縮機吐出圧力が高くなり、冷凍
サイクルの信頼性が低下する。したがって、低外気温時
には混合冷媒、それ以外は高沸点冷媒で運転することに
より、効率よく運転することができる。
FIG. 3 shows a change in heating capacity when the outside air temperature changes. In the case of R115 alone, the capacity decreases as the outside air temperature decreases, and the capacity decrease and the efficiency decrease are remarkable especially at low outside air temperature. However, the addition of 10% of low-boiling point refrigerant causes less deterioration of the capacity at low ambient temperature and high efficiency. However, when the outside air temperature becomes high, the latent heat of vaporization becomes small and the efficiency decreases, and the discharge pressure of the compressor becomes high, and the reliability of the refrigeration cycle decreases. Therefore, when the ambient temperature is low, the mixed refrigerant is used, and the other high-boiling-point refrigerants are used to operate efficiently.

また、除霜運転時に混合冷媒で運転することにより、冷
媒循環量が多くなり、圧縮機入力が増加し、短時間で除
霜が終了する。
Further, by operating the mixed refrigerant during the defrosting operation, the refrigerant circulation amount increases, the compressor input increases, and the defrosting ends in a short time.

〔発明の実施例〕Example of Invention

以下、本発明の第1の実施例を第1図により説明する。
第1図は第1の実施例を示す冷凍サイクルの概略図であ
る。第1図において、1は圧縮機、2は冷房、暖房運転
時で冷媒の流れを切換える四方切換え弁、3は室外側熱
交換器、4は冷房用減圧器、5は暖房用逆止弁、6は暖
房用減圧器、7は冷房用逆止弁、8は室外側熱交換器、
9は余分な冷媒を溜める受液器、10はメッシュ11により
外部に流出しないようにした吸着材(たとえばゼオライ
ト)12を入れる容器、13は吸着材を加熱するヒータ、14
は制御弁としての二方弁A、15は制御弁としての二方弁
B、16は外気温度を測定するサーミスタA、20は暖房運
転時の室外側熱交換器8の出口温度を測定するサーミス
タBである。冷凍サイクル内には高沸点冷媒(たとえば
R115)と低沸点冷媒(たとえばR13B1)が封入されてい
る。
The first embodiment of the present invention will be described below with reference to FIG.
FIG. 1 is a schematic diagram of a refrigeration cycle showing a first embodiment. In FIG. 1, 1 is a compressor, 2 is cooling, and a four-way switching valve that switches the flow of refrigerant during heating operation, 3 is an outdoor heat exchanger, 4 is a cooling decompressor, and 5 is a check valve for heating. 6 is a heating decompressor, 7 is a cooling check valve, 8 is an outdoor heat exchanger,
Reference numeral 9 is a receiver for storing excess refrigerant, 10 is a container for containing an adsorbent (for example, zeolite) 12 that is prevented from flowing out by a mesh 11, 13 is a heater for heating the adsorbent, 14
Is a two-way valve A as a control valve, 15 is a two-way valve B as a control valve, 16 is a thermistor A for measuring the outside air temperature, 20 is a thermistor for measuring the outlet temperature of the outdoor heat exchanger 8 during heating operation. B. A high boiling point refrigerant (for example,
R115) and a low boiling point refrigerant (for example, R13B1) are enclosed.

次に第1の実施例の制御図をブロックダイヤグラムで第
4図に示す。第1図と同一符号は同一部品を表わす。21
は外気温度判定部、22は論理和演算部、23は論理和演算
部22の出力が1になったT1時間後に出力を1にするタイ
マA、24は二方弁A14及び二方弁B15を開閉する駆動部
A、25は論理和演算部22の出力が論理“1"になった後t1
時間だけ出力を“1"にするタイマB、26はヒータ13に通
電する駆動部B29は室外側熱交換器温度判定部、30は一
定時間t2除霜に入るのを防止するタイマC、31は論理積
演算部、32は論理積演算部31出力が“1"になったt1時間
後に出力を“1"にするタイマD、33はインバータ、34は
四方切換弁2を冷房運転側と暖房運転側に切換える駆動
部C、36は論理和演算部31の出力“1"か“0"によって室
外側熱交換器温度判定部29の設定基準を変える帰還部、
37はインバータ33の出力にかかわらず、駆動部C34の出
力を“0"にして四方切換弁2を冷房運転側にする冷房切
換えスイッチである。以上のように構成したブロックダ
イヤグラムの動作について第5図,第6図のタイムチャ
ートを用いて説明する。第5図は暖房運転時、第6図は
除霜運転時のタイムチャートである。冷房運転時は、冷
房切換えスイッチ37を冷房側にすることにより、駆動部
34の出力は“0"となり四方切換え弁2は冷房運転側にな
る。また、冷房運転時は、外気温度、室外側交換器8の
温度が高いため、サーミスタA16、サーミスタB20で検出
される温度が高く、外気温度判定部21及び室外側熱交換
器温度判定部29の出力はともに“0"となり論理和演算部
22の出力が0となり、駆動部A24、駆動部B26の出力は
“0"となり、二方弁A14、二方弁B15は開、ヒータ13はオ
フとなる。
Next, a control diagram of the first embodiment is shown in a block diagram in FIG. The same reference numerals as those in FIG. 1 represent the same parts. twenty one
Is an outside air temperature determination unit, 22 is a logical sum calculation unit, 23 is a timer A that sets the output to 1 after T 1 time when the output of the logical sum calculation unit 22 becomes 1, 24 is a two-way valve A14 and a two-way valve B15 After the output of the logical sum operation unit 22 becomes a logical "1", the drive units A and 25 for opening and closing t 1
Timer C, 31 the timer B, 26 prevents the drive unit B29 to be supplied to the heater 13 outdoor heat exchanger temperature determination unit, the 30 enters the predetermined time t 2 defrosting that only the output "1" Time Is a logical product computing unit, 32 is a logical product computing unit 31, a timer D that sets the output to “1” one hour after the output becomes “1”, 33 is an inverter, and 34 is the four-way switching valve 2 on the cooling operation side. The drive unit C, 36 for switching to the heating operation side is a feedback unit for changing the setting reference of the outdoor heat exchanger temperature determination unit 29 according to the output “1” or “0” of the OR operation unit 31,
Reference numeral 37 is a cooling changeover switch that sets the output of the drive unit C34 to "0" regardless of the output of the inverter 33 to set the four-way changeover valve 2 to the cooling operation side. The operation of the block diagram configured as above will be described with reference to the time charts of FIGS. 5 and 6. FIG. 5 is a time chart during heating operation, and FIG. 6 is a time chart during defrosting operation. During cooling operation, set the cooling switch 37 to the cooling side
The output of 34 becomes "0" and the four-way switching valve 2 becomes the cooling operation side. Further, during the cooling operation, since the outside air temperature and the temperature of the outdoor side exchanger 8 are high, the temperatures detected by the thermistor A16 and the thermistor B20 are high, and the outside air temperature determination unit 21 and the outdoor heat exchanger temperature determination unit 29 are Both outputs become "0" and OR operation section
The output of 22 becomes 0, the outputs of the drive unit A24 and the drive unit B26 become "0", the two-way valve A14 and the two-way valve B15 are opened, and the heater 13 is turned off.

次に暖房運転時について説明する。サーミスタA16で検
出される温度が外気温度判定部21の基準温度T1よりも高
い場合には、外気温度判定部21の出力は“0"、一方、サ
ーミスタB20の温度が室外側熱交換器温度判定部29で設
定されている基準温度T2よりも高い場合には、室外側熱
交換器温度判定部29の出力は“0"となり、論理和演算部
22の出力は“0"となり、二方弁A14、二方弁A15は開、ヒ
ータ13はオフとなる。また、コンパレータ33出力が1に
なり、駆動部C34によって四方切換弁2が暖房運転側に
なる。次に外気温度が低下し、外気温度判定部21の基準
温度T1よりもサーミスタA16の検出温度が低下すると、
外気温度判定部21の出力が“1"となり、論理和演算部22
の出力が1になる。したがってタイマB25の出力はt1
間だけ“1"になり、この間にヒータ13に通電される。一
方、タイマA23の出力はt1時間後に“1"になり、二方弁1
4、二方弁B15は閉になる。この状態で外気温度が上昇
し、外気温度判定部21の基準温度T1よりも高くなると外
気温度判定部21の出力が“0"になり、論理和演算部22出
力が“0"となり、タイマA23の出力が“0"、二方弁A14、
二方弁B15は開になる。
Next, the heating operation will be described. When the temperature detected by the thermistor A16 is higher than the reference temperature T 1 of the outdoor air temperature determination unit 21, the output of the outdoor air temperature determination unit 21 is “0”, while the temperature of the thermistor B20 is the outdoor heat exchanger temperature. When the temperature is higher than the reference temperature T 2 set by the determination unit 29, the output of the outdoor heat exchanger temperature determination unit 29 becomes “0”, and the OR operation unit
The output of 22 becomes "0", the two-way valve A14 and the two-way valve A15 are opened, and the heater 13 is turned off. Moreover, the output of the comparator 33 becomes 1, and the four-way switching valve 2 is set to the heating operation side by the drive unit C34. Next, when the outside air temperature decreases and the detection temperature of the thermistor A16 falls below the reference temperature T 1 of the outside air temperature determination unit 21,
The output of the outside air temperature determination unit 21 becomes “1”, and the OR operation unit 22
Output becomes 1. Therefore, the output of the timer B25 becomes "1" for t 1 hours, and the heater 13 is energized during this time. On the other hand, the output of timer A23 becomes "1" 1 hour after t, and the two-way valve 1
4, 2-way valve B15 is closed. When the outside air temperature rises in this state and becomes higher than the reference temperature T 1 of the outside air temperature determination unit 21, the output of the outside air temperature determination unit 21 becomes “0”, the output of the logical sum operation unit 22 becomes “0”, and the timer A23 output is “0”, two-way valve A14,
The two-way valve B15 opens.

除霜運転時について説明する。室外熱交換器8に霜が付
着すると熱交換能力が低下し、室外側熱交換器8の温度
が下り、サーミスタBで検出される温度が低下する。サ
ーミスタBで検出される温度が室外側熱交換器温度判定
器29の基準温度T1よりも低くなると、室外側熱交換器温
度判定器29の出力は“1"になる。一方、前回の除霜が終
了した後、一定時間t2になるとタイマC30の出力が“1"
になり、論理積演算部31の出力が“1"になり、除霜に入
る。まず、論理和演算部22出力が“1"となり、t1時間ヒ
ータ13に通電された後、二方弁A14、二方弁B15を閉にな
る。一方、論理積演算部31出力が“1"になったt1時間後
タイマC32出力が“1"となり、コンパレータ33出力が0
となり、四方切換え弁2は除霜運転(冷房運転と同一方
向)になる。また、論理積演算部31の出力が1になると
帰還部36によって室外側熱交換器温度判定器29の基準温
度がT2からT3に変る。したがって除霜が終了して室外側
熱交換器8の温度が上昇すると、サーシスタB20の温度
が上昇し、室外側熱交換器温度判定器29の基準温度T3
り高くなると、室外側熱交換器温度判定器29の出力は
“0"になり、論理和演算部22の出力は“0"、コンパレー
タ33の出力は“1"となり、二方弁A14、二方弁B15は開四
方切換え弁2は暖房側に戻る。また、タイマC30もリセ
ットされる。
The defrosting operation will be described. When frost adheres to the outdoor heat exchanger 8, the heat exchanging capability is lowered, the temperature of the outdoor heat exchanger 8 is lowered, and the temperature detected by the thermistor B is lowered. When the temperature detected by the thermistor B becomes lower than the reference temperature T 1 of the outdoor heat exchanger temperature determiner 29, the output of the outdoor heat exchanger temperature determiner 29 becomes “1”. Meanwhile, since the last defrosting is completed, the output of the timer C30 becomes a predetermined time t 2 is "1"
Then, the output of the AND operation unit 31 becomes "1", and the defrosting process starts. First, the output of the logical sum operation unit 22 becomes "1", the heater 13 is energized for t 1 time, and then the two-way valve A14 and the two-way valve B15 are closed. On the other hand, t 1 hours after the output of the AND operation unit 31 becomes “1”, the output of the timer C32 becomes “1” and the output of the comparator 33 becomes 0.
Therefore, the four-way switching valve 2 is in the defrosting operation (in the same direction as the cooling operation). Further, when the output of the logical product calculation unit 31 becomes 1, the feedback unit 36 changes the reference temperature of the outdoor heat exchanger temperature determination unit 29 from T 2 to T 3 . Therefore, when defrosting ends and the temperature of the outdoor heat exchanger 8 rises, the temperature of the circulator B20 rises, and when it becomes higher than the reference temperature T 3 of the outdoor heat exchanger temperature determiner 29, the outdoor heat exchanger. The output of the temperature determiner 29 becomes "0", the output of the OR operation unit 22 becomes "0", the output of the comparator 33 becomes "1", and the two-way valve A14 and the two-way valve B15 open the four-way switching valve 2 Return to the heating side. Also, the timer C30 is reset.

以上の制御モードでの冷凍サイクルの動作を説明する。The operation of the refrigeration cycle in the above control mode will be described.

冷房運転時は、四方切換え弁2は冷房側、二方弁14、二
方弁B15は開になり吸着材13は低沸点冷媒を吸着状態に
なる。圧縮機1で高温、高圧になった冷媒ガスは四方切
換え弁2を通って室外側熱交換器8で放熱し高圧の液冷
媒となった後、冷房用逆止弁7、受液器9を通り冷房用
減圧器4で減圧される。低圧になった冷媒は室内側熱交
換器3で吸熱しガス冷媒となった後四方切換え弁2を通
り圧縮機1に戻るサイクルを繰り返す。このとき、二方
弁A14、二方弁B15は開になっているため、四方切換え弁
2から圧縮機1へ戻るガス冷媒の部は容器10を流れ、冷
凍サイクル内に低沸点冷媒が混じっている場合吸着材13
で吸着されるため、冷凍サイクル内は通常高沸点冷媒の
みで運転される。
During the cooling operation, the four-way switching valve 2 is on the cooling side, the two-way valve 14 and the two-way valve B15 are open, and the adsorbent 13 is in the adsorption state of the low boiling point refrigerant. The high-temperature, high-pressure refrigerant gas in the compressor 1 passes through the four-way switching valve 2 and radiates heat in the outdoor heat exchanger 8 to become a high-pressure liquid refrigerant, and then the cooling check valve 7 and the liquid receiver 9 are used. The pressure is reduced by the passage cooling decompressor 4. The low-pressure refrigerant absorbs heat in the indoor heat exchanger 3 to become a gas refrigerant, and then passes through the four-way switching valve 2 to return to the compressor 1 and the cycle is repeated. At this time, since the two-way valve A14 and the two-way valve B15 are open, the part of the gas refrigerant returning from the four-way switching valve 2 to the compressor 1 flows through the container 10, and the low boiling point refrigerant is mixed in the refrigeration cycle. If so Adsorbent 13
Therefore, the refrigeration cycle is usually operated only with a high boiling point refrigerant.

次に暖房運転について説明する。サーミスタ16で検出さ
れる温度がT1より高い場合には、四方切換え弁2は暖房
側、二方弁A14、二方弁B15は開にする。圧縮機1で高
温,高圧になった冷媒ガスは四方切換え弁2を通って室
内側熱交換器3で放熱し、高圧の液冷媒となった後、暖
房用逆止弁5、受液器9を通り暖房用減圧器6で減圧さ
れる。低圧になった冷媒は室外側熱交換器8で吸熱しガ
ス冷媒となった後四方切換え弁2を通り圧縮機1に戻る
サイクルを繰り返す。このとき、二方弁A14、二方弁B15
は開になっているため、冷房運転と同様に高沸点冷媒の
みで運転される。外気温度が低下し、サーミスタ16で検
出される温度がT1以下になると、ヒータ13に通電して、
吸着材12を加熱する。したがって、吸着材12に吸着され
ていた低沸点冷媒は放出し二方弁B15を通り冷凍サイク
ル内に入る。放出に必要な時間t1が経過すると二方弁A1
4、二方弁B15を閉にし、ヒータ13の通電を停止する。し
たがって、冷凍サイクルは高沸点冷媒と低沸点冷媒の混
合冷媒で運転され、室外熱交換器8の蒸発温度が低下し
ても、圧力の低下はなく、容積流量が小さくなり、圧力
損失が小さく、高効率で能力を大きくすることができ
る。本実施例は、二方弁A14、二方弁B15が開のとき容器
10内を冷媒が流れるように容器10前後に制御弁を設けて
いるが、吸着に要する時間が長くてもよい場合には一方
の二方弁のみで同様の効果を得る。
Next, the heating operation will be described. When the temperature detected by the thermistor 16 is higher than T 1 , the four-way switching valve 2 is opened on the heating side, and the two-way valve A14 and the two-way valve B15 are opened. The refrigerant gas that has become high temperature and high pressure in the compressor 1 passes through the four-way switching valve 2 and radiates heat in the indoor heat exchanger 3 to become high pressure liquid refrigerant, and then the check valve 5 for heating and the receiver 9 The pressure is reduced by the heating pressure reducer 6. The low-pressure refrigerant absorbs heat in the outdoor heat exchanger 8 to become a gas refrigerant, and then passes through the four-way switching valve 2 to return to the compressor 1 to repeat the cycle. At this time, two-way valve A14, two-way valve B15
Since it is open, it is operated only with the high boiling point refrigerant as in the cooling operation. When the outside air temperature decreases and the temperature detected by the thermistor 16 becomes T 1 or less, the heater 13 is energized,
The adsorbent 12 is heated. Therefore, the low boiling point refrigerant adsorbed by the adsorbent 12 is released and enters the refrigeration cycle through the two-way valve B15. When the time t 1 required for release elapses, the two-way valve A 1
4. Close the two-way valve B15 to stop energizing the heater 13. Therefore, the refrigeration cycle is operated with a mixed refrigerant of a high-boiling-point refrigerant and a low-boiling-point refrigerant, even if the evaporation temperature of the outdoor heat exchanger 8 decreases, the pressure does not decrease, the volumetric flow rate decreases, the pressure loss decreases, High efficiency and large capacity. This embodiment is a container when the two-way valve A14 and the two-way valve B15 are open.
Control valves are provided before and after the container 10 so that the refrigerant flows through the inside of the container 10. However, when the time required for adsorption may be long, the same effect can be obtained by using only one of the two-way valves.

次に除霜運転について説明する。外気温度が低下し室外
側熱交換器8に霜が付着すると熱交換能力が低下、蒸発
温度が下がる。サーミスタBで検出される温度がT2以下
になると除霜運転に入る。まず、ヒータ13に通電して、
吸着材12を加熱し、吸着材12に吸着していた低沸点冷媒
を放出させた後、二方弁A14、二方弁B15を閉にしヒータ
13の通電を停止する。その時、四方切換え弁2も冷房運
転側になり除霜に入る。したがって、除霜中は混合冷媒
で運転され、圧縮機1を出た高温高圧ガスは室外側熱交
換器8で放熱し、付着した霜を融解し、冷房用逆止弁
7、冷房用減圧器4、室内側熱交換器3、四方切換え弁
2を通り圧縮機1に戻るサイクルを行う。サーミスタ20
で検出される温度がT3以上になると通常の暖房運転に戻
る。このとき混合冷媒で運転されるために、サイクル内
の圧力が高沸点冷媒で運を行うより高く、容積流量が小
さいため圧力損失が少なく冷媒循環量が多くなる。この
ため、圧縮機の入力が大きくなり、除霜時間が短縮でき
る。
Next, the defrosting operation will be described. If the outside air temperature decreases and frost adheres to the outdoor heat exchanger 8, the heat exchange capacity decreases and the evaporation temperature decreases. When the temperature detected by the thermistor B becomes T 2 or less, defrosting operation starts. First, energize the heater 13,
After heating the adsorbent 12 to release the low boiling point refrigerant adsorbed on the adsorbent 12, the two-way valve A14 and the two-way valve B15 are closed and the heater
Stop energizing 13. At that time, the four-way switching valve 2 is also on the cooling operation side, and defrosting is started. Therefore, during defrosting, the high-temperature high-pressure gas discharged from the compressor 1 is radiated by the outdoor heat exchanger 8 to melt the attached frost, and the cooling check valve 7 and the cooling decompressor are operated. 4. The cycle of returning to the compressor 1 through the indoor heat exchanger 3 and the four-way switching valve 2 is performed. Thermistor 20
When the temperature detected at is above T 3 , normal heating operation is resumed. At this time, since the mixed refrigerant is operated, the pressure in the cycle is higher than that in the case of using the high boiling point refrigerant, and the volume flow rate is small, so that the pressure loss is small and the refrigerant circulation amount is large. Therefore, the input of the compressor is increased, and the defrosting time can be shortened.

本発明の第2の実施例を第7図に示す。第7図は第2の
実施例の冷凍サイクル概略図である。第7図において第
1図と同一符号は同一部品を表わす。第1の実施例と異
なる点は二方弁B15の代わりに圧縮機1への冷媒流れを
四方切換え弁2と容器10に切換える三方弁17(OFF状態
で四方切換え弁2側になる)にした点である。第二の実
施例のブロックダイヤグラムを第8図論理和演算部22以
降のタイムチャートを第9図に示す。第一の実施例と異
なる点は、論理和演算部22の出力が“1"のとき、二方弁
Aを閉にする駆動部D38、論理和演算部22の出力が“1"
になったときt1時間だけ出力を“1"にするタイマE39、
タイマE39の出力が“1"のとき三方弁17を容器10に切換
える駆動部Eである。以上のように構成した動作につい
て説明する。冷房運転および、サーミスタ16の温度が基
準温度T1より高い場合には、二方弁A14を開、三方弁17
を四方切換え弁2側になり、第1の実施例と同一の動作
を行う。低外気温時及び除霜時に、論理和演算部22の出
力が1になると、二方弁A14は閉、t1時間だけ三方弁17
は容器10側、ヒータ13はONになり、吸着材12に吸着され
ていた低沸点冷媒を放出する。このことにより、吸着材
12の温度は高温になるとともに、容器10内の圧力は真空
近くまで低下する。したがって、第10図に示すように、
吸着材12の低沸点冷媒の吸着量は温度のみを変えた場合
よりも大幅に変えることができ、吸着材12を少なくする
ことができる。また、吸着材12を少なくするかわりに、
時間t1を短かくもできる。低沸点冷媒の放出が終るt1
間後は二方弁A14が閉、三方弁17が四方切換え弁2側に
なり、ヒータ13の通電がオフになり第1の実施例と同一
の動作を行う。
A second embodiment of the present invention is shown in FIG. FIG. 7 is a schematic diagram of the refrigeration cycle of the second embodiment. In FIG. 7, the same symbols as in FIG. 1 represent the same parts. The point different from the first embodiment is that instead of the two-way valve B15, a three-way valve 17 (which turns to the four-way switching valve 2 side in the OFF state) that switches the refrigerant flow to the compressor 1 to the four-way switching valve 2 and the container 10 is used. It is a point. A block diagram of the second embodiment is shown in FIG. 8 and a time chart after the logical sum operation unit 22 is shown in FIG. The difference from the first embodiment is that when the output of the OR operation section 22 is "1", the outputs of the drive section D38 and the OR operation section 22 that close the two-way valve A are "1".
Timer E39, which sets the output to "1" for t 1 hours when
The drive unit E switches the three-way valve 17 to the container 10 when the output of the timer E39 is "1". The operation configured as above will be described. In cooling operation and when the temperature of the thermistor 16 is higher than the reference temperature T 1 , the two-way valve A14 is opened and the three-way valve 17
Becomes the four-way switching valve 2 side, and the same operation as in the first embodiment is performed. When the output of the OR operation unit 22 becomes 1 at the time of low outside temperature and defrosting, the two-way valve A14 is closed and the three-way valve 17 is operated for t 1 hour.
Turns on the container 10 side and the heater 13 to release the low boiling point refrigerant adsorbed by the adsorbent 12. This makes the adsorbent
As the temperature of 12 rises, the pressure inside the container 10 drops to near vacuum. Therefore, as shown in FIG.
The amount of the low-boiling-point refrigerant adsorbed on the adsorbent 12 can be changed significantly as compared with the case where only the temperature is changed, and the adsorbent 12 can be reduced. Also, instead of using less adsorbent 12,
The time t 1 can be shortened. Low boiling t 1 hour after the release end of the refrigerant two-way valve A14 is closed, three-way valve 17 is in the four-way changeover valve 2 side, energization of the heater 13 performs the first embodiment the same operation and turned off .

本発明の第3の実施例を第11図第12図に示す。第11図第
12図において第1図と同一符号は同一部品を表わす。第
1の実施例と異なる点は、ヒータ13の代りに圧縮機1出
口に三方弁B18を設け三方弁B18の一方の出口から容器10
内の放熱器19を通り再び冷凍サイクルの接続管に戻る配
管を設けたことである。三方弁B18は、タイマB25の出力
が1になると駆動部B26で、容器10側になる。このよう
に構成することにより、吸着材12より低沸点冷媒を放出
する際は、三方弁B18を容器10側にすることにより、圧
縮機1を出た高温高圧のガス冷媒は三方弁B18を通り、
放熱器19で放熱し、吸着材12を加熱し再び冷凍サイクル
に戻る。したがって、ヒータを設ける必要がなくなり、
電力消費量を少なくできる。低沸点冷媒の放出時以外
は、三方弁B18を四方切換え弁2側にすることで第1の
実施例と同様の効果を得る。
A third embodiment of the present invention is shown in FIG. 11 and FIG. Fig. 11
12, the same reference numerals as those in FIG. 1 represent the same parts. The difference from the first embodiment is that instead of the heater 13, a three-way valve B18 is provided at the outlet of the compressor 1 and the container 10 is provided from one outlet of the three-way valve B18.
That is, a pipe is provided which passes through the radiator 19 and returns to the connection pipe of the refrigeration cycle. When the output of the timer B25 becomes 1, the three-way valve B18 is driven by the drive unit B26 and moves to the container 10 side. With this configuration, when the low-boiling-point refrigerant is discharged from the adsorbent 12, the three-way valve B18 is set to the container 10 side so that the high-temperature and high-pressure gas refrigerant exiting the compressor 1 passes through the three-way valve B18. ,
The radiator 19 radiates heat, heats the adsorbent 12, and returns to the refrigeration cycle again. Therefore, it is not necessary to provide a heater,
Power consumption can be reduced. Except when the low boiling point refrigerant is discharged, the same effect as that of the first embodiment is obtained by setting the three-way valve B18 to the four-way switching valve 2 side.

〔発明の効果〕〔The invention's effect〕

本発明によれば、簡単な構造で低温時及び除霜運転時の
冷凍サイクルの低沸点冷媒の濃度を増加でき、圧力損失
が少なく高効率で能力を増加できる。また、低温時以外
は高沸点冷媒のみで冷凍サイクルを運転するため、この
ときの効率の低下もない。また、除霜運転時の圧縮機入
力が増加し、除霜時間が短かくなる。
According to the present invention, it is possible to increase the concentration of the low boiling point refrigerant in the refrigeration cycle at a low temperature and in the defrosting operation with a simple structure, reduce the pressure loss, and increase the capacity with high efficiency. Further, since the refrigeration cycle is operated only with the high boiling point refrigerant except when the temperature is low, there is no decrease in efficiency at this time. Moreover, the compressor input during the defrosting operation increases, and the defrosting time becomes short.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例を示す冷凍サイクル図、
第2図は圧縮機回転数が変化した場合の能力変化、第3
図は冷媒の種類による能力、効率変化、第4図は本発明
の第1の実施例のブロックダイヤグラム、第5図は暖房
運転時のタイムチャート、第6図は除霜運転時のタイム
チャート、第7図は本発明の第2の実施例を示す冷凍サ
イクル図、第8図は第2の実施例のブロックダイヤグラ
ム、第9図はタイムチャート、第10図はゼオライトのR1
3B1の吸着量を示す線図、第11図は本発明の第3の実施
例を示す冷凍サイクル図、第12図は本発明の第3の実施
例のブロック図である。 10……容器 11……メッシュ 12……吸着材 13……ヒータ 14……二方弁A 15……二方弁B 16……サーミスタA 17……三方弁 18……三方弁B 19……放熱器 20……サーミスタB
FIG. 1 is a refrigeration cycle diagram showing a first embodiment of the present invention,
Fig. 2 shows the change in capacity when the compressor speed changes,
Fig. 4 shows the capacity and efficiency change depending on the type of refrigerant, Fig. 4 is a block diagram of the first embodiment of the present invention, Fig. 5 is a time chart during heating operation, Fig. 6 is a time chart during defrosting operation, FIG. 7 is a refrigeration cycle diagram showing a second embodiment of the present invention, FIG. 8 is a block diagram of the second embodiment, FIG. 9 is a time chart, and FIG. 10 is zeolite R1.
FIG. 11 is a diagram showing an adsorption amount of 3B1, FIG. 11 is a refrigeration cycle diagram showing a third embodiment of the present invention, and FIG. 12 is a block diagram of the third embodiment of the present invention. 10 …… Container 11 …… Mesh 12 …… Adsorbent 13 …… Heater 14 …… Two-way valve A 15 …… Two-way valve B 16 …… Thermistor A 17 …… Three-way valve 18 …… Three-way valve B 19 …… Radiator 20 …… Thermistor B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくとも圧縮機、四方切換え弁、室内側
熱交換器、減圧器、室外側熱交換器を配管により接続し
て高沸点冷媒と低沸点冷媒を封入した冷凍サイクルにお
いて、前記四方切換え弁と圧縮機入口の配管の任意の位
置から前記低沸点冷媒を選択吸着できる吸着材を封入し
た容器が分岐配管により接続され、分岐配管には分岐配
管を開閉できる制御弁が設けられるとともに、前記容器
には吸着材を加熱できるヒータが設けられ、除霜運転開
始時及び低外気温時には、一定時間前記制御弁が開か
れ、ヒータを加熱し、前記吸着材に吸着されていた低沸
点冷媒を放出した後、前記制御弁を閉にして低沸点冷媒
と高沸点冷媒の混合冷媒で運転することを特徴とする冷
凍サイクル。
1. A four-way switch in a refrigeration cycle in which at least a compressor, a four-way switching valve, an indoor heat exchanger, a pressure reducer, and an outdoor heat exchanger are connected by pipes to enclose a high boiling point refrigerant and a low boiling point refrigerant. A container enclosing an adsorbent capable of selectively adsorbing the low boiling point refrigerant from any position of the valve and the pipe at the compressor inlet is connected by a branch pipe, and the branch pipe is provided with a control valve capable of opening and closing the branch pipe, and The container is provided with a heater capable of heating the adsorbent, and at the time of defrosting operation start and low outside air temperature, the control valve is opened for a certain period of time to heat the heater to remove the low boiling point refrigerant adsorbed by the adsorbent. After discharging, the control valve is closed to operate with a mixed refrigerant of a low boiling point refrigerant and a high boiling point refrigerant.
JP201486A 1986-01-10 1986-01-10 Refrigeration cycle Expired - Lifetime JPH0665944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP201486A JPH0665944B2 (en) 1986-01-10 1986-01-10 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP201486A JPH0665944B2 (en) 1986-01-10 1986-01-10 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS62162853A JPS62162853A (en) 1987-07-18
JPH0665944B2 true JPH0665944B2 (en) 1994-08-24

Family

ID=11517500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP201486A Expired - Lifetime JPH0665944B2 (en) 1986-01-10 1986-01-10 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPH0665944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180048129A (en) * 2016-11-02 2018-05-10 삼성전자주식회사 Air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972676A (en) * 1988-12-23 1990-11-27 Kabushiki Kaisha Toshiba Refrigeration cycle apparatus having refrigerant separating system with pressure swing adsorption
JP7216308B2 (en) * 2021-03-31 2023-02-01 ダイキン工業株式会社 refrigeration cycle equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180048129A (en) * 2016-11-02 2018-05-10 삼성전자주식회사 Air conditioner
WO2018084459A1 (en) * 2016-11-02 2018-05-11 삼성전자 주식회사 Air conditioner

Also Published As

Publication number Publication date
JPS62162853A (en) 1987-07-18

Similar Documents

Publication Publication Date Title
JPH11182995A (en) Method and device for controlling air conditioner
JP2001235251A (en) Adsorbing type freezer machine
JPH11316061A (en) Air conditioning system and its operation method
CN103097824A (en) Air conditioner
JP2001280769A (en) Method and apparatus for controlling defrosting of reversible heat pump device
JPH0665944B2 (en) Refrigeration cycle
CA2588359C (en) Energy-saving climatic test chamber and method of operation
JPH0842935A (en) Adsorption type cooler and cold heat output controlling method therefor
CN112393400A (en) Control method and control device for double-refrigeration type air conditioner and double-refrigeration type air conditioner
JP5287820B2 (en) Air conditioner
JP2003287311A (en) Air-conditioner, and air-conditioner control method
JP2007051820A (en) Air conditioner
JPH01306785A (en) Air-conditioner
JP2906508B2 (en) Heat pump water heater
JPH05296599A (en) Adsorption type heat accumulator and heat accumulation operating control method
JP6152689B2 (en) Heat pump water heater
JP6327499B2 (en) Heat pump water heater
JPH06100359B2 (en) Heat storage control method
JPS63251780A (en) Operation controller in refrigerator
JPS63213752A (en) Hot water supplier utilizing solar energy
JPH024148A (en) Air-conditioner
JP2004263975A (en) Air conditioner and control method of air conditioner
JPH0749893B2 (en) Heat pump air conditioner
JPH0656274B2 (en) Refrigeration cycle equipment
JPS62178855A (en) Heat pump type refrigeration cycle device