WO2018084459A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2018084459A1
WO2018084459A1 PCT/KR2017/011453 KR2017011453W WO2018084459A1 WO 2018084459 A1 WO2018084459 A1 WO 2018084459A1 KR 2017011453 W KR2017011453 W KR 2017011453W WO 2018084459 A1 WO2018084459 A1 WO 2018084459A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
adsorbent
pipe
heat exchanger
Prior art date
Application number
PCT/KR2017/011453
Other languages
French (fr)
Korean (ko)
Inventor
김경록
김선태
이동규
진동식
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2018084459A1 publication Critical patent/WO2018084459A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0014Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using absorption or desorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0211Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to an air conditioner, and more particularly, to an air conditioner having a heat generator for heating a refrigerant flowing into a compressor during defrosting.
  • an air conditioner is a device including an indoor unit, an outdoor unit, and a refrigerant circulating therebetween, by using a property of releasing heat to the surroundings when the refrigerant liquefies and absorbing the surrounding heat when the refrigerant is liquefied, It is a device for heating.
  • Such an air conditioner has a problem in that when the outside temperature is very low in winter or when the heating operation is performed for a predetermined time, moisture is implanted in the outdoor heat exchanger so that heat exchange with the outdoor air is not performed smoothly.
  • the air conditioner performs a defrosting operation to remove frost formed on the outdoor heat exchanger.
  • the defrosting operation may be performed by a reverse cycle method in which the circulation direction of the refrigerant is reversed and a hot gas bypass method through which the refrigerant from the compressor flows to the outdoor heat exchanger.
  • a heat storage tank may be provided during the heating operation, and a heat storage tank using the heat as an auxiliary heat source during the defrosting operation.
  • a conventional air conditioner may store heat required during the defrosting operation. A large amount of heat storage material was needed for this purpose. Therefore, the heat storage tank is increased in size to contain a large amount of heat storage material, which is a factor to increase the overall size of the air conditioner.
  • An object of the present invention is to control the refrigerant to pass through the heat generating device during the defrosting operation, and by supplying a refrigerant whose temperature is increased by the adsorption heat generated while the adsorbent and the refrigerant is physically adsorbed to reduce the defrost time, defrost efficiency
  • the height is to provide an air conditioner.
  • the present invention controls the refrigerant to pass through the heat generating device during the defrosting operation, by supplying a refrigerant with increased temperature to the compressor by the heat of adsorption generated during the physical adsorption of the adsorbent and the refrigerant, defrost time It is an object of the present invention to provide an air conditioner that reduces and increases defrosting efficiency.
  • the present invention provides an air conditioner in which an indoor heat exchanger, an outdoor expansion device, an outdoor heat exchanger, an accumulator, a compressor, and an oil separator are sequentially connected, the refrigerant flowing from the outdoor expansion device to the compressor.
  • a heat generating device for heating the heat generating device comprising: an adsorbent for generating heat by physical adsorption with the refrigerant; A tank filled with the adsorbent; And a heat transfer pipe transferring heat to the adsorbent to regenerate the adsorbent.
  • the heat transfer tube may pass through the tank so that the adsorbent is in contact with the outer circumferential surface.
  • the heat pipes may be branched from a section within the tank to form a plurality of pipes, and the plurality of pipes may be connected in parallel to each other.
  • the heat transfer pipe may be formed in a zigzag shape in a section within the tank.
  • the adsorbent may be any one of activated carbon, zeolite, silica gel, and activated alumina.
  • a first bypass pipe for guiding the refrigerant discharged from the indoor heat exchanger to the heat generating device; And a second bypass tube for guiding the heated refrigerant through the heat generator to the accumulator.
  • the first bypass pipe may be connected to an inlet of the tank such that a refrigerant reacts with the adsorbent, and the second bypass pipe may be connected to an outlet of the tank where the heated refrigerant is discharged by reacting with the adsorbent.
  • the first and second bypass pipes may branch in some sections of the flow path where the refrigerant flows in a low pressure state during the defrosting operation.
  • the heat transfer tube may be disposed on a flow path through which the oil separated from the oil separator is returned to the compressor.
  • the tank may be formed to surround the heat transfer pipe.
  • a first opening and closing valve disposed in the first bypass pipe to control the flow of the refrigerant to be transferred to the tank; may further include a.
  • a second on / off valve disposed on a flow path connecting the oil separator and the inlet of the heat transfer tube to control the flow of oil transferred to the heat transfer tube.
  • a third bypass pipe for guiding the refrigerant discharged from the compressor and moving to an indoor heat exchanger to the heat transfer pipe; And a fourth bypass pipe for guiding the refrigerant passing through the heat transfer pipe to the outdoor heat exchanger.
  • the outdoor heat exchanger may be provided in plurality, and may include a plurality of connection pipes branched from the compressor to the four-way valve and connected to the outdoor heat exchanger, respectively.
  • the plurality of connection pipes may be disposed on and off valves to selectively open and close the plurality of connection pipes.
  • FIG. 1 is a view showing an air conditioner according to an embodiment of the present invention.
  • FIG. 2A is a cross-sectional view of the heat generator shown in FIG. 1.
  • FIG. 2B and 2C are cross-sectional views illustrating a modified example of the heat generator illustrated in FIG. 2A.
  • FIG 3 is a view for explaining a defrosting operation of the air conditioner according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining the heating operation of the air conditioner according to an embodiment of the present invention.
  • FIG. 5 is a view showing an air conditioner according to another embodiment of the present invention.
  • FIG. 6 is a view showing an air conditioner according to another embodiment of the present invention.
  • the air conditioner according to the present embodiment is described by taking a heater as an example, but is not limited thereto.
  • the air conditioner may be an air conditioner that serves both cooling and heating.
  • the heat generating device applied to the air conditioner according to the present embodiment described below can be obtained in a small size and high efficiency compared to the conventional heat storage tank.
  • FIG. 1 is a view showing an air conditioner according to an embodiment of the present invention.
  • the air conditioner 1 is largely comprised of an indoor unit 10 and an outdoor unit 20.
  • the indoor unit 10 includes an indoor heat exchanger 13 through which the refrigerant is heat exchanged, and an indoor expansion device 11 through which the refrigerant is expanded under reduced pressure.
  • the outdoor unit 20 includes a compressor 21 for compressing a refrigerant, an outdoor heat exchanger 23 for exchanging refrigerant, and four-way valves 25 and 4- arranged on the discharge side of the compressor 21 to switch the flow path of the refrigerant. a way valve, an accumulator 27 connected to the suction side of the compressor 21 and providing a refrigerant in a gaseous state to the compressor 21, and disposed between the indoor heat exchanger 13 and the outdoor heat exchanger 23. And an outdoor expansion device 29 for expanding the refrigerant under reduced pressure.
  • An oil separator 31 is provided at the discharge side of the compressor 21 to separate oil, and a circulation passage 33 is formed at the oil separator 31 so that the separated oil can be returned to the compressor 21 again. do. Downstream of the circulation passage 33 may be a capillary tube 35 for decompression. A portion of the circulation passage 33 may be a heat transfer tube 130 of the heat generating device 100 to be described later.
  • the downstream valve 25 is connected to the downstream side of the oil separator 31.
  • An outdoor heat exchanger 20, an accumulator 27, and an inflow refrigerant pipe 51 into which a refrigerant flows through the indoor unit 10 during defrosting are connected to the outflow side of the four-way valve 25.
  • the outflow side refrigerant pipe 53 is connected to the outlet side of the outdoor expansion device 29 along the flow direction of the refrigerant during defrosting so that the refrigerant can flow to the indoor unit 10.
  • the service valves 41 and 43 are provided in the inflow side refrigerant pipe 51 and the outflow side refrigerant pipe 53, respectively.
  • the outdoor unit 20 includes a heat generator 100 for heating the refrigerant by physical adsorption of the refrigerant downstream of the outdoor expansion device 29 along the flow direction of the refrigerant during defrosting. do.
  • the structure of the heat generating device 100 will be described in detail with reference to FIG. 2A below.
  • the flow path of the air conditioner 1 may include a main pipe 60 and first and second bypass pipes 61 and 62.
  • the main pipe 60 is connected to the flow path from the outlet side of the outdoor expansion device 29 to the intake side of the accumulator 27 through the outdoor heat exchanger 23 and the four-way valve 25 along the flow direction of the refrigerant during heating. Corresponding.
  • the bypass pipes 61 and 62 are branched from the starting point P1 of the main pipe 60 and connected to the heat generating device 100 and the main pipe 61 and 62 again from the heat generating device 100. And a second bypass tube 62 connected to the tube 60.
  • the first bypass pipe 61 transfers the refrigerant flowing through the main pipe 60 to the heat generator 100, and the second bypass pipe 62 passes the refrigerant heated through the heat generator 100.
  • the heat generator 100 is transferred back to the main pipe (60).
  • the heat generator 100 may be connected in parallel to the main pipe 60 by the first bypass pipe 61 and the second bypass pipe 62. At this time, the main pipe 60 corresponds to the low pressure region of the refrigerant during heating.
  • the first bypass pipe 61 is formed to branch from the flow path from the outlet side of the four-way valve 25 to the suction side of the accumulator 27 along the flow direction of the refrigerant during heating.
  • the second bypass pipe 62 is formed to be connected to the suction side of the accumulator 27 again.
  • the first bypass pipe 61 for introducing the refrigerant into the heat generator 100 is connected to the main pipe 60 so that the refrigerant flowing through the main pipe 60 can be bypassed during defrosting.
  • the second bypass pipe 62 is connected to the main pipe 60 to allow the refrigerant discharged from the heat generator 100 to flow into the accumulator 27.
  • the point where the 2nd bypass pipe 62 is connected with the main pipe 60 is located downstream from the 1st bypass pipe 61.
  • On-off valve V1 is provided.
  • FIG. 2A is a cross-sectional view of the heat generating device.
  • the heat generator 100 regenerates an adsorbent 120 that generates heat by physical adsorption with a refrigerant, a tank 110 filled with the adsorbent 120, and an adsorbent 120.
  • a heat pipe 130
  • the heat generating apparatus 100 uses physical adsorption in which the refrigerant is contacted with and adsorbed to the adsorbent 120 to heat the refrigerant.
  • Physical adsorption is always an exothermic reaction, and the refrigerant can be heated using heat generated by physical adsorption.
  • the heat generator 100 may adsorb the refrigerant to the adsorbent 120 and heat the refrigerant with the generated adsorption heat to discharge the high temperature refrigerant.
  • the adsorbent 120 may mainly be a solid adsorbent such as silica or zeolite.
  • the adsorbent 120 may be activated carbon, meropolar silica, zeolite, silica gel, clay mineral, or the like. Adsorption occurs at a solid interface of the adsorbent 120, so that the adsorbent 120 is porous to increase the interface of the adsorbent 120.
  • the adsorbent 120 is filled in the tank 110, and one side of the tank 110 is formed with an inlet 111 through which the refrigerant is introduced and an outlet 113 through which a high temperature refrigerant heated by adsorption heat is discharged.
  • the refrigerant introduced into the heat generating device 100 through the inlet 111 is discharged to the outlet 113 by the pressure difference, and the inlet 111 and the outlet 113 are inlet bypass pipe 63 and outlet bypass, respectively.
  • the pass pipe 65 is connected in mutual communication.
  • the refrigerant flowing in the inlet bypass pipe 63 is in direct contact with the adsorbent 120 in the tank 110 through the inlet 111 and is physically adsorbed, and the refrigerant is introduced into the tank 110 by the adsorption heat generated by the physical adsorption. Is heated, and the heated refrigerant is discharged to the discharge bypass pipe 65 through the discharge port 113.
  • the heat generating device 100 uses the adsorbent 120 to exothermicly react with the refrigerant.
  • the compact heat generator 100 can be provided to provide an outdoor unit having a small size, and if the heat generator 100 and the conventional heat storage tank are the same size, an auxiliary heat source having higher efficiency can be provided. There is this.
  • the air conditioner 1 allows the refrigerant compressed from the compressor 21 to flow to the outdoor heat exchanger 23 so that the outdoor heat exchanger 23 may be defrosted.
  • the refrigerant compressed by the compressor 21 flows into the outdoor heat exchanger 23 via the four-way valve 25 to perform defrosting.
  • the refrigerant introduced from the indoor unit 10 through the inlet refrigerant pipe 51 flows to the heat generating device 100 to heat the refrigerant through the heat generating device 100 to lower the amount of heat supplied from the compressor. It can be carried out efficient defrosting.
  • the refrigerant introduced through the inlet refrigerant pipe 51 and sucked into the accumulator 27 is allowed to flow into the bypass pipe 61. Some of the refrigerant introduced into the inlet bypass pipe 63 is physically adsorbed with the adsorbent 120 in the heat generating device 100, and the remaining refrigerant is heated by the adsorption heat and discharged into the discharge bypass pipe 65.
  • the high temperature refrigerant discharged from the heat generator 100 is sucked into the compressor 21 via the accumulator 27, compressed and discharged to perform defrosting in the outdoor heat exchanger 23.
  • the heat generating device 100 according to an embodiment of the present invention functions as an auxiliary heat source during defrosting operation, thereby increasing defrosting performance and enabling rapid heating return. In addition, the amount of heat supplied from the compressor 21 is lowered to obtain the energy saving effect of the air conditioner 1.
  • Regeneration of the adsorbent refers to removing the refrigerant adsorbed to the adsorbent 120 from the surface of the adsorbent 120.
  • Desorption of the adsorbed refrigerant off the surface of the adsorbent 120 due to the reverse reaction of adsorption is called desorption, which includes a process of desorption in the regeneration process. Desorption occurs when the temperature of the surface of the adsorbent 120 increases.
  • heat is applied to the adsorbent 120, the adsorbed refrigerant is separated from the surface of the adsorbent 120, and the adsorbent 120 is regenerated to be physically adsorbed again.
  • the heat transfer tube 130 is for regeneration of the adsorbent 120 and may be formed to penetrate the inside of the tank 110 to be in direct contact with the adsorbent 120.
  • the heat transfer tube 130 may be formed of a conductive material so as to transfer heat of the oil or refrigerant flowing inside the heat transfer tube 130 to the adsorbent 120.
  • the heat transfer tube 130 of the heat generator 100 may be disposed in a flow path in which oil separated from the oil separator 31 is returned to the compressor.
  • the heat transfer tube 130 may be connected to communicate with the circulation passage 33.
  • the oil separated in the oil separator 31 during the heating operation is allowed to flow to the heat transfer tube 130 to regenerate the adsorbent 120 using the heat of the oil circulated.
  • the air conditioner 1 uses heat of circulated oil that is not in use, the user's heating sensation performance can be improved, and the air conditioner is recycled by remaining heat. It can improve the energy efficiency.
  • the adsorbent 120 and the heat transfer tube 130 are disposed in direct contact with each other so as to absorb heat required for regeneration of the adsorbent.
  • the heat transfer tube may be formed in various forms.
  • FIG. 2B and 2C show a modified example of the heat pipe shown in FIG. 2A.
  • the heat transfer tube 131 may be formed of two or more tubes 133 and 135 branched in the tank 110 and connected in parallel to increase the contact area with the adsorbent 120.
  • the heat transfer tube 139 may have a zigzag shape in a section located in the tank 110 to have an extended contact area to efficiently transfer heat to the adsorbent 120.
  • FIG 3 is a view for explaining a defrosting operation of the air conditioner according to an embodiment of the present invention.
  • the refrigerant is supplied to the compressor 21, the oil separator 31, the four-way valve 25, and the outdoor heat exchanger 23.
  • the refrigerant cycle circulated in the compressor 21 is repeated.
  • the refrigerant supplied from the inflow refrigerant pipe 51 is circulated to the accumulator 27 via the heat generating device 100.
  • the high temperature and high pressure gas refrigerant flowing out of the compressor 21 during the defrosting operation flows into the outdoor heat exchanger 23 to remove frost formed.
  • the refrigerant flowing into the first bypass pipe 61 from the inlet refrigerant pipe 51 is physically adsorbed by the heat generating device 100 to generate heat.
  • the refrigerant heated by the heat of adsorption of the heat generator 100 is discharged to the second bypass pipe 62.
  • the heat generating device 100 converts the refrigerant into a high temperature refrigerant by heating an exothermic reaction according to physical adsorption of the adsorbent 120 and the refrigerant as an auxiliary heat source.
  • the refrigerant discharged into the second bypass pipe 62 may be converted into high temperature and high pressure gas through the accumulator 27 and the compressor 21 to remove the frost formed on the outdoor heat exchanger 23.
  • the first opening / closing valve V1 formed in the first bypass pipe 61 is opened, and a part of the refrigerant flowing through the main pipe 60 flows into the heat generating device 100.
  • a part of the refrigerant flowing in the main pipe 60 is introduced into the heat generating device 100, but the present invention is not limited thereto. It also includes a case where all of the refrigerant flowing through the pipe 60 is sucked into the accumulator 27 via the heat generator 100.
  • the machine 1 performs a defrost function.
  • the circulating flow path does not flow the oil separated from the oil separator 31 to the heat transfer pipe 130 of the heat generator 100. 60 is closed by the 2nd open / close valve V2.
  • the refrigerant discharged from the compressor 21 flows to the indoor heat exchanger 13 to perform the heating operation.
  • FIG. 4 is a view for explaining the heating operation of the air conditioner according to an embodiment of the present invention.
  • the refrigerant compressed by the compressor 21 during the heating operation of the air conditioner 1 (in the direction of the arrow in FIG. 4) is passed through the oil separator 31 to the indoor heat exchanger by the four-way valve 25. (13), the outdoor expansion device (29), the outdoor heat exchanger (23), the four-way valve (25), the accumulator (27), the compressor cycle circulated in the order of the compressor 21 is repeated.
  • the low-temperature, low-pressure gas refrigerant is compressed by the compressor 21 into the high-temperature, high-pressure gas refrigerant, and the compressed refrigerant is supplied to the indoor heat exchanger 13 by the four-way valve 25.
  • the heat exchanger passes through the indoor heat exchanger 13 at a high temperature and high pressure while being heat-exchanged with the indoor air.
  • the indoor fan (not shown) installed on one side of the indoor heat exchanger 13 rotates and flows the air
  • the cold air of the room is supplied to the indoor heat exchanger 13 and flows through the indoor heat exchanger 13.
  • the hot air is converted into hot air by heat exchange with a high-temperature, high-pressure liquid refrigerant.
  • the hot air is then discharged into the room as the indoor fan (not shown) continues to rotate, thereby heating the room.
  • the refrigerant in the liquid state which has been supercooled while passing through the indoor heat exchanger 13, rapidly passes through the outdoor expansion device 29, so that the pressure and temperature drop rapidly, and the refrigerant is changed into a refrigerant having a low temperature and low pressure gas-liquid mixture, and then the outdoor heat exchanger ( 23, the refrigerant introduced into the outdoor heat exchanger (23) absorbs the surrounding heat while passing through the outdoor heat exchanger (23) and is converted into a gas state of low temperature and low pressure.
  • the bypass pipe 61 is closed by the first opening / closing valve V1 so as to flow to the accumulator 27 without passing through the heat generating device 100.
  • the circulation passage 33 connected to the outlet side of the oil separator 31 is connected to the second on / off valve V2.
  • High temperature oil flows through the heat transfer tube 130 in communication with the circulation passage 33, and transfers heat of the oil to the adsorbent 120 through the heat transfer tube 130.
  • the refrigerant adsorbed by the heat is separated from the surface of the adsorbent 120, and the adsorbent 120 is in a state capable of being adsorbed again.
  • FIG. 5 is a view showing an air conditioner according to another embodiment of the present invention.
  • the heat generator 200 is the first bypass pipe 61 for introducing the refrigerant into the same adsorbent 120 as in the embodiment 1 and the second bypass for discharging the heated refrigerant It has a pass pipe 62.
  • the heat transfer pipe 230 for regenerating the adsorbent 120 of the heat generator 200 is disposed to allow a material such as a high temperature refrigerant or oil to pass therethrough. If a high temperature material passes through the heat pipe 230, the flow path arrangement of the heat pipe 230 is not limited.
  • the other The heat generator 200 has an outdoor expansion disposed in the third bypass pipe 63 and the outlet refrigerant pipe 53 branching from the inlet refrigerant pipe 51 through which high-temperature and high-pressure refrigerant is discharged during heating.
  • a fourth bypass tube 64 connected downstream of the device 29. One end into which the refrigerant of the heat transfer tube 230 flows is connected to the third bypass tube 63, and the other end from which the refrigerant from the heat transfer tube 230 is discharged is connected to the fourth bypass tube 64. do.
  • a high temperature refrigerant flows through the heat transfer tube 230 for regeneration of the adsorbent 120.
  • the compressor 21 is compressed into a gas refrigerant having a high temperature and a high pressure, and the compressed refrigerant is supplied to the indoor heat exchanger 13 through the four-way valve 25.
  • some of the high-temperature, high-pressure gas refrigerant passing through the four-way valve 25 connected to the indoor heat exchanger 13 flows to the third bypass pipe 63.
  • the high temperature refrigerant flows through the heat transfer tube 230 which is in communication with the third bypass tube 63, and transfers the heat of the refrigerant to the adsorbent 120 through the heat transfer tube 230.
  • the refrigerant adsorbed by the heat is separated from the surface of the adsorbent 120, and the adsorbent 120 is in a state capable of being adsorbed again.
  • the refrigerant that has transferred heat through the heat transfer pipe 230 is discharged through the fourth bypass pipe 64 and flows into the outdoor heat exchanger 23.
  • a third bypass pipe (in the inflow region of the third bypass pipe 63 so that a part of the refrigerant flows into the third bypass pipe 63 from the inflow refrigerant pipe 51 along the flow direction of the refrigerant)
  • a third open / close valve 215 is arranged to leave 63 open.
  • the third bypass pipe 63 is closed by the third opening / closing valve 215, and no refrigerant flows through the heat transfer pipe 230 of the heat generating device 200.
  • FIG. 6 is a view showing an air conditioner according to another embodiment of the present invention.
  • the air conditioner 1 according to the embodiment of FIG. 1 has a single outdoor heat exchanger 23, but as shown in FIG. 6, the air conditioner 1 includes a plurality of outdoor heat exchangers 23A and 23B. It can be configured to have). Coupling pipes 70A and 70B are provided corresponding to the outdoor heat exchangers 23A and 23B. In FIG. 6, two outdoor heat exchangers 23A and 23B are illustrated. However, the present disclosure is not limited thereto, and two or more outdoor heat exchangers may be provided.
  • the air conditioner 1 includes a first outdoor heat exchanger 23A and a second outdoor heat exchanger 23B, and the first and second connection pipes 70A and 70B are oil separators 31. Branched between the outlet region of the and the inlet region of the four-way valve 25 is connected to the first and second outdoor heat exchanger (23), respectively.
  • the first and second connection pipes 70A and 70B may be branched into a plurality of branch points P2 provided between the oil separator 31 and the four-way valve 25.
  • the first open / close valve 73A is installed in the first connecting pipe 70A
  • the second open / close valve 73B is installed in the second connecting pipe 70B.
  • defrosting operation may be performed sequentially or only on an outdoor heat exchanger requiring defrosting.
  • the first connection pipe 70A connected to the first outdoor heat exchanger 23 is opened by the first opening / closing valve 73A to open a high temperature and high pressure. Coolant may flow in the first outdoor heat exchanger (23).
  • the second connecting pipe 70B is closed by the second opening / closing valve 73B, and the second outdoor heat exchanger 23 performs heating operation as an evaporator.
  • the other outdoor heat exchanger (23B, 23A) can function as an evaporator, so that the deterioration of the heating capacity during the defrosting operation can be suppressed. have.
  • the arrow shown in FIG. 6 shows the flow of the refrigerant in the defrosting operation on the second outdoor heat exchanger 23 during the heating operation.
  • the solid arrow direction in FIG. 6 indicates heating operation, and the dotted arrow direction indicates defrosting operation.
  • the refrigerant compressed by the compressor 21 passes through the oil separator 31 and the first indoor heat exchanger 13 by the four-way valve 25.
  • the refrigerant cycle circulated in the outdoor expansion device 29, the outdoor heat exchanger 23, the four-way valve 25, the accumulator 27, and the compressor 21 is repeated.
  • the refrigerant is supplied to the compressor 21, the oil separator 31, the second connecting pipe 70B, the second outdoor heat exchanger 23,
  • the refrigerant cycle circulated in the order of the heat generator 100, the accumulator 27, and the compressor 21 is repeated.
  • the heat generator 100 heats the refrigerant through physical adsorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

An air conditioner is disclosed. The disclosed air conditioner, in which an indoor heat exchanger, an outdoor expansion device, an outdoor heat exchanger, an accumulator, a compressor, and an oil separator are connected in sequence, comprises a heat generating device for heating a refrigerant flowing from the outdoor expansion device to the compressor, wherein the heat generating device includes: an adsorbent for generating heat by the physical adsorption of the refrigerant thereto; a tank including the adsorbent charged therein; and a heat transfer pipe for transferring heat to the adsorbent to regenerate the adsorbent.

Description

공기조화기Air conditioner
본 발명은 공기조화기에 관한 것으로, 제상 시 압축기로 유입되는 냉매를 가열하는 열발생장치를 구비한 공기조화기에 관한 것이다.The present invention relates to an air conditioner, and more particularly, to an air conditioner having a heat generator for heating a refrigerant flowing into a compressor during defrosting.
일반적으로, 공기조화기는 실내기, 실외기 및 그 사이를 순환하는 냉매를 포함하는 장치로서 냉매가 액화할 때 주위에 열을 방출하고 기화할 때 주변의 열을 흡수하는 성질을 이용하여 일정 공간을 냉방 또는 난방하는 장치이다.In general, an air conditioner is a device including an indoor unit, an outdoor unit, and a refrigerant circulating therebetween, by using a property of releasing heat to the surroundings when the refrigerant liquefies and absorbing the surrounding heat when the refrigerant is liquefied, It is a device for heating.
이러한 공기조화기는 겨울철에 외부의 기온이 매우 낮거나, 일정시간 난방 운전을 수행하면, 실외 열교환기에 수분이 착상되어 실외 공기와의 열교환이 원활하게 이루어지지 않는 문제점이 발생한다.Such an air conditioner has a problem in that when the outside temperature is very low in winter or when the heating operation is performed for a predetermined time, moisture is implanted in the outdoor heat exchanger so that heat exchange with the outdoor air is not performed smoothly.
공기조화기는 실외 열교환기에 착상된 결빙을 제거하기 위해 제상 운전을 수행하게 된다. 제상 운전은 냉매의 순환방향이 역전되는 역사이클 방식과 압축기로부터 나오는 냉매를 실외 열교환기에 흐르게 하는 핫 가스 바이패스(Hotgas Bypass) 방식에 의해 수행될 수 있다.The air conditioner performs a defrosting operation to remove frost formed on the outdoor heat exchanger. The defrosting operation may be performed by a reverse cycle method in which the circulation direction of the refrigerant is reversed and a hot gas bypass method through which the refrigerant from the compressor flows to the outdoor heat exchanger.
이 때, 제상 운전을 효과적으로 수행하기 위해 난방 운전시 축열하고, 제상 운전 시 그 열을 보조 열원으로 사용하는 축열조를 구비할 수 있다.그런데, 종래의 공기조화기는 제상 운전시에 필요한 열을 축열하기 위해서 많은 양의 축열재가 필요하였다. 따라서 축열조는 많은 양을 축열재를 담기 위해 크기가 증가하게 되고, 이는 공기조화기의 전체 크기를 증가시키는 요인이 되었다.In this case, in order to effectively perform the defrosting operation, a heat storage tank may be provided during the heating operation, and a heat storage tank using the heat as an auxiliary heat source during the defrosting operation. However, a conventional air conditioner may store heat required during the defrosting operation. A large amount of heat storage material was needed for this purpose. Therefore, the heat storage tank is increased in size to contain a large amount of heat storage material, which is a factor to increase the overall size of the air conditioner.
본 발명의 목적은 제상 운전 시 냉매가 열발생장치를 통과하도록 제어하고, 흡착제와 냉매가 물리 흡착하면서 발생하는 흡착열에 의해 온도가 증가된 냉매를 압축기로 공급함으로써, 제상 시간을 줄이고, 제상 효율을 높이는 공기조화기를 제공하는데 있다.An object of the present invention is to control the refrigerant to pass through the heat generating device during the defrosting operation, and by supplying a refrigerant whose temperature is increased by the adsorption heat generated while the adsorbent and the refrigerant is physically adsorbed to reduce the defrost time, defrost efficiency The height is to provide an air conditioner.
상기 문제점을 해소하기 위해, 본 발명은 제상 운전 시 냉매가 열발생장치를 통과하도록 제어하고, 흡착제와 냉매가 물리 흡착하면서 발생하는 흡착열에 의해 온도가 증가된 냉매를 압축기로 공급함으로써, 제상 시간을 줄이고, 제상 효율을 높이는 공기조화기를 제공하는 데 그 목적이 있다. In order to solve the above problems, the present invention controls the refrigerant to pass through the heat generating device during the defrosting operation, by supplying a refrigerant with increased temperature to the compressor by the heat of adsorption generated during the physical adsorption of the adsorbent and the refrigerant, defrost time It is an object of the present invention to provide an air conditioner that reduces and increases defrosting efficiency.
상기와 같은 목적을 달성하기 위해, 본 발명은 실내 열교환기, 실외팽창장치, 실외 열교환기, 어큐뮬레이터, 압축기, 및 오일분리기가 순차적으로 연결된 공기조화기에 있어서, 상기 실외팽창장치로부터 상기 압축기로 흐르는 냉매를 가열하기 위한 열발생장치;를 포함하고, 상기 열발생장치는, 상기 냉매와의 물리 흡착(physical adsorption)에 의해 열을 발생하는 흡착제; 상기 흡착제가 충진된 탱크; 및 상기 흡착제를 재생하도록 상기 흡착제에 열을 전달하는 전열관;을 포함하는 공기조화기를 제공한다.In order to achieve the above object, the present invention provides an air conditioner in which an indoor heat exchanger, an outdoor expansion device, an outdoor heat exchanger, an accumulator, a compressor, and an oil separator are sequentially connected, the refrigerant flowing from the outdoor expansion device to the compressor. A heat generating device for heating the heat generating device, the heat generating device comprising: an adsorbent for generating heat by physical adsorption with the refrigerant; A tank filled with the adsorbent; And a heat transfer pipe transferring heat to the adsorbent to regenerate the adsorbent.
상기 전열관은 외주면에 상기 흡착제가 접촉되도록 상기 탱크 내부를 통과할 수 있다.The heat transfer tube may pass through the tank so that the adsorbent is in contact with the outer circumferential surface.
상기 전열관은 상기 탱크 내의 구간에서 분기되어 복수의 관을 형성하고, 상기 복수의 관은 상호 병렬로 연결될 수 있다.The heat pipes may be branched from a section within the tank to form a plurality of pipes, and the plurality of pipes may be connected in parallel to each other.
상기 전열관은 상기 탱크 내의 구간에서 지그재그 형상으로 형성될 수 있다.The heat transfer pipe may be formed in a zigzag shape in a section within the tank.
상기 흡착제는 활성탄, 제올라이트, 실리카겔, 및 활성알루미나 중 어느 하나일 수 있다.The adsorbent may be any one of activated carbon, zeolite, silica gel, and activated alumina.
상기 실내 열교환기로부터 배출되는 냉매를 상기 열발생장치로 안내하기 위한 제1 바이패스관; 및 상기 열발생장치를 통과하여 가열된 냉매를 상기 어큐뮬레이터로 안내하는 제2 바이패스관;을 더 포함할 수 있다.A first bypass pipe for guiding the refrigerant discharged from the indoor heat exchanger to the heat generating device; And a second bypass tube for guiding the heated refrigerant through the heat generator to the accumulator.
상기 제1 바이패스관은 냉매가 상기 흡착제와 냉매가 반응하도록 상기 탱크의 유입구와 연결되고, 상기 제2 바이패스관은 상기 흡착제와 반응하여 가열된 냉매가 배출되는 상기 탱크의 배출구와 연결될 수 있다.The first bypass pipe may be connected to an inlet of the tank such that a refrigerant reacts with the adsorbent, and the second bypass pipe may be connected to an outlet of the tank where the heated refrigerant is discharged by reacting with the adsorbent. .
상기 제1 및 제2 바이패스관은 제상 운전 시 냉매가 저압 상태로 흐르는 유로의 일부 구간에서 분기될 수 있다.The first and second bypass pipes may branch in some sections of the flow path where the refrigerant flows in a low pressure state during the defrosting operation.
상기 전열관은 상기 오일분리기에서 분리된 오일이 다시 상기 압축기로 되돌아가는 유로 상에 배치될 수 있다.The heat transfer tube may be disposed on a flow path through which the oil separated from the oil separator is returned to the compressor.
상기 탱크는 상기 전열관을 둘러싸도록 형성될 수 있다.The tank may be formed to surround the heat transfer pipe.
상기 제1 바이패스관에 배치되어 상기 탱크로 이송되는 냉매의 흐름을 제어하는 제1 개폐밸브;를 더 포함할 수 있다.A first opening and closing valve disposed in the first bypass pipe to control the flow of the refrigerant to be transferred to the tank; may further include a.
상기 오일분리기와 상기 전열관의 유입구를 잇는 유로 상에 배치되어 상기 전열관으로 이송되는 오일의 흐름을 제어하는 제2 개폐밸브;를 더 포함할 수 있다.And a second on / off valve disposed on a flow path connecting the oil separator and the inlet of the heat transfer tube to control the flow of oil transferred to the heat transfer tube.
상기 압축기로부터 배출되어 실내 열교환기로 이동하는 냉매를 상기 전열관으로 안내하기 위한 제3 바이패스관; 및 상기 전열관을 통과하는 냉매를 상기 실외 열교환장치로 안내하는 제4 바이패스관;을 더 포함할 수 있다.A third bypass pipe for guiding the refrigerant discharged from the compressor and moving to an indoor heat exchanger to the heat transfer pipe; And a fourth bypass pipe for guiding the refrigerant passing through the heat transfer pipe to the outdoor heat exchanger.
상기 실외 열교환기는 복수로 구비되고, 상기 압축기에서부터 사방밸브까지의 유로에서 분기되어 상기 실외 열교환기에 각각 연결되는 복수의 연결관을 포함할 수 있다.The outdoor heat exchanger may be provided in plurality, and may include a plurality of connection pipes branched from the compressor to the four-way valve and connected to the outdoor heat exchanger, respectively.
상기 복수의 연결관은 상기 복수의 연결관을 선택적으로 개폐하기 위해 각각 개폐밸브가 배치될 수 있다.The plurality of connection pipes may be disposed on and off valves to selectively open and close the plurality of connection pipes.
도 1은 본 발명의 일 실시예에 따른 공기조화기를 나타내는 도면이다.1 is a view showing an air conditioner according to an embodiment of the present invention.
도 2a는 도 1에 도시된 열발생장치의 단면도이다.FIG. 2A is a cross-sectional view of the heat generator shown in FIG. 1.
도 2b 및 도 2c는 도 2a에 도시된 열발생장치의 변형 예를 나타내는 단면도들이다.2B and 2C are cross-sectional views illustrating a modified example of the heat generator illustrated in FIG. 2A.
도3은 본 발명의 일 실시예에 따른 공기조화기의 제상 운전을 설명하는 도면이다. 3 is a view for explaining a defrosting operation of the air conditioner according to an embodiment of the present invention.
도4은 본 발명의 일 실시예에 따른 공기조화기의 난방 운전을 설명하는 도면이다.4 is a view for explaining the heating operation of the air conditioner according to an embodiment of the present invention.
도 5은 본 발명의 다른 실시예에 따른 공기조화기를 나타내는 도면이다.5 is a view showing an air conditioner according to another embodiment of the present invention.
도 6은 본 발명의 또 다른 실시예에 따른 공기조화기를 나타내는 도면이다.6 is a view showing an air conditioner according to another embodiment of the present invention.
이하, 본 발명의 실시예들을 첨부된 도면을 참고하여 더욱 상세히 설명한다. 이하 설명되는 실시예들은 본 발명의 기술적인 특징을 이해하기에 가장 적합한 실시예들을 기초로 하여 설명될 것이며, 설명되는 실시예들에 의해 본 발명의 기술적인 특징이 제한되는 것이 아니라, 이하, 설명되는 실시예들과 같이 본 발명이 구현될 수 있다는 것을 예시한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. The embodiments described below will be described based on the embodiments best suited for understanding the technical features of the present invention, and the technical features of the present invention are not limited by the described embodiments. Illustrates that the present invention can be implemented as in the following embodiments.
따라서, 본 발명은 아래 설명된 실시예들을 통해 본 발명의 기술 범위 내에서 다양한 변형 실시가 가능하며, 이러한 변형 실시예는 본 발명의 기술 범위 내에 속한다 할 것이다. 그리고 이하 설명되는 실시예의 이해를 돕기 위하여 첨부된 도면에 기재된 부호에 있어서, 각 실시예에서 동일한 작용을 하는 구성요소 중 관련된 구성요소는 동일 또는 연장 선상의 숫자로 표기하였다.Accordingly, the present invention may be modified in various ways within the technical scope of the present invention through the embodiments described below, and such modified embodiments fall within the technical scope of the present invention. And in order to help the understanding of the embodiments described below, in the reference numerals described in the accompanying drawings, among the components that work the same in each embodiment, the related components are denoted by the same or extension number.
본 실시예에 따른 공기조화기는 난방기를 예로 들어 설명하지만, 이에 제한되지 않고 냉방 및 난방을 겸하는 냉난방기일 수 있다. 또한, 이하에서 설명하는 본 실시예에 따른 공기조화기에 적용되는 열발생장치는 종래의 축열조에 비해 크기가 작으면서도 높은 효율을 얻을 수 있다.이하, 도면을 참조하여 본 발명의 일 실시예에 따른 공기조화기의 개략적인 구성을 살펴본 후, 열발생장치의 구조를 상세하게 설명한다.The air conditioner according to the present embodiment is described by taking a heater as an example, but is not limited thereto. The air conditioner may be an air conditioner that serves both cooling and heating. In addition, the heat generating device applied to the air conditioner according to the present embodiment described below can be obtained in a small size and high efficiency compared to the conventional heat storage tank. Hereinafter, according to an embodiment of the present invention with reference to the drawings After examining the schematic configuration of the air conditioner, the structure of the heat generating device will be described in detail.
도 1은 본 발명의 일 실시예에 따른 공기조화기를 나타내는 도면이다.1 is a view showing an air conditioner according to an embodiment of the present invention.
도 1을 참조하면, 공기조화기(1)는 크게 실내기(10)와 실외기(20)로 구성된다. 실내기(10)는 냉매가 열교환되는 실내 열교환기(13)와, 냉매가 감압팽창되는 실내팽창장치(11)를 구비하고 있다.Referring to FIG. 1, the air conditioner 1 is largely comprised of an indoor unit 10 and an outdoor unit 20. The indoor unit 10 includes an indoor heat exchanger 13 through which the refrigerant is heat exchanged, and an indoor expansion device 11 through which the refrigerant is expanded under reduced pressure.
실외기(20)는, 냉매를 압축하는 압축기(21)와, 냉매가 열교환되는 실외 열교환기(23)와, 압축기(21)의 토출측에 배치되어 냉매의 유로를 절환하는 사방밸브(25, 4-way valve)와, 압축기(21)의 흡입측에 연결되어 압축기(21)에 기체상태의 냉매를 제공하는 어큐뮬레이터(27)와, 실내 열교환기(13)와 실외 열교환기(23) 사이에 배치되어 냉매를 감압팽창하는 실외팽창장치(29)를 포함한다.The outdoor unit 20 includes a compressor 21 for compressing a refrigerant, an outdoor heat exchanger 23 for exchanging refrigerant, and four-way valves 25 and 4- arranged on the discharge side of the compressor 21 to switch the flow path of the refrigerant. a way valve, an accumulator 27 connected to the suction side of the compressor 21 and providing a refrigerant in a gaseous state to the compressor 21, and disposed between the indoor heat exchanger 13 and the outdoor heat exchanger 23. And an outdoor expansion device 29 for expanding the refrigerant under reduced pressure.
압축기(21)의 토출측에는 오일을 분리할 수 있도록 오일분리기(31)가 구비되어 있으며, 오일분리기(31)에는 분리된 오일이 다시 압축기(21)로 복귀될 수 있도록 순환유로(33)가 형성된다. 순환유로(33)의 하류에는 감압을 위한 모세관(35)이 배치될 수 있다. 순환유로(33)의 일부는 후술하는 열발생장치(100)의 전열관(130)이 될 수 있다.An oil separator 31 is provided at the discharge side of the compressor 21 to separate oil, and a circulation passage 33 is formed at the oil separator 31 so that the separated oil can be returned to the compressor 21 again. do. Downstream of the circulation passage 33 may be a capillary tube 35 for decompression. A portion of the circulation passage 33 may be a heat transfer tube 130 of the heat generating device 100 to be described later.
오일분리기(31)의 하류측에는 사방밸브(25)가 연결되어 있다. 사방밸브(25)의 유출측에는 실외 열교환기(20)와, 어큐뮬레이터(27)와, 제상시 실내기(10)를 경유한 냉매가 유입되는 유입측 냉매관(51)이 각각 연결되어 있다. The downstream valve 25 is connected to the downstream side of the oil separator 31. An outdoor heat exchanger 20, an accumulator 27, and an inflow refrigerant pipe 51 into which a refrigerant flows through the indoor unit 10 during defrosting are connected to the outflow side of the four-way valve 25.
한편, 제상시 냉매의 흐름방향을 따라 실외팽창장치(29)의 유출측에는 냉매가 실내기(10)로 유동할 수 있도록 유출측 냉매관(53)이 연결되어 있다.On the other hand, the outflow side refrigerant pipe 53 is connected to the outlet side of the outdoor expansion device 29 along the flow direction of the refrigerant during defrosting so that the refrigerant can flow to the indoor unit 10.
유입측 냉매관(51)및 유출측 냉매관(53)에는 각각 서비스밸브(41, 43)가 설치되어 있다. The service valves 41 and 43 are provided in the inflow side refrigerant pipe 51 and the outflow side refrigerant pipe 53, respectively.
또한, 실외기(20)는 제상 시 냉매의 흐름방향을 따라 상기 실외팽창장치(29)의 하류측에 냉매의 물리 흡착(physical adsorption)에 의해 상기 냉매를 가열하기 위한 열발생장치(100)를 포함한다. 열발생장치(100)의 구조는 하기에서 도 2a를 참조하여 상세히 설명한다.In addition, the outdoor unit 20 includes a heat generator 100 for heating the refrigerant by physical adsorption of the refrigerant downstream of the outdoor expansion device 29 along the flow direction of the refrigerant during defrosting. do. The structure of the heat generating device 100 will be described in detail with reference to FIG. 2A below.
본 발명의 일 실시예에 따른 공기조화기(1)의 유로는 메인관(60)과 제1 및 제2 바이패스관(61, 62)을 포함할 수 있다.The flow path of the air conditioner 1 according to an embodiment of the present invention may include a main pipe 60 and first and second bypass pipes 61 and 62.
메인관(60)은 난방 시 냉매의 흐름방향을 따라 실외팽창장치(29)의 유출측에서부터 실외 열교환기(23)와, 사방밸브(25)를 지나 어큐뮬레이터(27)의 흡입측까지의 유로에 해당한다. The main pipe 60 is connected to the flow path from the outlet side of the outdoor expansion device 29 to the intake side of the accumulator 27 through the outdoor heat exchanger 23 and the four-way valve 25 along the flow direction of the refrigerant during heating. Corresponding.
바이패스관(61, 62)은 메인관(60)의 기점(P1)으로부터 분기되어 열발생장치(100)에 연결되는 제1 바이패스관(61)과, 열발생장치(100)로부터 다시 메인관(60)으로 연결되는 제2 바이패스관(62)을 포함한다. 제1 바이패스관(61)은 메인관(60)을 흐르는 냉매를 열발생장치(100)로 이송하고, 제2 바이패스관(62)은 열발생장치(100)를 통과하면서 가열된 냉매를 열발생장치(100)로부터 다시 메인관(60)으로 이송한다.The bypass pipes 61 and 62 are branched from the starting point P1 of the main pipe 60 and connected to the heat generating device 100 and the main pipe 61 and 62 again from the heat generating device 100. And a second bypass tube 62 connected to the tube 60. The first bypass pipe 61 transfers the refrigerant flowing through the main pipe 60 to the heat generator 100, and the second bypass pipe 62 passes the refrigerant heated through the heat generator 100. The heat generator 100 is transferred back to the main pipe (60).
열발생장치(100)는 제1 바이패스관(61)과 제2 바이패스관(62)에 의해 메인관(60)에 대해서 병렬로 연결될 수 있다. 이 때, 메인관(60)은 난방 시 냉매의 저압영역에 해당한다.The heat generator 100 may be connected in parallel to the main pipe 60 by the first bypass pipe 61 and the second bypass pipe 62. At this time, the main pipe 60 corresponds to the low pressure region of the refrigerant during heating.
구체적으로, 도 1을 참조하면, 제1 바이패스관(61)은 난방시 냉매의 흐름방향을 따라 사방밸브(25)의 유출측에서부터 어큐뮬레이터(27)의 흡입측까지의 유로에서 분기되도록 형성되고, 제2 바이패스관(62)은 다시 어큐뮬레이터(27)의 흡입측으로 연결되도록 형성된다.Specifically, referring to FIG. 1, the first bypass pipe 61 is formed to branch from the flow path from the outlet side of the four-way valve 25 to the suction side of the accumulator 27 along the flow direction of the refrigerant during heating. The second bypass pipe 62 is formed to be connected to the suction side of the accumulator 27 again.
열발생장치(100)로 냉매를 유입시키는 제 1바이패스관(61)은 제상시 메인관(60)을 흐르는 냉매가 우회할 수 있도록 메인관(60)에 연결된다. 제2 바이패스관(62)은 열발생장치(100)로부터 배출되는 냉매를 어큐뮬레이터(27)로 유입될 수 있도록 메인관(60)에 연결된다. 이 경우, 제2 바이패스관(62)은 메인관(60)과 연결되는 지점이 제1 바이패스관(61)보다 하류에 위치한다. The first bypass pipe 61 for introducing the refrigerant into the heat generator 100 is connected to the main pipe 60 so that the refrigerant flowing through the main pipe 60 can be bypassed during defrosting. The second bypass pipe 62 is connected to the main pipe 60 to allow the refrigerant discharged from the heat generator 100 to flow into the accumulator 27. In this case, the point where the 2nd bypass pipe 62 is connected with the main pipe 60 is located downstream from the 1st bypass pipe 61.
제1 바이패스관(61)의 입구영역에는 제상시 어큐뮬레이터(27)로 흐르는 냉매의 일부를 제1 바이패스관(61)으로 이동시킬 수 있도록 제1 바이패스관(61)을 개방하는 제1 개폐밸브(V1)가 설치되어 있다.A first opening of the first bypass pipe 61 in the inlet region of the first bypass pipe 61 to move a portion of the refrigerant flowing to the accumulator 27 to the first bypass pipe 61 when defrosting. On-off valve V1 is provided.
도 2a는 열발생장치의 단면도이다. 도 2a를 참조하면, 열발생장치(100)는 냉매와의 물리 흡착에 의해 열을 발생하는 흡착제(120)와, 상기 흡착제(120)가 충진된 탱크(110)와, 흡착제(120)를 재생하기 위해 흡착제(120)에 열을 전달하는 전열관(130)으로 구성된다.2A is a cross-sectional view of the heat generating device. Referring to FIG. 2A, the heat generator 100 regenerates an adsorbent 120 that generates heat by physical adsorption with a refrigerant, a tank 110 filled with the adsorbent 120, and an adsorbent 120. In order to transfer the heat to the adsorbent 120 is composed of a heat pipe (130).
본 발명의 일 실시예에 따른 열발생장치(100)는 냉매를 가열하기 위해 냉매가 흡착제(120)와 접촉하여 부착(adhere)되는 물리 흡착(physical adsorption)을 이용한 것이다. 물리 흡착은 항상 발열 반응이며, 물리 흡착에 의해 발생하는 열을 이용하여 냉매를 가열할 수 있다. 열발생장치(100)는 흡착제(120)에 냉매를 흡착시키고 발생하는 흡착열로 냉매를 가열하여 고온의 냉매를 토출시킬 수 있다.The heat generating apparatus 100 according to an embodiment of the present invention uses physical adsorption in which the refrigerant is contacted with and adsorbed to the adsorbent 120 to heat the refrigerant. Physical adsorption is always an exothermic reaction, and the refrigerant can be heated using heat generated by physical adsorption. The heat generator 100 may adsorb the refrigerant to the adsorbent 120 and heat the refrigerant with the generated adsorption heat to discharge the high temperature refrigerant.
흡착제(120)는 실리카계 또는 제올라이트계와 같은 고체흡착제가 주로 사용될 수 있다. 예를 들면, 흡착제(120)는 활성탄, 메로폴라스 실리카, 제올라이트, 실리카 겔, 점토 광물 등이 될 수 있다. 흡착(adsorption)은 흡착제(120)의 계면(solid interface) 어느 곳에서 일어나므로, 흡착제(120)의 계면을 증가시키기 위해 흡착제(120)는 다공성(porous)이다.The adsorbent 120 may mainly be a solid adsorbent such as silica or zeolite. For example, the adsorbent 120 may be activated carbon, meropolar silica, zeolite, silica gel, clay mineral, or the like. Adsorption occurs at a solid interface of the adsorbent 120, so that the adsorbent 120 is porous to increase the interface of the adsorbent 120.
탱크(110) 내부에 흡착제(120)가 충진되고, 탱크(110)의 일측에는 냉매가 유입되는 유입구(111)와 흡착열에 의해 가열된 고온의 냉매가 배출되는 배출구(113)가 형성된다. 유입구(111)를 통해 열발생장치(100)로 유입된 냉매는 압력차에 의해 배출구(113)로 배출되며, 유입구(111) 및 배출구(113)는 각각 유입바이패스관(63) 및 배출바이패스관(65)상호 연통되게 연결되어 있다. 유입바이패스관(63)에 흐르는 냉매는 유입구(111)를 통해 탱크(110) 내의 흡착제(120)와 직접 접촉하여 물리 흡착하고, 물리 흡착에 의해 발생한 흡착열에 의해 탱크(110)에 유입된 냉매를 가열하고, 가열된 냉매는 배출구(113)를 통해 배출바이패스관(65)으로 배출된다. The adsorbent 120 is filled in the tank 110, and one side of the tank 110 is formed with an inlet 111 through which the refrigerant is introduced and an outlet 113 through which a high temperature refrigerant heated by adsorption heat is discharged. The refrigerant introduced into the heat generating device 100 through the inlet 111 is discharged to the outlet 113 by the pressure difference, and the inlet 111 and the outlet 113 are inlet bypass pipe 63 and outlet bypass, respectively. The pass pipe 65 is connected in mutual communication. The refrigerant flowing in the inlet bypass pipe 63 is in direct contact with the adsorbent 120 in the tank 110 through the inlet 111 and is physically adsorbed, and the refrigerant is introduced into the tank 110 by the adsorption heat generated by the physical adsorption. Is heated, and the heated refrigerant is discharged to the discharge bypass pipe 65 through the discharge port 113.
종래에는 필요한 열량을 축적하기 위해 축열재의 양을 늘려 축열조의 크기가 커지는 문제가 있었으나, 본 발명의 일 실시예에 따른 열발생장치(100)는 냉매와 발열 반응하는 흡착제(120)를 사용하기 때문에 컴팩트한 열발생장치(100)를 제공할 수 있어 크기가 작은 실외기를 제공할 수 있고, 열발생장치(100)와 종래의 축열조가 동일한 크기라면 더 높은 효율을 갖는 보조 열원을 제공할 수 있는 이점이 있다. Conventionally, there was a problem that the size of the heat storage tank is increased by increasing the amount of heat storage material in order to accumulate necessary heat amount, but the heat generating device 100 according to an embodiment of the present invention uses the adsorbent 120 to exothermicly react with the refrigerant. The compact heat generator 100 can be provided to provide an outdoor unit having a small size, and if the heat generator 100 and the conventional heat storage tank are the same size, an auxiliary heat source having higher efficiency can be provided. There is this.
제상 운전 시, 공기조화기(1)는 압축기(21)로부터 압축된 냉매가 실외 열교환기(23)로 유동되도록 하여 실외 열교환기(23)의 제상이 실시되도록 한다. 압축기(21)에서 압축된 냉매는 사방밸브(25)를 경유하여 실외 열교환기(23)로 유입되어 제상 작용을 수행한다. In the defrosting operation, the air conditioner 1 allows the refrigerant compressed from the compressor 21 to flow to the outdoor heat exchanger 23 so that the outdoor heat exchanger 23 may be defrosted. The refrigerant compressed by the compressor 21 flows into the outdoor heat exchanger 23 via the four-way valve 25 to perform defrosting.
이 경우, 실내기(10)로부터 유입측 냉매관(51)을 통해 유입된 냉매를 열발생장치(100)로 유동되도록하여 열발생장치(100)를 통해 냉매를 가열시켜 압축기로부터 공급되는 열량을 낮출 수 있어 효율적인 제상이 실시될 수 있다. In this case, the refrigerant introduced from the indoor unit 10 through the inlet refrigerant pipe 51 flows to the heat generating device 100 to heat the refrigerant through the heat generating device 100 to lower the amount of heat supplied from the compressor. It can be carried out efficient defrosting.
유입측 냉매관(51)을 통해 유입되어 어큐뮬레이터(27)로 흡입되는 냉매를 바이패스관(61)으로 유동되도록 한다. 유입바이패스관(63)으로 유입된 냉매의 일부는 열발생장치(100)에서 흡착제(120)와 물리 흡착하고, 나머지 냉매는 흡착열에 의해 가열되어 배출바이패스관(65)으로 배출된다. 열발생장치(100)에서 배출된 고온의 냉매는 어큐뮬레이터(27)를 경유하여 압축기(21)로 흡입되고, 압축되어 토출되어 실외 열교환기(23)에서 제상작용을 수행한다. 본 발명의 일실시예에 따른 열발생장치(100)가 제상 운전 시 보조 열원의 기능을 하여 제상 성능이 높아지고, 빠른 난방 복귀가 가능하다. 또한, 압축기(21)로부터 공급되는 열량을 낮아져 공기조화기(1)의 에너지 절감 효과를 얻을 수 있다.The refrigerant introduced through the inlet refrigerant pipe 51 and sucked into the accumulator 27 is allowed to flow into the bypass pipe 61. Some of the refrigerant introduced into the inlet bypass pipe 63 is physically adsorbed with the adsorbent 120 in the heat generating device 100, and the remaining refrigerant is heated by the adsorption heat and discharged into the discharge bypass pipe 65. The high temperature refrigerant discharged from the heat generator 100 is sucked into the compressor 21 via the accumulator 27, compressed and discharged to perform defrosting in the outdoor heat exchanger 23. The heat generating device 100 according to an embodiment of the present invention functions as an auxiliary heat source during defrosting operation, thereby increasing defrosting performance and enabling rapid heating return. In addition, the amount of heat supplied from the compressor 21 is lowered to obtain the energy saving effect of the air conditioner 1.
흡착제의 재생(regeneration)은 흡착제(120)에 흡착된 냉매를 흡착제(120) 표면로부터 제거하는 것을 말한다. 흡착의 역반응으로 흡착된 냉매가 흡착제(120)의 표면에서 떨어져 나가는 현상을 탈착이라고 하는데, 재생과정에서 탈착하는 과정이 포함된다. 탈착은 흡착제(120) 표면의 온도가 높아지면 나타난다. 흡착제(120)에 열을 가하면 흡착된 냉매가 흡착제(120) 표면으로부터 분리되어 흡착제(120)는 다시 물리 흡착할 수 있도록 재생된다.Regeneration of the adsorbent refers to removing the refrigerant adsorbed to the adsorbent 120 from the surface of the adsorbent 120. Desorption of the adsorbed refrigerant off the surface of the adsorbent 120 due to the reverse reaction of adsorption is called desorption, which includes a process of desorption in the regeneration process. Desorption occurs when the temperature of the surface of the adsorbent 120 increases. When heat is applied to the adsorbent 120, the adsorbed refrigerant is separated from the surface of the adsorbent 120, and the adsorbent 120 is regenerated to be physically adsorbed again.
전열관(130)은 흡착제(120)의 재생을 위한 것으로, 흡착제(120)와 직접 접촉하도록 탱크(110)의 내부를 관통하도록 형성될 수 있다. 전열관(130)은 전열관(130)의 내부에 흐르는 오일 또는 냉매가 갖는 열을 흡착제(120)로 전달할 수 있도록 전도성 물질로 형성될 수 있다. The heat transfer tube 130 is for regeneration of the adsorbent 120 and may be formed to penetrate the inside of the tank 110 to be in direct contact with the adsorbent 120. The heat transfer tube 130 may be formed of a conductive material so as to transfer heat of the oil or refrigerant flowing inside the heat transfer tube 130 to the adsorbent 120.
도 1을 참조하면, 본 발명의 일 실시예에 따른 열발생장치(100)의 전열관(130)은 오일분리기(31)에서 분리된 오일이 다시 압축기로 되돌아가는 유로에 배치될 수 있다. 전열관(130)은 순환유로(33)와 상호 연통되게 연결될 수 있다.Referring to FIG. 1, the heat transfer tube 130 of the heat generator 100 according to an embodiment of the present invention may be disposed in a flow path in which oil separated from the oil separator 31 is returned to the compressor. The heat transfer tube 130 may be connected to communicate with the circulation passage 33.
오일분리기(31)에서 순환유로(33)에 흐르는 고온의 오일을 전열관(130)으로 흐르게 하여 전열관(130)을 감싸는 흡착제(120)가 오일의 열을 흡수해 흡착된 매질을 탈착할 수 있다. 이 때, 흡착제(120)는 재생되고 재차 흡착제로 냉매가 흡착 가능한 상태가 된다.  The high temperature oil flowing in the circulation passage 33 in the oil separator 31 flows to the heat transfer tube 130, so that the adsorbent 120 surrounding the heat transfer tube 130 absorbs heat of the oil to desorb the adsorbed medium. At this time, the adsorbent 120 is regenerated and the refrigerant can be adsorbed again with the adsorbent.
이러한 구성에 의하여, 난방 운전시 오일분리기(31)에서 분리된 오일을 전열관(130)으로 유동되도록 하여 순환되는 오일의 열을 이용하여 흡착제(120)를 재생하도록 한다.By such a configuration, the oil separated in the oil separator 31 during the heating operation is allowed to flow to the heat transfer tube 130 to regenerate the adsorbent 120 using the heat of the oil circulated.
종래에는 난방에 필요한 열의 일부를 제상시에 사용하기 위해 축열조에 축적하여 난방 성능이 떨어져 사용자의 체감 불량을 발생하는 문제가 있었다. 이에 반해, 본 발명의 일 실시예에 따른 공기조화기(1)는 사용하지 않는 순환되는 오일이 갖는 열을 이용하는 것이므로 사용자의 난방 체감성능을 향상시킬 수 있고, 남는 열을 재활용하는 것으로 공기조화기의 에너지 효율을 향상시킬 수 있다.In the related art, a part of the heat required for heating is accumulated in the heat storage tank for use in defrosting, and thus, the heating performance is poor, resulting in a poor user experience. On the contrary, since the air conditioner 1 according to the embodiment of the present invention uses heat of circulated oil that is not in use, the user's heating sensation performance can be improved, and the air conditioner is recycled by remaining heat. It can improve the energy efficiency.
흡착제의 재생에 필요한 열을 흡수할 수 있도록 흡착제(120)와 전열관(130)은 직접 접촉하도록 배치된다. 또한, 전열관(130)과 흡착제(120)와의 접촉면적을 늘리기 위해 전열관은 다양한 형태로 형성될 수 있다. The adsorbent 120 and the heat transfer tube 130 are disposed in direct contact with each other so as to absorb heat required for regeneration of the adsorbent. In addition, in order to increase the contact area between the heat transfer tube 130 and the adsorbent 120, the heat transfer tube may be formed in various forms.
도 2b 및 도 2c는 도 2a에 도시된 전열관의 변형된 예를 나타낸다. 2B and 2C show a modified example of the heat pipe shown in FIG. 2A.
도 2b를 참조하면, 전열관(131)은 흡착제(120)와의 접촉면적을 늘리기 위해 탱크(110) 내에서 분기되어 병렬로 연결된 2개 이상의 관(133, 135)으로 형성될 수 있다. Referring to FIG. 2B, the heat transfer tube 131 may be formed of two or more tubes 133 and 135 branched in the tank 110 and connected in parallel to increase the contact area with the adsorbent 120.
도 2c를 참조하면, 전열관(139)은 흡착제(120)에 효율적으로 열을 전달할 수 있도록 확장된 접촉면적을 가지도록 탱크(110) 내에 위치하는 구간이 지그재그 형상으로 형성될 수 있다.Referring to FIG. 2C, the heat transfer tube 139 may have a zigzag shape in a section located in the tank 110 to have an extended contact area to efficiently transfer heat to the adsorbent 120.
도3은 본 발명의 일 실시예에 따른 공기조화기의 제상 운전을 설명하는 도면이다. 3 is a view for explaining a defrosting operation of the air conditioner according to an embodiment of the present invention.
도 3을 참조하면, 공기조화기(1)의 제상 운전시(도 3의 화살표 방향)에는, 냉매가 압축기(21), 오일분리기(31), 사방밸브(25), 실외 열교환기(23), 실외팽창장치(29), 실내 열교환기(13), 사방밸브(25), 제1 바이패스관(61), 열발생장치(100), 제2 바이패스관(62), 어큐뮬레이터(27), 압축기(21) 순으로 순환되는 냉매 사이클을 반복하게 된다.Referring to FIG. 3, during the defrosting operation of the air conditioner 1 (in the direction of the arrow in FIG. 3), the refrigerant is supplied to the compressor 21, the oil separator 31, the four-way valve 25, and the outdoor heat exchanger 23. , Outdoor expansion device (29), indoor heat exchanger (13), four-way valve (25), first bypass pipe (61), heat generator (100), second bypass pipe (62), accumulator (27) The refrigerant cycle circulated in the compressor 21 is repeated.
즉, 제상 운전 시에는 유입측 냉매관(51)으로부터 공급된 냉매가 열발생장치(100)를 거쳐 어큐뮬레이터(27)로 순환하게 된다.That is, during the defrosting operation, the refrigerant supplied from the inflow refrigerant pipe 51 is circulated to the accumulator 27 via the heat generating device 100.
구체적으로, 제상 운전시 압축기(21)에서 유출되는 고온 고압의 기체 냉매는 실외 열교환기(23)로 유입되어 착상된 서리를 제거한다. 이 때, 유입측 냉매관(51)으로부터 제1 바이패스관(61)으로 유입되는 냉매를 열발생장치(100)에서 물리 흡착하여 발열할 수 있도록 한다. 열발생장치(100)의 흡착열에 의해 가열된 냉매는 제2 바이패스관(62)으로 배출된다.Specifically, the high temperature and high pressure gas refrigerant flowing out of the compressor 21 during the defrosting operation flows into the outdoor heat exchanger 23 to remove frost formed. At this time, the refrigerant flowing into the first bypass pipe 61 from the inlet refrigerant pipe 51 is physically adsorbed by the heat generating device 100 to generate heat. The refrigerant heated by the heat of adsorption of the heat generator 100 is discharged to the second bypass pipe 62.
제상 운전 시에 열발생장치(100)는 보조 열원으로서 흡착제(120)와 냉매의 물리 흡착에 따른 발열반응으로 냉매를 가열시켜 고온의 냉매로 변환시킨다. 제2 바이패스관(62)으로 배출된 냉매는 어큐뮬레이터(27), 압축기(21)를 거쳐 고온 고압 기체로 변환되어 실외 열교환기(23)의 착상된 서리를 제거할 수 있다. 이 때, 제1바이패스관(61)에 형성된 제 1개폐 밸브(V1)가 개방되어 메인관(60)을 흐르는 냉매의 일부는 열발생장치(100)로 유입된다. 도 3에서는 메인관(60)에 흐르는 냉매의 일부가 열발생장치(100)로 유입되는 것으로 도시하였지만, 이에 한정되지 않고, 분기되는 지점(P1)에 유로 전환 밸브(미도시)를 설치하여 메인관(60)에 흐르는 냉매 전부가 열발생장치(100)를 경유해서 어큐뮬레이터(27)로 흡입되는 경우도 포함된다.In the defrosting operation, the heat generating device 100 converts the refrigerant into a high temperature refrigerant by heating an exothermic reaction according to physical adsorption of the adsorbent 120 and the refrigerant as an auxiliary heat source. The refrigerant discharged into the second bypass pipe 62 may be converted into high temperature and high pressure gas through the accumulator 27 and the compressor 21 to remove the frost formed on the outdoor heat exchanger 23. At this time, the first opening / closing valve V1 formed in the first bypass pipe 61 is opened, and a part of the refrigerant flowing through the main pipe 60 flows into the heat generating device 100. In FIG. 3, a part of the refrigerant flowing in the main pipe 60 is introduced into the heat generating device 100, but the present invention is not limited thereto. It also includes a case where all of the refrigerant flowing through the pipe 60 is sucked into the accumulator 27 via the heat generator 100.
유입측 냉매관(51)을 통해 유입된 냉매가 제1 및 제2 바이패스관(61, 62)을 통해 열발생장치(100)를 경유하여 유동하는 냉매 사이클을 순환하는 과정을 반복하면서 공기조화기(1)는 제상 기능을 수행하게 된다.Air conditioning while repeating the process of circulating the refrigerant cycle flowing through the heat generating device 100 through the heat generating device 100 through the first and second bypass pipes 61 and 62 The machine 1 performs a defrost function.
한편, 제상 시에 열발생장치(100)에서 흡착제(120)에 대한 냉매 탈착을 방지하기 위해 오일분리기(31)에서 분리된 오일이 열발생장치(100)의 전열관(130)에 흐르지 않도록 순환유로(60)는 제2 개폐 밸브(V2)에 의해 폐쇄된다. Meanwhile, in order to prevent desorption of the refrigerant to the adsorbent 120 from the heat generator 100 at the time of defrosting, the circulating flow path does not flow the oil separated from the oil separator 31 to the heat transfer pipe 130 of the heat generator 100. 60 is closed by the 2nd open / close valve V2.
한편, 제상이 완료되면 압축기(21)에서 토출된 냉매가 실내 열교환기(13)로 유동하여 난방 운전을 수행하게 된다.On the other hand, when the defrost is completed, the refrigerant discharged from the compressor 21 flows to the indoor heat exchanger 13 to perform the heating operation.
도4은 본 발명의 일 실시예에 따른 공기조화기의 난방 운전을 설명하는 도면이다.4 is a view for explaining the heating operation of the air conditioner according to an embodiment of the present invention.
도 4를 참조하면, 공기조화기(1)의 난방 운전시(도 4의 화살표 방향) 압축기(21)에 의해 압축된 냉매는 오일분리기(31)를 거쳐 사방밸브(25)에 의해 실내 열교환기(13), 실외팽창장치(29), 실외 열교환기(23), 사방밸브(25), 어큐뮬레이터(27), 압축기(21) 순으로 순환되는 냉매 사이클을 반복하게 된다.Referring to FIG. 4, the refrigerant compressed by the compressor 21 during the heating operation of the air conditioner 1 (in the direction of the arrow in FIG. 4) is passed through the oil separator 31 to the indoor heat exchanger by the four-way valve 25. (13), the outdoor expansion device (29), the outdoor heat exchanger (23), the four-way valve (25), the accumulator (27), the compressor cycle circulated in the order of the compressor 21 is repeated.
구체적으로, 난방 운전 시에는 저온, 저압의 기체 냉매가 압축기(21)에 의해 고온, 고압의 기체 냉매로 압축되고, 이렇게 압축된 냉매는 사방밸브(25)에 의해 실내 열교환기(13)측으로 공급되어 실내 공기와 열교환되면서 고온, 고압 상태로 실내 열교환기(13)를 통과하게 된다. 이때, 실내 열교환기(13) 일측에 설치되는 실내팬(미도시)이 회전하여 공기를 유동시킴에 따라 실내의 찬 공기는 실내 열교환기(13) 측으로 공급되며 실내 열교환기(13) 내를 유동하는 고온, 고압의 액체 냉매와 열교환함에 따라 더운 공기로 변환되고, 이렇게 변환된 더운 공기는 계속되는 실내팬(미도시)의 회전에 따라 실내로 토출되어 실내는 난방되게 된다.Specifically, during the heating operation, the low-temperature, low-pressure gas refrigerant is compressed by the compressor 21 into the high-temperature, high-pressure gas refrigerant, and the compressed refrigerant is supplied to the indoor heat exchanger 13 by the four-way valve 25. The heat exchanger passes through the indoor heat exchanger 13 at a high temperature and high pressure while being heat-exchanged with the indoor air. At this time, as the indoor fan (not shown) installed on one side of the indoor heat exchanger 13 rotates and flows the air, the cold air of the room is supplied to the indoor heat exchanger 13 and flows through the indoor heat exchanger 13. The hot air is converted into hot air by heat exchange with a high-temperature, high-pressure liquid refrigerant. The hot air is then discharged into the room as the indoor fan (not shown) continues to rotate, thereby heating the room.
또한, 실내 열교환기(13)를 통과하면서 과냉된 액체 상태의 냉매는 실외팽창장치(29)를 지나면서 압력과 온도가 급격히 떨어져 다시 저온, 저압의 기액혼합 상태의 냉매로 변한 다음 실외 열교환기(23)로 유입되고, 실외 열교환기(23)로 유입된 냉매는 실외 열교환기(23)를 지나면서 주위의 열을 흡수하여 저온, 저압의 기체 상태로 변환된다.In addition, the refrigerant in the liquid state, which has been supercooled while passing through the indoor heat exchanger 13, rapidly passes through the outdoor expansion device 29, so that the pressure and temperature drop rapidly, and the refrigerant is changed into a refrigerant having a low temperature and low pressure gas-liquid mixture, and then the outdoor heat exchanger ( 23, the refrigerant introduced into the outdoor heat exchanger (23) absorbs the surrounding heat while passing through the outdoor heat exchanger (23) and is converted into a gas state of low temperature and low pressure.
난방시에는 열발생장치(100)를 경유하지 않고, 어큐뮬레이터(27)로 유동할 수 있도록 제1 개폐밸브(V1)에 의해 바이패스관(61)은 폐쇄된다.At the time of heating, the bypass pipe 61 is closed by the first opening / closing valve V1 so as to flow to the accumulator 27 without passing through the heat generating device 100.
공기조화기(1)의 난방 운전시 열발생장치(100)의 흡착제(120)를 재생하기 위해, 오일분리기(31)의 유출측과 연결된 순환유로(33)는 제2 개폐밸브(V2)에 의해 개방한다. 순환유로(33)와 상호 연통된 전열관(130)에 고온의 오일이 흐르게 되고, 오일의 열을 전열관(130)을 통해 흡착제(120)로 전달한다. 열을 전달받아 흡착된 냉매가 흡착제(120)의 표면으로부터 분리되어 흡착제(120)는 다시 흡착할 수 있는 상태가 된다. In order to regenerate the adsorbent 120 of the heat generator 100 during the heating operation of the air conditioner 1, the circulation passage 33 connected to the outlet side of the oil separator 31 is connected to the second on / off valve V2. By opening. High temperature oil flows through the heat transfer tube 130 in communication with the circulation passage 33, and transfers heat of the oil to the adsorbent 120 through the heat transfer tube 130. The refrigerant adsorbed by the heat is separated from the surface of the adsorbent 120, and the adsorbent 120 is in a state capable of being adsorbed again.
도 5은 본 발명의 다른 실시예에 따른 공기조화기를 나타내는 도면이다.5 is a view showing an air conditioner according to another embodiment of the present invention.
도 5를 참조하여, 본 발명의 다른 실시예에 따른 공기조화기(1)를 설명한다. 다른 실시예의 구성을 설명함에 있어, 도 1 에서 상술한 실시예와 동일한 실외기(20) 및 실내기(10)의 구성에 대해서는 동일한 부재번호를 부여하였으며, 동일한 구성에 대한 구체적인 설명을 생략한다. 도1의 실시예와 상이한 열발생장치(200)의 위치와 난방 시 흡열제 재생을 위한 동작에 대해서만 설명한다.5, an air conditioner 1 according to another embodiment of the present invention will be described. In describing the configuration of another embodiment, the same reference numerals are assigned to the same outdoor unit 20 and indoor unit 10 as those of the embodiment described above with reference to FIG. 1, and detailed descriptions of the same configuration will be omitted. Only the operation of the endothermic regeneration during heating and the position of the heat generating device 200 different from the embodiment of FIG. 1 will be described.
본 발명의 다른 실시예에 따른 열발생장치(200)는 도 1 실시예와 동일한 흡착제(120)에 냉매를 유입하기 위한 제1바이패스관(61)과 가열된 냉매를 배출하기 위한 제2 바이패스관(62)을 가진다.The heat generator 200 according to another embodiment of the present invention is the first bypass pipe 61 for introducing the refrigerant into the same adsorbent 120 as in the embodiment 1 and the second bypass for discharging the heated refrigerant It has a pass pipe 62.
열발생장치(200)의 흡착제(120)를 재생하기 위한 전열관(230)은 고온의 냉매 또는 오일과 같은 물질이 통과하도록 배치된다. 전열관(230)에 고온의 물질이 통과한다면 전열관(230)의 유로상 배치는 제한되지 않는다. The heat transfer pipe 230 for regenerating the adsorbent 120 of the heat generator 200 is disposed to allow a material such as a high temperature refrigerant or oil to pass therethrough. If a high temperature material passes through the heat pipe 230, the flow path arrangement of the heat pipe 230 is not limited.
오일분리기(31)에서 분리된 오일이 다시 압축기로 되돌아가는 순환유로(33)와 상호 연통되게 연결되는 전열관(230)을 갖는 도 1 의 실시예의 열발생장치(200)와 달리, 도 5의 다른 실시예의 열발생장치(200)는 난방시 고온, 고압의 냉매가 배출되는 유입측 냉매관(51)에서 분기하는 제3 바이패스관(63)과 유출측 냉매관(53)에 배치된 실외팽창장치(29)의 하류로 연결되는 제4 바이패스관(64)을 갖는다. 전열관(230)의 냉매가 유입되는 일단은 제3 바이패스관(63)과 상호 연통되게 연결되고, 전열관(230)의 냉매가 배출되는 타단은 제4 바이패스관(64)과 상호 연통되게 연결된다.Unlike the heat generating device 200 of the embodiment of FIG. 1 having the heat transfer tube 230 connected in communication with the circulation passage 33 where the oil separated from the oil separator 31 is returned to the compressor again, the other The heat generator 200 according to the embodiment has an outdoor expansion disposed in the third bypass pipe 63 and the outlet refrigerant pipe 53 branching from the inlet refrigerant pipe 51 through which high-temperature and high-pressure refrigerant is discharged during heating. And a fourth bypass tube 64 connected downstream of the device 29. One end into which the refrigerant of the heat transfer tube 230 flows is connected to the third bypass tube 63, and the other end from which the refrigerant from the heat transfer tube 230 is discharged is connected to the fourth bypass tube 64. do.
난방 운전시에 흡착제(120)의 재생을 위해 전열관(230)에 고온의 냉매가 흐른다. 압축기(21)에 의해 고온, 고압의 기체 냉매로 압축되고, 이렇게 압축된 냉매는 사방밸브(25)를 지나 실내 열교환기(13)측으로 공급된다. 이때, 실내 열교환기(13)와 연결된 사방밸브(25)를 지난 고온, 고압의 기체 냉매 중 일부는 제3 바이패스관(63)으로 흐르게 된다. 제3 바이패스관(63)과 상호 연통된 전열관(230)에 고온의 냉매가 흐르게되고, 상기 냉매의 열을 전열관(230)을 통해 흡착제(120)로 전달한다. 열을 전달받아 흡착된 냉매가 흡착제(120)의 표면으로부터 분리되어 흡착제(120)는 다시 흡착할 수 있는 상태가 된다. 전열관(230)을 통해 열을 전달한 냉매는 제4 바이패스관(64)을 통해 배출되어 실외 열교환기(23)로 유입된다. At a heating operation, a high temperature refrigerant flows through the heat transfer tube 230 for regeneration of the adsorbent 120. The compressor 21 is compressed into a gas refrigerant having a high temperature and a high pressure, and the compressed refrigerant is supplied to the indoor heat exchanger 13 through the four-way valve 25. At this time, some of the high-temperature, high-pressure gas refrigerant passing through the four-way valve 25 connected to the indoor heat exchanger 13 flows to the third bypass pipe 63. The high temperature refrigerant flows through the heat transfer tube 230 which is in communication with the third bypass tube 63, and transfers the heat of the refrigerant to the adsorbent 120 through the heat transfer tube 230. The refrigerant adsorbed by the heat is separated from the surface of the adsorbent 120, and the adsorbent 120 is in a state capable of being adsorbed again. The refrigerant that has transferred heat through the heat transfer pipe 230 is discharged through the fourth bypass pipe 64 and flows into the outdoor heat exchanger 23.
난방 시, 냉매의 흐름방향을 따라 유입측 냉매관(51)에서 제3 바이패스관(63)으로 냉매의 일부가 유입되도록 제3 바이패스관(63)의 유입영역에는 제3 바이패스관(63)을 개방 상태로 두는 제3 개폐밸브(215)가 배치된다.At the time of heating, a third bypass pipe (in the inflow region of the third bypass pipe 63 so that a part of the refrigerant flows into the third bypass pipe 63 from the inflow refrigerant pipe 51 along the flow direction of the refrigerant) A third open / close valve 215 is arranged to leave 63 open.
제상 시에 상기 제3 개폐밸브(215)에 의해 제3 바이패스관(63)은 폐쇄 상태로 되고, 열발생장치(200)의 전열관(230)에 냉매가 흐르지 않는다.At the time of defrosting, the third bypass pipe 63 is closed by the third opening / closing valve 215, and no refrigerant flows through the heat transfer pipe 230 of the heat generating device 200.
도 6은 본 발명의 또 다른 실시예에 따른 공기조화기를 나타내는 도면이다.6 is a view showing an air conditioner according to another embodiment of the present invention.
도 6를 참조하여, 본 발명의 또 다른 실시예에 따른 공기조화기(1)를 설명한다. 다른 실시예의 구성을 설명함에 있어, 도 1 에서 상술한 실시예와 동일한 실외기(20) 및 실내기(10)의 구성에 대해서는 동일한 부재번호를 부여하였으며, 동일한 구성에 대한 구체적인 설명을 생략한다. 도1의 실시예와 상이한 복수의 실외 열교환기(23)와 연결 유로에 대해서만 설명한다.6, an air conditioner 1 according to still another embodiment of the present invention will be described. In describing the configuration of another embodiment, the same reference numerals are assigned to the same outdoor unit 20 and indoor unit 10 as those of the embodiment described above with reference to FIG. 1, and detailed descriptions of the same configuration will be omitted. Only a plurality of outdoor heat exchangers 23 and connection flow paths different from those of the embodiment of FIG. 1 will be described.
도 1의 실시예에 따른 공기조화기(1)는 단일의 실외 열교환기(23)를 구비하는 것이었으나, 도 6에 나타난 바와 같이 공기조화기(1)는 복수의 실외 열교환기(23A, 23B)를 구비하도록 구성할 수 있다. 각 실외 열교환기(23A, 23B)에 대응하여 연결관(70A, 70B))이 설치되어 있다. 도 6에서는 2개의 실외 열교환기(23A, 23B)를 구비한 것으로 도시하였으나, 이에 한정되지 않고, 2개 이상의 실외 열교환기를 구비할 수 있다.The air conditioner 1 according to the embodiment of FIG. 1 has a single outdoor heat exchanger 23, but as shown in FIG. 6, the air conditioner 1 includes a plurality of outdoor heat exchangers 23A and 23B. It can be configured to have). Coupling pipes 70A and 70B are provided corresponding to the outdoor heat exchangers 23A and 23B. In FIG. 6, two outdoor heat exchangers 23A and 23B are illustrated. However, the present disclosure is not limited thereto, and two or more outdoor heat exchangers may be provided.
구체적으로, 상기 공기조화기(1)는 제1 실외 열교환기(23A) 및 제2 실외 열교환기(23B)를 구비하고, 제1 및 제2 연결관(70A, 70B)은 오일분리기(31)의 유출영역과 사방밸브(25)의 유입영역 사이에서 분기되어 각각 제1 및 제2 실외 열교환기(23)에 연결된다. 제1 및 제2 연결관(70A, 70B)은 오일분리기(31)와 사방밸브(25) 사이에 설치된 분기점(P2)에서 복수로 분기될 수 있다.Specifically, the air conditioner 1 includes a first outdoor heat exchanger 23A and a second outdoor heat exchanger 23B, and the first and second connection pipes 70A and 70B are oil separators 31. Branched between the outlet region of the and the inlet region of the four-way valve 25 is connected to the first and second outdoor heat exchanger (23), respectively. The first and second connection pipes 70A and 70B may be branched into a plurality of branch points P2 provided between the oil separator 31 and the four-way valve 25.
제1 연결관(70A)에는 제1 개폐밸브(73A)가 설치되고, 제2 연결관(70B)에는 제2 개폐밸브(73B)가 설치된다. 복수의 실외 열교환기(23)에 대해서 동시에 제상 운전을 수행하지 않고, 순차적으로 제상 운전을 수행하거나 제상이 필요한 실외 열교환기에 대해서만 제상 운전할 수 있다. 예를 들어, 제1 실외 열교환기(23)의 서리를 제거하기 위해 제1 실외 열교환기(23)와 연결된 제1 연결관(70A)은 제1 개폐밸브(73A)에 의해 개방되어 고온, 고압의 냉매가 제1 실외 열교환기(23)를 흐르게 할 수 있다. 이 때, 제2 연결관(70B)은 제2 개폐밸브(73B)에 의해 폐쇄된 상태가 되고, 제2 실외 열교환기(23)는 증발기로서 난방 운전을 수행한다. The first open / close valve 73A is installed in the first connecting pipe 70A, and the second open / close valve 73B is installed in the second connecting pipe 70B. Instead of performing defrosting operation on the plurality of outdoor heat exchangers 23 at the same time, defrosting operation may be performed sequentially or only on an outdoor heat exchanger requiring defrosting. For example, to remove the frost of the first outdoor heat exchanger 23, the first connection pipe 70A connected to the first outdoor heat exchanger 23 is opened by the first opening / closing valve 73A to open a high temperature and high pressure. Coolant may flow in the first outdoor heat exchanger (23). At this time, the second connecting pipe 70B is closed by the second opening / closing valve 73B, and the second outdoor heat exchanger 23 performs heating operation as an evaporator.
이에 따라, 한쪽의 실외 열교환기(23A, 23B)에서 서리를 제거하도록 제상 운전할 때 다른 쪽의 실외 열교환기(23B, 23A)를 증발기로서 기능시킬 수 있으므로 제상 운전 시 난방 능력의 저하를 억제할 수 있다.Accordingly, when the defrosting operation is performed in one outdoor heat exchanger (23A, 23B) to remove frost, the other outdoor heat exchanger (23B, 23A) can function as an evaporator, so that the deterioration of the heating capacity during the defrosting operation can be suppressed. have.
도 6에 도시된 화살표는 난방 운전 중에 제2 실외 열교환기(23)에 대해서 제상 운전하는 경우의 냉매의 흐름을 나타낸다. 도 6의 실선 화살표 방향은 난방 운전시, 점선 화살표 방향은 제상 운전시를 나타낸다.The arrow shown in FIG. 6 shows the flow of the refrigerant in the defrosting operation on the second outdoor heat exchanger 23 during the heating operation. The solid arrow direction in FIG. 6 indicates heating operation, and the dotted arrow direction indicates defrosting operation.
공기조화기(1)의 난방 운전시(도 6의 실선 화살표 방향) 압축기(21)에 의해 압축된 냉매는 오일분리기(31)를 거쳐 사방밸브(25)에 의해 제1 실내 열교환기(13), 실외팽창장치(29), 실외 열교환기(23), 사방밸브(25), 어큐뮬레이터(27), 압축기(21) 순으로 순환되는 냉매 사이클을 반복하게 된다. In the heating operation of the air conditioner 1 (in the solid arrow direction in FIG. 6), the refrigerant compressed by the compressor 21 passes through the oil separator 31 and the first indoor heat exchanger 13 by the four-way valve 25. The refrigerant cycle circulated in the outdoor expansion device 29, the outdoor heat exchanger 23, the four-way valve 25, the accumulator 27, and the compressor 21 is repeated.
난방 운전시, 열발생장치(100)의 흡착제(120)를 재생하기 위해 전열관(130)에 오일분리기(31)로부터 분리된 고온의 오일이 흐른다. 흡착제(120)의 재생이 필요한 경우에 순환유로(33)상에 설치된 제2 개폐밸브(V2)가 개방된다.In the heating operation, hot oil separated from the oil separator 31 flows in the heat transfer tube 130 to regenerate the adsorbent 120 of the heat generator 100. When regeneration of the adsorbent 120 is required, the second open / close valve V2 provided on the circulation passage 33 is opened.
공기조화기(1)의 제상 운전시(도 6의 점선 화살표 방향)에는, 냉매가 압축기(21), 오일분리기(31), 제2 연결관(70B), 제2 실외 열교환기(23), 열발생장치(100), 어큐뮬레이터(27), 압축기(21) 순으로 순환되는 냉매 사이클을 반복하게 된다. 제상 운전시, 열발생장치(100)는 물리 흡착을 통해 냉매를 가열한다. During the defrosting operation of the air conditioner 1 (in the direction of the dashed arrow in FIG. 6), the refrigerant is supplied to the compressor 21, the oil separator 31, the second connecting pipe 70B, the second outdoor heat exchanger 23, The refrigerant cycle circulated in the order of the heat generator 100, the accumulator 27, and the compressor 21 is repeated. In the defrosting operation, the heat generator 100 heats the refrigerant through physical adsorption.
이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.While the above has been shown and described with respect to preferred embodiments of the invention, the invention is not limited to the specific embodiments described above, it is usually in the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.

Claims (15)

  1. 실내 열교환기, 실외팽창장치, 실외 열교환기, 어큐뮬레이터, 압축기, 및 오일분리기가 순차적으로 연결된 공기조화기에 있어서,In an air conditioner in which an indoor heat exchanger, an outdoor expansion device, an outdoor heat exchanger, an accumulator, a compressor, and an oil separator are sequentially connected,
    상기 실외팽창장치로부터 상기 압축기로 흐르는 냉매를 가열하기 위한 열발생장치;를 포함하고,And a heat generator for heating the refrigerant flowing from the outdoor expansion device to the compressor.
    상기 열발생장치는,The heat generating device,
    상기 냉매와의 물리 흡착(physical adsorption)에 의해 열을 발생하는 흡착제;An adsorbent that generates heat by physical adsorption with the refrigerant;
    상기 흡착제가 충진된 탱크; 및A tank filled with the adsorbent; And
    상기 흡착제를 재생하도록 상기 흡착제에 열을 전달하는 전열관;을 포함하는, 공기조화기.And a heat transfer pipe transferring heat to the adsorbent to regenerate the adsorbent.
  2. 제1항에 있어서,The method of claim 1,
    상기 전열관은 외주면에 상기 흡착제가 접촉되도록 상기 탱크 내부를 통과하는, 공기조화기.The heat pipe is an air conditioner, passing through the tank so that the adsorbent contacts the outer peripheral surface.
  3. 제2항에 있어서,The method of claim 2,
    상기 전열관은 상기 탱크 내의 구간에서 분기되어 복수의 관을 형성하고, 상기 복수의 관은 상호 병렬로 연결되는, 공기조화기.The heat pipe is branched in the section in the tank to form a plurality of pipes, the plurality of pipes are connected to each other in parallel.
  4. 제2항에 있어서,The method of claim 2,
    상기 전열관은 상기 탱크 내의 구간에서 지그재그 형상으로 형성된, 공기조화기.The heat pipe is formed in a zigzag shape in the section in the tank, air conditioner.
  5. 제1항에 있어서,The method of claim 1,
    상기 흡착제는 활성탄, 제올라이트, 실리카겔, 및 활성알루미나 중 어느 하나인, 공기조화기.The adsorbent is any one of activated carbon, zeolite, silica gel, and activated alumina.
  6. 제1항에 있어서,The method of claim 1,
    상기 실내 열교환기로부터 배출되는 냉매를 상기 열발생장치로 안내하기 위한 제1 바이패스관; 및A first bypass pipe for guiding the refrigerant discharged from the indoor heat exchanger to the heat generating device; And
    상기 열발생장치를 통과하여 가열된 냉매를 상기 어큐뮬레이터로 안내하는 제2 바이패스관;을 더 포함하는, 공기조화기.And a second bypass tube for guiding the heated refrigerant through the heat generating device to the accumulator.
  7. 제6항에 있어서,The method of claim 6,
    상기 제1 바이패스관은 냉매가 상기 흡착제와 냉매가 반응하도록 상기 탱크의 유입구와 연결되고,The first bypass pipe is connected to the inlet of the tank so that the refrigerant reacts with the adsorbent,
    상기 제2 바이패스관은 상기 흡착제와 반응하여 가열된 냉매가 배출되는 상기 탱크의 배출구와 연결되는, 공기조화기.And the second bypass tube is connected to an outlet of the tank in which the heated refrigerant is discharged in response to the adsorbent.
  8. 제6항에 있어서,The method of claim 6,
    상기 제1 및 제2 바이패스관은 제상 운전 시 냉매가 저압 상태로 흐르는 유로의 일부 구간에서 분기되는, 공기조화기.The first and second bypass pipes branch in some sections of the flow path where the refrigerant flows in a low pressure state during defrosting operation.
  9. 제1항에 있어서,The method of claim 1,
    상기 전열관은 상기 오일분리기에서 분리된 오일이 다시 상기 압축기로 되돌아가는 유로 상에 배치되는, 공기조화기.The heat pipe is disposed on the flow path for the oil separated in the oil separator is returned to the compressor.
  10. 제1항에 있어서,The method of claim 1,
    상기 탱크는 상기 전열관을 둘러싸도록 형성되는, 공기조화기.The tank is formed to surround the heat pipe.
  11. 제6항에 있어서,The method of claim 6,
    상기 제1 바이패스관에 배치되어 상기 탱크로 이송되는 냉매의 흐름을 제어하는 제1 개폐밸브;를 더 포함하는, 공기조화기.And a first opening / closing valve disposed in the first bypass pipe to control a flow of the refrigerant transferred to the tank.
  12. 제11항에 있어서,The method of claim 11,
    상기 오일분리기와 상기 전열관의 유입구를 잇는 유로 상에 배치되어 상기 전열관으로 이송되는 오일의 흐름을 제어하는 제2 개폐밸브;를 더 포함하는, 공기조화기.And a second on / off valve disposed on a flow path connecting the oil separator and the inlet of the heat transfer pipe to control the flow of oil transferred to the heat transfer pipe.
  13. 제1항에 있어서,The method of claim 1,
    상기 압축기로부터 배출되어 실내 열교환기로 이동하는 냉매를 상기 전열관으로 안내하기 위한 제3 바이패스관; 및A third bypass pipe for guiding the refrigerant discharged from the compressor and moving to an indoor heat exchanger to the heat transfer pipe; And
    상기 전열관을 통과하는 냉매를 상기 실외 열교환장치로 안내하는 제4 바이패스관;을 더 포함하는, 공기조화기.And a fourth bypass pipe for guiding the refrigerant passing through the heat transfer pipe to the outdoor heat exchanger.
  14. 제1항에 있어서,The method of claim 1,
    상기 실외 열교환기는 복수로 구비되고,The outdoor heat exchanger is provided in plurality,
    상기 압축기에서부터 사방밸브까지의 유로에서 분기되어 상기 실외 열교환기에 각각 연결되는 복수의 연결관을 포함하는, 공기조화기.And a plurality of connecting pipes branched from the compressor to the four-way valve and connected to the outdoor heat exchanger, respectively.
  15. 제13항에 있어서,The method of claim 13,
    상기 복수의 연결관은 상기 복수의 연결관을 선택적으로 개폐하기 위해 각각 개폐밸브가 배치되는, 공기조화기.The plurality of connection pipes are air conditioners, each of which is arranged on and off valves for selectively opening and closing the plurality of connection pipes.
PCT/KR2017/011453 2016-11-02 2017-10-17 Air conditioner WO2018084459A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160145318A KR102517272B1 (en) 2016-11-02 2016-11-02 Air conditioner
KR10-2016-0145318 2016-11-02

Publications (1)

Publication Number Publication Date
WO2018084459A1 true WO2018084459A1 (en) 2018-05-11

Family

ID=62075447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011453 WO2018084459A1 (en) 2016-11-02 2017-10-17 Air conditioner

Country Status (2)

Country Link
KR (1) KR102517272B1 (en)
WO (1) WO2018084459A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109539401B (en) * 2018-11-13 2023-09-12 珠海格力电器股份有限公司 Air conditioner and control method
CN110848884B (en) * 2019-11-29 2021-06-18 广东美的制冷设备有限公司 Air conditioner, control method, control device and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665944B2 (en) * 1986-01-10 1994-08-24 株式会社日立製作所 Refrigeration cycle
JPH0749893B2 (en) * 1987-10-20 1995-05-31 松下電器産業株式会社 Heat pump air conditioner
JP2002106982A (en) * 2000-09-28 2002-04-10 Hitachi Ltd Air conditioner
KR100511287B1 (en) * 2003-05-01 2005-08-31 엘지전자 주식회사 Air conditioner capable of defrosting and heating operation simultaneously and out door unit with self defrosting cycle for air conditioner
KR20130066499A (en) * 2011-12-12 2013-06-20 삼성전자주식회사 Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665944B2 (en) * 1986-01-10 1994-08-24 株式会社日立製作所 Refrigeration cycle
JPH0749893B2 (en) * 1987-10-20 1995-05-31 松下電器産業株式会社 Heat pump air conditioner
JP2002106982A (en) * 2000-09-28 2002-04-10 Hitachi Ltd Air conditioner
KR100511287B1 (en) * 2003-05-01 2005-08-31 엘지전자 주식회사 Air conditioner capable of defrosting and heating operation simultaneously and out door unit with self defrosting cycle for air conditioner
KR20130066499A (en) * 2011-12-12 2013-06-20 삼성전자주식회사 Air conditioner

Also Published As

Publication number Publication date
KR102517272B1 (en) 2023-04-03
KR20180048129A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US7145258B2 (en) Electricity generating and air conditioning system
WO2014065548A1 (en) Air conditioner
WO2018155886A1 (en) Vehicle heat pump system
US20100170655A1 (en) Air Supply Unit
WO2018124789A1 (en) Heat pump for automobile
WO2015046834A1 (en) Air conditioner
WO2014051188A1 (en) Regenerative cooling/heating device
CN102331048B (en) Air conditioning system of combined-type gas-water dual-heat-source heat-pump-type electric automobile
WO2015178596A1 (en) Outdoor heat exchanger
WO2018084459A1 (en) Air conditioner
WO2018135850A1 (en) Waste heat recovery type hybrid heat pump system
WO2022114563A1 (en) Heat management system
CN102109203A (en) Water source heat pump three-tube type heat recovery multi-online air conditioning system
WO2013062287A1 (en) Regenerative air-conditioning apparatus
WO2018155871A1 (en) Vehicle heat pump system
KR101933555B1 (en) Absorption hybrid deciccant colling system
CN102798202B (en) Total heat exchanger and fresh air handling unit system
CN211822702U (en) Renewable dehumidification air conditioning system
WO2018190540A1 (en) Air conditioner for vehicle
CN111769299B (en) Battery thermal management system with dehumidification function and dehumidification method thereof
CN202338974U (en) Combined gas-water double heat source heat pump type electromobile air-conditioning system
CN111059614A (en) Renewable dehumidification air conditioning system
WO2015178744A1 (en) Vehicle cooling device capable of instant cooling, vehicle comprising same, and instant cooling method for vehicle
CN105928290A (en) Adsorbing and frost restraining technology based refrigerating system of air-cooled refrigerator
WO2018048173A1 (en) Hybrid type air-condition and heat pump system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867835

Country of ref document: EP

Kind code of ref document: A1