JPH0665734A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH0665734A
JPH0665734A JP22281792A JP22281792A JPH0665734A JP H0665734 A JPH0665734 A JP H0665734A JP 22281792 A JP22281792 A JP 22281792A JP 22281792 A JP22281792 A JP 22281792A JP H0665734 A JPH0665734 A JP H0665734A
Authority
JP
Japan
Prior art keywords
thin film
electrode
reaction vessel
magnetic field
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22281792A
Other languages
Japanese (ja)
Inventor
Masayoshi Murata
正義 村田
Yoshiaki Takeuchi
良昭 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22281792A priority Critical patent/JPH0665734A/en
Publication of JPH0665734A publication Critical patent/JPH0665734A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the thin film forming device by sputtering which can form films to a large area. CONSTITUTION:An anode electrode 2 and cathode electrode 5 constituting electrodes for discharge are disposed within a reaction vessel 1. The anode electrode 2 has a ladder-like structure constituted of wires having a circular section. A target 4 is fixed to the cathode electrode 2 and the anode electrode 2 is disposed between the target 4 and a substrate 3 to be formed with the thin film. A coil 100 for generating a magnetic field is disposed around the reaction vessel 1 to generate the magnetic field in the direction orthogonal with the electric field generated between the electrodes 2 and 5 for discharge. The power source 101 of the coil 100 is an AC power source. Since the ladder type anode 2 is adopted for this thin film forming device, the intensity of the magnetic field around the electrodes increases and plasma is more easily generated. The direction of the ions moving from the anode to the cathode is shifted by the magnetic field of the coil 100, by which the deposition of the sputtered particles on the substrate surface is uniformalized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池、電子写真感
光体、光センサ、液晶ディスプレイ、光学膜及び装飾品
などに使用される薄膜の製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a thin film used for solar cells, electrophotographic photoreceptors, photosensors, liquid crystal displays, optical films, ornaments and the like.

【0002】[0002]

【従来の技術】図7には、従来より用いられている薄膜
製造装置を示している。図7において、気密の反応容器
01内には、第1の電極(陽極)02、薄膜を付着すべ
き対象の基板03、薄膜材料のターゲット04、第2の
電極(陰極))05が設置されている。
2. Description of the Related Art FIG. 7 shows a conventional thin film manufacturing apparatus. In FIG. 7, a first electrode (anode) 02, a substrate 03 to which a thin film is to be attached, a thin film material target 04, and a second electrode (cathode) 05 are installed in an airtight reaction container 01. ing.

【0003】第1の電極02は第1の電力ケーブル06
によりアース07と電気的に接続されて接地されてい
る。第2の電極05は、第2の電力ケーブル08を介し
て、高周波電源09に電気的に接続されている。また、
高周波電源09は、第3の電力ケーブル010を介して
アース07と接続されている。なお、第2の電極05は
絶縁物011により、反応容器01と電気的に絶縁され
ている。
The first electrode 02 is connected to the first power cable 06.
Is electrically connected to the ground 07 and grounded. The second electrode 05 is electrically connected to the high frequency power supply 09 via the second power cable 08. Also,
The high frequency power supply 09 is connected to the ground 07 via the third power cable 010. The second electrode 05 is electrically insulated from the reaction vessel 01 by the insulator 011.

【0004】さらに、第2の電極05は、温度上昇を防
ぐため、冷却水供給制御装置012及び冷却官013に
より、冷却されている。反応容器01内を真空にするた
め、真空ポンプ014が、第1のバルブ015を介し
て、反応容器01内のガスを吸引し、排出する。
Further, the second electrode 05 is cooled by a cooling water supply controller 012 and a cooling engine 013 in order to prevent the temperature from rising. In order to make the inside of the reaction container 01 a vacuum, the vacuum pump 014 sucks the gas in the reaction container 01 through the first valve 015 and discharges the gas.

【0005】他方、反応容器01内にプラズマ発生用ガ
スとして、アルゴンガス(Ar)が第2のバルブ016及
び流量調整器017を介して、Arガス供給源018より
供給される。反応容器01内の圧力は真空計019で測
定される。
On the other hand, argon gas (Ar) is supplied from the Ar gas supply source 018 through the second valve 016 and the flow rate controller 017 as the plasma generating gas into the reaction vessel 01. The pressure inside the reaction container 01 is measured by a vacuum gauge 019.

【0006】この図7に示した装置を用いて、例えばZn
O 薄膜を製造する場合について説明する。第1の電極0
2上に基板03を載せ、ターゲット04として、ZnO 焼
結体を第2の電極05に固着する。なお、ZnO 焼結体
は、ZnO 粉末を800〜850℃で約1時間仮焼したあ
と、約100kg/cm2の圧力で必要な型にプレス成型し、
930℃程度で約2時間焼成することにより製作する。
Using the device shown in FIG. 7, for example, Zn
The case of manufacturing an O 2 thin film will be described. First electrode 0
The substrate 03 is placed on the substrate 2, and the ZnO sintered body is fixed to the second electrode 05 as the target 04. In addition, the ZnO sintered body is obtained by calcining ZnO powder at 800 to 850 ° C. for about 1 hour, and then press-molding it into a required mold at a pressure of about 100 kg / cm 2 .
It is manufactured by firing at about 930 ° C. for about 2 hours.

【0007】反応容器01内に第2のバルブ016、流
量調整器017及びArガス供給源018を用いて導入
し、かつ、真空ポンプ014及び第1のバルブ015を
用いて、反応容器01内の圧力を約0.01Torrに設定
する。他方、高周波電源09,第2及び第3のケーブル
08,010を介して、第1及び第2の電極02,05
に高周波電圧を印加する。
A second valve 016, a flow rate controller 017, and an Ar gas supply source 018 are introduced into the reaction vessel 01, and a vacuum pump 014 and a first valve 015 are used to introduce the inside of the reaction vessel 01. Set the pressure to about 0.01 Torr. On the other hand, the first and second electrodes 02, 05 are connected via the high frequency power supply 09, the second and third cables 08, 010.
Apply a high frequency voltage to.

【0008】そうすると、Arガスはグロー放電プラズマ
になり、その中に多数存在するAr+は第2の電極05の
方へ加速され、ターゲット04に衝突する。ターゲット
04は上記Ar+ の衝突により、スパッタされ、スパッタ
粒子は、第1の電極02上に設置の基板03上に堆積す
る。なお、基板03の材料としては、ガラス、石英、サ
ファイヤなどが用いられる。
Then, the Ar gas becomes a glow discharge plasma, and a large number of Ar + existing therein are accelerated toward the second electrode 05 and collide with the target 04. The target 04 is sputtered by the collision of Ar + , and the sputtered particles are deposited on the substrate 03 installed on the first electrode 02. Note that glass, quartz, sapphire, or the like is used as the material of the substrate 03.

【0009】[0009]

【発明が解決しようとする課題】前記したように薄膜を
形成される基板03が電極02の上に載せられるので、
一度に処理される基板03の大きさは電極02の大きさ
によって制限される。
Since the substrate 03 on which the thin film is formed is placed on the electrode 02 as described above,
The size of the substrate 03 processed at one time is limited by the size of the electrode 02.

【0010】また、高周波電源09は高周波数(例えば
13.56MHz )であるので、高周波による表皮効果に
より電流の大部分が表面(約0.01mm深さ以内)を流
れるため、電気抵抗が増加し、プラズマは電極中央部以
外は一様にならない。
Further, since the high frequency power source 09 has a high frequency (for example, 13.56 MHz), most of the current flows on the surface (within about 0.01 mm depth) due to the skin effect due to the high frequency, so that the electric resistance increases. , The plasma is not uniform except in the central part of the electrode.

【0011】そのため、電極面積を拡大したとしても、
スパッタで一様に成膜できる面積は直径約50cmが限界
であった。このように従来は大面積の成膜は非常に困難
であり、実際上は実現できなかった。このような状況の
もとで、本発明は、大面積成膜を可能とした薄膜形成装
置を提供することを課題としている。
Therefore, even if the electrode area is increased,
The area that can be uniformly formed by sputtering is about 50 cm in diameter. As described above, it has been extremely difficult to form a large-area film in the past, and it could not be realized in practice. Under such circumstances, it is an object of the present invention to provide a thin film forming apparatus capable of forming a large area film.

【0012】[0012]

【課題を解決するための手段】本発明は、前記課題を解
決するため、横断面が円形の複数本の線材で組んだはし
ご状の陽極と平板形の陰極とによって放電用電極が構成
され、スパッタリング用ターゲット材がこの平板形の陰
極表面に固着され、かつ、前記はしご状の電極を前記タ
ーゲット材と基板とで挟む位置に基板を配設するように
した構成を採用する。
According to the present invention, in order to solve the above-mentioned problems, a discharge electrode is composed of a ladder-shaped anode and a flat-plate-shaped cathode assembled from a plurality of wires having a circular cross section, The sputtering target material is fixed to the surface of the flat plate-shaped cathode, and the substrate is arranged at a position where the ladder-shaped electrode is sandwiched between the target material and the substrate.

【0013】また、本発明では、前記した課題を解決す
るため、前記した構成に加え、反応容器を囲み、放電用
電極間に働く電界と直交する向きの磁界を発生するコイ
ルと、同コイルに交流電流を供給する電源を有する構成
をも採用する。
Further, in order to solve the above-mentioned problems, the present invention provides a coil for enclosing a reaction vessel and generating a magnetic field in a direction orthogonal to an electric field working between discharge electrodes, in addition to the above-mentioned configuration. A configuration having a power supply that supplies alternating current is also adopted.

【0014】[0014]

【作用】前記したように、本発明では、放電用電極とし
て、従来の平板形陽極電極に代えて、断面形状が円形の
複数の線材を組んだはしご形陽極電極を用いたことによ
り、電極周わりの電界が強くなり、プラズマの発生が容
易となる。
As described above, in the present invention, as the discharge electrode, a ladder-shaped anode electrode formed by assembling a plurality of wire rods having a circular cross-section is used instead of the conventional flat plate-shaped anode electrode. The electric field is relatively strong, and plasma is easily generated.

【0015】また、本発明において、放電用電極間の電
界方向を直交する向きに磁界を印加し、かつ、その磁界
方向を正と負に交互に変化させるようにした構成を採用
したものでは、上記陽極より陰極に移動するイオンの飛
しょう方向を揺動することが可能になった。その結果、
スパッタリング現象で飛散するスパッタ粒子の基板表面
における堆積速度分布を一様に平均化することが可能と
なる。
Further, in the present invention, a structure is adopted in which a magnetic field is applied in a direction orthogonal to the electric field direction between the discharge electrodes, and the magnetic field direction is alternately changed between positive and negative. It became possible to swing the flight direction of the ions moving from the anode to the cathode. as a result,
It is possible to uniformly average the deposition rate distribution of sputtered particles scattered by the sputtering phenomenon on the substrate surface.

【0016】[0016]

【実施例】以下、本発明を図1から図4に図示した実施
例に基いて具体的に説明する。図1において、1は反応
容器で真空度1×10-8Torr程度の気密性を有する。2
は陽極電極で、図3及び図4に示すように断面形状が円
形の線材で構成されたはしご状の構造を有し、後述の陰
極電極5と組合せて使用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in FIGS. In FIG. 1, reference numeral 1 is a reaction vessel having a degree of vacuum of about 1 × 10 −8 Torr. Two
Is an anode electrode, has a ladder-like structure composed of a wire having a circular cross section as shown in FIGS. 3 and 4, and is used in combination with a cathode electrode 5 described later.

【0017】3は基板で、目的とする材料、例えばZnO
の薄膜を付着すべきものである。4はターゲットで上記
薄膜の材料で、従来と同じようにして製作したものであ
る。5は陰極電極であり、上記電極2と対向して設置さ
れている。
Reference numeral 3 denotes a substrate, which is a target material such as ZnO.
Thin film should be attached. Reference numeral 4 denotes a target, which is the material of the above-mentioned thin film, which is manufactured in the same manner as the conventional one. Reference numeral 5 denotes a cathode electrode, which is installed so as to face the electrode 2.

【0018】なお、該陰極電極5は温度上昇を防ぐた
め、冷却管13及び冷却水供給制御装置12により冷却
されている。6は第1の電力ケーブルでアース7と電気
的に接続され、第2の電力ケーブル8及び第3の電力ケ
ーブル10と組合せて使用することにより、後述の高周
波電源9の電力を上記電極2及び5に供給する。
The cathode electrode 5 is cooled by a cooling pipe 13 and a cooling water supply controller 12 in order to prevent the temperature from rising. A first power cable 6 is electrically connected to the ground 7, and when used in combination with the second power cable 8 and the third power cable 10, the power of a high frequency power source 9 described later is applied to the electrodes 2 and 3. Supply to 5.

【0019】9は高周波電源で、例えば周波数13.5
6MHz のスパッタリング用電源である。11a及び11
bは、第1及び第2の絶縁物で、それぞれ上記電極5及
び第1の電力ケーブルと反応容器1の気密を確保し、か
つ、電気的に絶縁をしている。
Reference numeral 9 is a high frequency power source, for example, a frequency of 13.5.
This is a 6 MHz power supply for sputtering. 11a and 11
Reference numeral b denotes first and second insulators, which ensure the airtightness of the electrode 5 and the first power cable and the reaction vessel 1, respectively, and electrically insulate them.

【0020】14は真空ポンプで、第1のバルブ15を
介して、反応容器1内のガスを吸引し、排出する。18
はArガス供給源で、流量調整器17及び第2のバルブ1
6を介して、反応容器1にArガスを供給する。
Reference numeral 14 denotes a vacuum pump, which sucks and discharges the gas in the reaction vessel 1 through the first valve 15. 18
Is an Ar gas supply source, the flow rate regulator 17 and the second valve 1
Ar gas is supplied to the reaction vessel 1 via 6.

【0021】19は真空計で、反応容器1内の圧力を測
定し、表示する。100は磁界発生用コイルで、図2に
示すように上記反応容器1を囲うように設置されてい
る。101は磁界発生用電源で、上記コイル100に電
力を供給し、最大120ガウス程度の磁界を発生させ
る。
A vacuum gauge 19 measures and displays the pressure in the reaction vessel 1. Reference numeral 100 denotes a magnetic field generating coil, which is installed so as to surround the reaction container 1 as shown in FIG. Reference numeral 101 denotes a magnetic field generation power supply, which supplies electric power to the coil 100 to generate a maximum magnetic field of about 120 gauss.

【0022】以上説明した装置において、真空ポンプ1
4を駆動し、第1のバルブ15を開にして反応容器1内
を排気し、約1×10-8Torrの真空度にする。そして、
Arガス供給源18、流量調整器17及び第2のバルブ1
6を用いて、反応容器1内にArガスを供給し、圧力を約
0.01Torrに設定する。
In the apparatus described above, the vacuum pump 1
4 is driven, the first valve 15 is opened to evacuate the inside of the reaction vessel 1, and the degree of vacuum is set to about 1 × 10 −8 Torr. And
Ar gas supply source 18, flow rate regulator 17 and second valve 1
6 is used to supply Ar gas into the reaction vessel 1 and the pressure is set to about 0.01 Torr.

【0023】次に、陽極電極2及び陰極電極5に、第
1,第2及び第3のケーブル6,8及び10を介して、
高周波電源9より電力を供給する。その電圧を徐々に増
加していくと、Arガスがグロー放電プラズマになり、多
数のAr+ イオンが発生する。
Next, to the anode electrode 2 and the cathode electrode 5 via the first, second and third cables 6, 8 and 10,
Electric power is supplied from the high frequency power source 9. When the voltage is gradually increased, Ar gas becomes glow discharge plasma, and a large number of Ar + ions are generated.

【0024】一方、コイル100に電源101を用い
て、例えば10Hzの交流電力を印加し、上記電極2及び
5間に発生する電界Eと直交する方向の磁界Bを発生さ
せる。なお、その磁界の強さは最大120ガウス程度で
ある。
On the other hand, an AC power of, for example, 10 Hz is applied to the coil 100 by using a power source 101 to generate a magnetic field B in a direction orthogonal to the electric field E generated between the electrodes 2 and 5. The strength of the magnetic field is about 120 gauss at maximum.

【0025】上記電極2及び5の間には、ターゲット4
が設置されているが、その間に発生しているプラズマの
挙動は図5に示すようになっている。すなわち、電界E
は、電極5の平面に対し垂直方向であり、磁界Bはそれ
に直交する方向に発生しているので、両電極間に存在す
るAr+ イオン及び電子など荷重粒子には、(電界)E×
(磁界)Bドリフトが作用する。
A target 4 is placed between the electrodes 2 and 5.
Is installed, the behavior of the plasma generated during that time is as shown in FIG. That is, the electric field E
Is a direction perpendicular to the plane of the electrode 5 and the magnetic field B is generated in a direction perpendicular to the plane, so that the weighted particles such as Ar + ions and electrons existing between the two electrodes have (electric field) E ×
(Magnetic field) B drift acts.

【0026】したがって、Ar+ イオンは図5に、実線、
点線及び一点鎖線で図示しているような動きで、ターゲ
ット4に衝突する。その結果、スパッタリング現象によ
り、ターゲット4は微小な粒子(スパッタ粒子と呼ぶ)
となり、飛散する。スパッタ粒子の大部分は、基板3に
到達し、ターゲットと同一の材料の膜を形成する。
Therefore, the Ar + ion is shown in FIG.
The target 4 is collided with the movement as shown by the dotted line and the alternate long and short dash line. As a result, due to the sputtering phenomenon, the target 4 has fine particles (called sputter particles).
And then scatter. Most of the sputtered particles reach the substrate 3 and form a film of the same material as the target.

【0027】以上の装置では、陽極電極2の断面形状が
円形で、かつ直径が例えば5〜10mmであって、対向電
極の平面状陰極5に比べて、曲率半径が著しく小さいた
めに、対向電極間に発生する電界強度が局所的ではある
が大きくなる。また、磁界を印加しているためにプラズ
マの発生が容易である。したがって、図6に示している
ように従来の装置に比べ大面積に、均一に成膜が可能で
ある。
In the above apparatus, the anode electrode 2 has a circular cross section and a diameter of, for example, 5 to 10 mm, and the radius of curvature is significantly smaller than that of the flat cathode 5 of the counter electrode. The strength of the electric field generated during the period is locally increased. Further, since a magnetic field is applied, plasma can be easily generated. Therefore, as shown in FIG. 6, it is possible to uniformly form a film over a large area as compared with the conventional apparatus.

【0028】以上、本発明による装置の実施例について
説明したが、本発明は、この実施例に限定されず、本発
明の範囲内において種々変更を加えてよいことはいうま
でもない。例えば、前記実施例では、反応容器に導入す
るガスとして不活性なArガスを用いているが、このガス
としては、不活性ガスにO2,H2など反応ガスを添加した
もの、あるいは反応ガスのみの場合でも、上記実施例を
同様に実施できることはいうまでもない。
Although the embodiment of the apparatus according to the present invention has been described above, it is needless to say that the present invention is not limited to this embodiment and various modifications may be made within the scope of the present invention. For example, in the above example, an inert Ar gas is used as a gas to be introduced into the reaction vessel. As this gas, an inert gas to which a reaction gas such as O 2 or H 2 is added, or a reaction gas Needless to say, even in the case of only the above, the above-mentioned embodiment can be similarly implemented.

【0029】[0029]

【発明の効果】以上詳述したように、本発明による装置
では、横断面が円形の複数本の線材で組んだはしご状の
陽極と平板形の陰極とによって放電用電極を構成したの
で、電極周わりの電界が強くなり、プラズマの発生が容
易となる。これによって従来の装置に比べ大面積の基板
上に均一に成膜することが可能となる。
As described above in detail, in the device according to the present invention, the discharge electrode is constituted by the ladder-shaped anode and the flat-plate-shaped cathode which are assembled by a plurality of wires having a circular cross section. The surrounding electric field becomes strong and plasma is easily generated. As a result, it is possible to form a film uniformly on a substrate having a large area as compared with the conventional apparatus.

【0030】また、これに加え、前記反応容器を囲み、
前記放電用電極間に働く電界と直交する向きの磁界を発
生するコイルに交流電流を供給するようにしたもので
は、陽極から陰極に移動するイオンの方向を揺動させる
ので、基板表面におけるスパッタ粒子の堆積を均一化す
ることができる。
In addition to this, the reaction vessel is surrounded by
In the case where an alternating current is supplied to a coil that generates a magnetic field in a direction orthogonal to the electric field that acts between the discharge electrodes, the direction of ions moving from the anode to the cathode is swung, so that sputtered particles on the substrate surface Can be made uniform.

【0031】このように、本発明の装置によれば、アモ
ルファスシリコン太陽電池,薄膜トランジスタ,光セン
サなど薄膜製造分野での工業的価値は著しく大きい。
As described above, according to the device of the present invention, the industrial value in the field of manufacturing thin films such as amorphous silicon solar cells, thin film transistors, and optical sensors is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による成膜装置の構成を示す断
面図。
FIG. 1 is a sectional view showing the structure of a film forming apparatus according to an embodiment of the present invention.

【図2】磁界発生用のコイルを反応容器の周わりに配設
した状態を示す斜視図。
FIG. 2 is a perspective view showing a state in which coils for generating a magnetic field are arranged around a reaction container.

【図3】本発明による装置で用いるはしご形陰極電極の
平面図。
FIG. 3 is a plan view of a ladder-shaped cathode electrode used in the device according to the present invention.

【図4】図3に示すはしご形陰極電極のIV−IV線に沿う
断面図。
FIG. 4 is a sectional view taken along line IV-IV of the ladder-shaped cathode electrode shown in FIG.

【図5】本発明の作用を示す説明図。FIG. 5 is an explanatory view showing the operation of the present invention.

【図6】本発明による装置と従来の装置で成膜したZnO
膜の膜厚分布を示す図。
FIG. 6 ZnO deposited by the apparatus according to the present invention and the conventional apparatus
The figure which shows the film thickness distribution of a film.

【図7】従来の成膜装置の構成を示す断面図。FIG. 7 is a cross-sectional view showing the configuration of a conventional film forming apparatus.

【符号の説明】[Explanation of symbols]

1 反応容器 2 陽極電極 3 基板 4 ターゲット 5 陰極電極 9 高周波電源 18 Arガス供給源 100 磁界発生用コイル 101 磁界発生用電源 1 Reaction Container 2 Anode Electrode 3 Substrate 4 Target 5 Cathode Electrode 9 High Frequency Power Supply 18 Ar Gas Supply Source 100 Magnetic Field Generation Coil 101 Magnetic Field Generation Power Supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反応容器と、同反応容器内にガスを導入
する手段と、同反応容器内のガスを排出する手段と、同
反応容器内に収納された放電用電極と、同放電用電極に
電力を供給する電源と、前記反応容器内に収納されたス
パッタリング用ターゲット材を有し、前記反応容器内に
設置された基板表面に前記ターゲット材のスパッタリン
グによる薄膜形成装置において、前記放電用電極が、横
断面が円形の複数本の線材で組んだはしご状の陽極と平
板形の陰極とによって構成され、前記ターゲット材が前
記平板形の陰極表面に固着され、かつ、前記はしご状の
電極を前記ターゲット材と基板とで挟む位置に基板を配
設するように構成したことを特徴とする薄膜形成装置。
1. A reaction vessel, means for introducing gas into the reaction vessel, means for discharging gas from the reaction vessel, discharge electrode housed in the reaction vessel, and discharge electrode. A thin film forming apparatus by sputtering the target material on the surface of a substrate installed in the reaction container, the discharge electrode having a power supply for supplying power to the target material and a sputtering target material housed in the reaction container. However, the cross section is constituted by a ladder-shaped anode and a flat-plate type cathode assembled by a plurality of circular wire rods, the target material is fixed to the flat-plate type cathode surface, and the ladder-shaped electrode. A thin film forming apparatus characterized in that a substrate is arranged at a position sandwiched between the target material and the substrate.
【請求項2】 前記反応容器を囲み、前記放電用電極間
に働く電界と直交する向きの磁界を発生するコイルと、
同コイルに交流電流を供給する電源を有することを特徴
とする請求項1記載の薄膜形成装置。
2. A coil which surrounds the reaction vessel and generates a magnetic field in a direction orthogonal to an electric field working between the discharge electrodes,
The thin film forming apparatus according to claim 1, further comprising a power supply for supplying an alternating current to the coil.
JP22281792A 1992-08-21 1992-08-21 Thin film forming device Withdrawn JPH0665734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22281792A JPH0665734A (en) 1992-08-21 1992-08-21 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22281792A JPH0665734A (en) 1992-08-21 1992-08-21 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH0665734A true JPH0665734A (en) 1994-03-08

Family

ID=16788379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22281792A Withdrawn JPH0665734A (en) 1992-08-21 1992-08-21 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH0665734A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402610A2 (en) * 1989-05-18 1990-12-19 Chisso Corporation Process for the preparation of silica glass powders
JP2005336506A (en) * 2004-05-24 2005-12-08 National Institute For Materials Science Single power source type sputtering apparatus having anode subjected to magnetic field control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402610A2 (en) * 1989-05-18 1990-12-19 Chisso Corporation Process for the preparation of silica glass powders
JP2005336506A (en) * 2004-05-24 2005-12-08 National Institute For Materials Science Single power source type sputtering apparatus having anode subjected to magnetic field control

Similar Documents

Publication Publication Date Title
Gudmundsson Physics and technology of magnetron sputtering discharges
US5431799A (en) Collimation hardware with RF bias rings to enhance sputter and/or substrate cavity ion generation efficiency
KR100239818B1 (en) Apparatus for the reactive coating of a substrate
CN110225995A (en) Extension for the PVD chamber with a variety of reaction gas, high bias power and high-power pulse source for depositing, injecting and handle
JPS60135573A (en) Method and device for sputtering
JPH0860355A (en) Treating device
GB2129021A (en) Sputtering apparatus
US4297189A (en) Deposition of ordered crystalline films
WO2006013968A1 (en) Thin-film forming apparatus
KR100245297B1 (en) The substrate coating apparatus
JP2989279B2 (en) Plasma CVD equipment
US3669861A (en) R. f. discharge cleaning to improve adhesion
JPH06220631A (en) Microwave strengthening sputtering device
JPH0421781A (en) Plasma cvd device
JPH11288798A (en) Plasma production device
JPH0665734A (en) Thin film forming device
JPS627852A (en) Formation of thin film
CN101784694B (en) Sputtering method
US3463715A (en) Method of cathodically sputtering a layer of silicon having a reduced resistivity
KR102340365B1 (en) An antenna structure for a high density linear ICP source
JPH062123A (en) Film forming device by sputtering
JP2014025116A (en) Plasma cvd apparatus and method of manufacturing magnetic recording medium
JPH01162762A (en) Sputtering device
JP3095565B2 (en) Plasma chemical vapor deposition equipment
JP5982678B2 (en) Plasma CVD apparatus and method for manufacturing magnetic recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102