JPH0665070B2 - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH0665070B2
JPH0665070B2 JP1281215A JP28121589A JPH0665070B2 JP H0665070 B2 JPH0665070 B2 JP H0665070B2 JP 1281215 A JP1281215 A JP 1281215A JP 28121589 A JP28121589 A JP 28121589A JP H0665070 B2 JPH0665070 B2 JP H0665070B2
Authority
JP
Japan
Prior art keywords
mat
anode
thickness direction
solid electrolyte
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1281215A
Other languages
Japanese (ja)
Other versions
JPH03145069A (en
Inventor
宏次 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1281215A priority Critical patent/JPH0665070B2/en
Publication of JPH03145069A publication Critical patent/JPH03145069A/en
Publication of JPH0665070B2 publication Critical patent/JPH0665070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はナトリウム−硫黄電池に関し、さらに詳しくは
特にナトリウム−硫黄電池の陽極容器と固体電解質管と
の間に設けられた陽極用導電材に関するものである。
TECHNICAL FIELD The present invention relates to a sodium-sulfur battery, and more particularly to a conductive material for an anode provided between an anode container of a sodium-sulfur battery and a solid electrolyte tube. It is a thing.

[従来の技術] 最近、電気自動車用、夜間電力貯蔵用の二次電池として
性能面および経済面の両面において優れ、300〜40
0℃で動作する高温型のナトリウム−硫黄電池の研究開
発が進められている。
[Prior Art] Recently, as a secondary battery for electric vehicles and nighttime power storage, it is excellent in both performance and economy,
Research and development of a high temperature type sodium-sulfur battery that operates at 0 ° C. is in progress.

すなわち、性能面ではナトリウム−硫黄電池は鉛蓄電池
に比べて理論エネルギー密度が高く、充放電時における
水素や酸素の発生といった副作用もなく、陽極活物質の
利用率も高く、経済面ではナトリウムおよび硫黄が安価
であるという利点を有している。
That is, in terms of performance, a sodium-sulfur battery has a higher theoretical energy density than a lead storage battery, there are no side effects such as the generation of hydrogen and oxygen during charge and discharge, the utilization rate of the anode active material is high, and sodium and sulfur are economically advantageous. Has the advantage of being inexpensive.

従来のナトリウム−硫黄電池の陽極用導電材はグラファ
イトマットなどを利用し、その繊維の方向がナトリウム
−硫黄電池の長さ方向に多く延びるように形成して使用
されていた。しかし、このようなナトリウム−硫黄電池
においては活物質の拡散性、特に半径方向の拡散性が悪
くなり、陽極用導電材内の不均一反応が進行し、分極抵
抗が増加して抵抗の増加および不均一による充電回復性
の低下を招くという問題があった。
A graphite mat or the like has been used as a conductive material for an anode of a conventional sodium-sulfur battery, and its fibers have been formed so as to extend in many directions in the length direction of the sodium-sulfur battery. However, in such a sodium-sulfur battery, the diffusivity of the active material, particularly the diffusivity in the radial direction, deteriorates, the heterogeneous reaction in the conductive material for the anode proceeds, and the polarization resistance increases to increase the resistance. There is a problem in that the charge recovery property is deteriorated due to non-uniformity.

そこで、特開昭52−121730号公報に示すよう
に、ナトリウム−硫黄電池の充電性能を改良するため
に、陽極部全体に炭素または黒鉛材の中にセラミック繊
維を混入させたものを使用し、放電生成物である多硫化
ナトリウムの漏れ性を改善して多硫化ナトリウムの移動
を容易にするものが提案されている。
Therefore, as shown in JP-A-52-121730, in order to improve the charging performance of a sodium-sulfur battery, a carbon or graphite material mixed with ceramic fibers is used for the entire anode part, It has been proposed to improve the leakage of sodium polysulfide, which is a discharge product, to facilitate the movement of sodium polysulfide.

[発明が解決しようとする課題] ところが、上記前者のナトリウム−硫黄電池は陽極部全
体を均一層とし、セラミック繊維を陽極部全体に混入し
ているため、陽極部における抵抗が大きくなり過ぎ、エ
ネルギー効率が低いという問題があった。
[Problems to be Solved by the Invention] However, in the former sodium-sulfur battery, the entire anode part has a uniform layer, and the ceramic fibers are mixed into the entire anode part. There was a problem of low efficiency.

本発明の目的は、ナトリウム−硫黄電池の陽極内部の活
物質の拡散性を均一化し、陽極内部の内部抵抗の低減化
と、充電回復性の向上を図り、さらには硫黄極の製法が
容易で低コスト化が可能なナトリウム−硫黄電池を提供
することにある。
An object of the present invention is to make the diffusivity of the active material inside the anode of a sodium-sulfur battery uniform, to reduce the internal resistance inside the anode, to improve the charge recovery property, and further to facilitate the production of the sulfur electrode. An object is to provide a sodium-sulfur battery that can be manufactured at low cost.

[課題を解決するための手段] 上記の目的を達成するため、本願第1の発明は、陽極活
物質の硫黄を含浸する陽極用導電材を収納した筒状の陽
極容器に対し、ナトリウムイオンを選択的に透過させる
機能を有する有底筒状の固体電解質管を固定し、前記固
体電解質管を前記陽極用導電材の中空部に挿入したナト
リウム−硫黄電池において、前記陽極用導電材は、繊維
を積層したマットの厚さ方向にニードルパンチが施さ
れ、そのニードルパンチにて厚さ方向に配向された繊維
が前記固定電解質管に対し放射方向に配向され、かつ、
固体電解質管側のマットの厚さ方向の繊維が低配向とな
り、陽極容器側のマットの厚さ方向の繊維が高配向とな
るように形成し、かつ、前記陽極用導電材と前記固体電
解質管との間には陽極用導電材よりも内部抵抗が高い高
抵抗層を設けたことをその要旨とする。第2の発明は、
固体電解質管側に配設される放射方向に繊維が少なく配
向された低配向層において、マット厚さ方向繊維とマッ
ト長さ方向繊維との割合は[マット厚さ方向繊維/マッ
ト長さ方向繊維]が1以下とし、陽極容器側に配設され
る放射方向に繊維が多く配向された高配向層において、
マット厚さ方向繊維とマット長さ方向繊維との割合は
[マット厚さ方向繊維/マット長さ方向繊維]が2〜2
0の範囲とし、さらに陽極用導電材の高配向層と低配向
層との厚さの割合は[高配向層/低配向層]が1〜10
の範囲にしたことをその要旨とする。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the first invention of the present application provides a cylindrical anode container accommodating a conductive material for an anode impregnating sulfur of an anode active material with sodium ions. A bottomed cylindrical solid electrolyte tube having a function of selectively permeating is fixed, and in the sodium-sulfur battery in which the solid electrolyte tube is inserted into the hollow portion of the conductive material for the anode, the conductive material for the anode is a fiber. Is subjected to needle punching in the thickness direction of the laminated mat, fibers oriented in the thickness direction with the needle punch are radially oriented with respect to the fixed electrolyte tube, and,
The fibers in the thickness direction of the mat on the solid electrolyte tube side have a low orientation, and the fibers in the thickness direction of the mat on the anode container side have a high orientation, and the conductive material for the anode and the solid electrolyte tube The gist is that a high resistance layer having a higher internal resistance than the conductive material for the anode is provided between and. The second invention is
In the low-orientation layer, which is arranged on the solid electrolyte tube side and has a small number of fibers oriented in the radial direction, the ratio of the fibers in the mat thickness direction to the fibers in the mat length direction is [mat thickness direction fiber / mat length direction fiber ] Is 1 or less, and in the highly oriented layer in which a large number of fibers are oriented in the radial direction disposed on the anode container side,
[Matt thickness direction fiber / mat length direction fiber] is 2 to 2 in the ratio of the mat thickness direction fiber and the mat length direction fiber.
The ratio of the thickness of the high orientation layer to the low orientation layer of the conductive material for anode is 1 to 10 in the range of [high orientation layer / low orientation layer].
The gist is that it is within the range.

[作用] 上記の構成により、第1発明の作用は、低配向層の厚さ
方向の抵抗が高くなり、一方、高配向層の厚さ方向の抵
抗が低くなるため、固体電解質管の界面付近の電気化学
反応速度が小さくなり、充電末期に絶縁性の硫黄が固体
電解質管付近に析出するのが押えられ、充電回復性の向
上が図られる。又、第1の発明では前記のように、陽極
用導電材と固体電解質管との間に高抵抗層を設けたもの
で、充電末期に絶縁性の硫黄が固体電解質管と本陽極導
電材マットの界面の析出することで内部抵抗が急増し完
全充電が困難になることを防ぎ、界面付近における電気
化学反応速度を小さくして固体電解質管から離れた陽極
導電材内から活物質反応を行なわせるので充電回復性の
更なる向上が図られる。
[Operation] With the above configuration, the operation of the first invention is that the resistance in the thickness direction of the low orientation layer becomes high, while the resistance in the thickness direction of the high orientation layer becomes low, so that the vicinity of the interface of the solid electrolyte tube The electrochemical reaction rate of is decreased, and insulative sulfur is prevented from precipitating near the solid electrolyte tube at the end of charging, and the charge recovery property is improved. Further, in the first invention, as described above, the high resistance layer is provided between the conductive material for the anode and the solid electrolyte tube, and the insulating sulfur at the end of charging is the solid electrolyte tube and the anode conductive material mat. This prevents the internal resistance from rapidly increasing and making complete charging difficult due to the precipitation at the interface, and reduces the electrochemical reaction rate near the interface to allow the active material reaction from inside the anode conductive material away from the solid electrolyte tube. Therefore, the charge recovery property can be further improved.

第2の発明の作用は、高配向層の陽極用導電材内の方か
ら順により円滑に活物質反応が行われ、大幅に電池内部
抵抗の低減化と充電回復性の向上が図られる。
The effect of the second invention is that the active material reaction is carried out smoothly from the inside of the conductive material for an anode of the highly oriented layer, and the internal resistance of the battery is significantly reduced and the charge recovery property is significantly improved.

[実施例] 以下、本発明を具体化した一実施例を第1〜6図に基づ
いて説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS.

第1図に示すように、ナトリウム−硫黄電池は下部に陽
極端子1を備えた陽極容器2と、同陽極容器2の内部に
収容され、かつポリアクリロニトリル系のグラファイト
繊維をマット状、かつ円筒状に形成してなり陽極活物質
(硫黄)を含浸した陽極用導電部材Mと、前記陽極容器
2の上端部に対し、αアルミナ製の絶縁リング3を介し
て連結され、かつ溶融金属ナトリウムNaを貯留する陰
極容器4と、前記絶縁リング3の内周部に固着され、か
つ陽極活物質であるナトリウムイオンを選択的に透過さ
せる機能を有した下方へ延びる円筒状の袋管を形成する
βアルミナ製の固体電解質管5とから構成されている。
前記固体電解質管5の周囲には高抵抗層としてのアルミ
ナ繊維クロスAが配設されている。
As shown in FIG. 1, a sodium-sulfur battery has an anode container 2 having an anode terminal 1 at the bottom, and a polyacrylonitrile-based graphite fiber housed inside the anode container 2 in a matte and cylindrical shape. The conductive member for anode M formed in the above and impregnated with the anode active material (sulfur) is connected to the upper end of the anode container 2 through the insulating ring 3 made of α-alumina, and molten metal sodium Na Beta-alumina, which is fixed to the inner peripheral portion of the insulating ring 3 for storing the cathode container 4 and forms a downwardly extending cylindrical bag tube having a function of selectively transmitting sodium ions as an anode active material. The solid electrolyte tube 5 is made of.
Alumina fiber cloth A as a high resistance layer is arranged around the solid electrolyte tube 5.

また、陰極容器4の上部蓋の中央にはその陰極容器4を
通じて固体電解質管5底部まで延びた細長い陰極管6が
貫通支持され、その陰極管6の上端部には陰極端子7が
固着されている。
A slender cathode tube 6 extending to the bottom of the solid electrolyte tube 5 through the cathode container 4 is penetratingly supported in the center of the upper lid of the cathode container 4, and a cathode terminal 7 is fixed to the upper end of the cathode tube 6. There is.

そして、放電時には次のような反応によってナトリウム
イオンが固体電解質管5を透過して陽極容器2および固
体電解質管5で区画形成された陽極用導電材Mの収容空
間に入り、その導電材Mの溶融硫黄と反応し、多硫化ナ
トリウム、特に最終的には三硫化ナトリウムを生成す
る。
At the time of discharge, sodium ions permeate the solid electrolyte tube 5 by the following reaction and enter the accommodating space for the anode conductive material M defined by the anode container 2 and the solid electrolyte tube 5, and the sodium ion of the conductive material M Reacts with molten sulfur to form sodium polysulfide, and ultimately, sodium trisulfide.

2Na+XS→NaSx また、充電時には放電時とは逆の反応が起こりナトリウ
ムおよび硫黄が生成される。
2Na + XS → Na 2 Sx During charging, a reaction opposite to that during discharging occurs and sodium and sulfur are produced.

なお、前記陰極容器4および固体電解質管5内には、ほ
ぼ全体にわたってその固体電化質管5が破損した場合の
安全対策として、ステンレス製のウイック8が充填され
ている。
The cathode container 4 and the solid electrolyte tube 5 are almost entirely filled with a wick 8 made of stainless steel as a safety measure when the solid electrolyte tube 5 is damaged.

次に、本発明のナトリウム−硫黄電池の特徴的構成を説
明する。
Next, the characteristic constitution of the sodium-sulfur battery of the present invention will be explained.

第4図(a)〜(d)に示すように、前述した陽極用導
電材Mはポリアクリロニトリル系繊維を直方体形状に成
形したマット9から構成されており、その厚さ方向に対
し鍵針10を挿通すてニードルパンチが行われている。
すなわち、ニードルパンチが行われると鍵針10の凹部
10aに形成されたエッジ10bにより引っ掛けられた
マット9の繊維は鍵針10の挿入方向と同じ方向、すな
わちマット9の厚さ方向に繊維が配向されることにな
る。
As shown in FIGS. 4 (a) to 4 (d), the above-mentioned anode conductive material M is composed of a mat 9 obtained by molding polyacrylonitrile fiber into a rectangular parallelepiped shape, and the key needle 10 is formed in the thickness direction thereof. Needle punching is carried out by inserting.
That is, when needle punching is performed, the fibers of the mat 9 hooked by the edges 10b formed in the recess 10a of the key needle 10 are oriented in the same direction as the insertion direction of the key needle 10, that is, the thickness direction of the mat 9. Will be done.

また、前記マット9は厚さ方向の繊維(以下、マット厚
さ方向繊維という)が低配向層となる低配向マット9a
と、マット厚さ方向繊維が高配向層となる高配向マット
9bとから構成されている。そして、前記低配向マット
9aは固体電解質管5側に配置され、高配向マット9b
は陽極容器2側に配置される。
The mat 9 has a low orientation mat 9a in which fibers in the thickness direction (hereinafter, referred to as mat thickness direction fibers) form a low orientation layer.
And a highly oriented mat 9b in which the fibers in the mat thickness direction form a highly oriented layer. The low orientation mat 9a is arranged on the solid electrolyte tube 5 side, and the high orientation mat 9b is placed.
Is arranged on the anode container 2 side.

前記高配向マット9bおよび低配向マット9aは直方体
形状に形成されたマット9の厚さ方向にニードルパンチ
により挿入する鍵針10の挿入深さHを調節することに
より形成されている。すなわち、高配向マット9bは第
4図(a),(b)に示すように鍵針10をマット9の
深さHまで挿入し、ニードルパンチを数多く行うことに
より形成するとともに、低配向マット9aは第4図
(c),(d)に示すように、鍵針10がマット9を貫
通するように挿入し、ニードルパンチを数少なくするこ
とにより形成している。
The high-orientation mat 9b and the low-orientation mat 9a are formed by adjusting the insertion depth H of the key needle 10 to be inserted by needle punching in the thickness direction of the mat 9 formed in a rectangular parallelepiped shape. That is, the highly oriented mat 9b is formed by inserting the key needle 10 to the depth H of the mat 9 as shown in FIGS. 4 (a) and 4 (b) and performing a large number of needle punches. Is formed by inserting the key needle 10 so as to penetrate the mat 9 and reducing the number of needle punches, as shown in FIGS. 4 (c) and 4 (d).

このように構成された複数枚(本実施例においては3
枚)のマット9を第3図に示すように、断面円弧形状に
し、さらに周方向に配置して筒状の陽極用導電材Mを形
成している。そして、この筒状の陽極用導電材Mを前記
陽極容器2と固体電解質管5との間に形成される収納空
間に収納配置され、更に陽極用伝導材Mと固体電解質管
5との間には、アルミナ繊維クロスからなり陽極用導電
材Mより内部抵抗の高い高抵抗層が配置されている。
A plurality of sheets configured in this way (three in this embodiment)
As shown in FIG. 3, the mats 9 are arcuate in cross section and are arranged in the circumferential direction to form a tubular conductive material M for anode. Then, the cylindrical conductive material M for the anode is housed and arranged in a housing space formed between the anode container 2 and the solid electrolyte tube 5, and further between the conductive material M for the anode and the solid electrolyte tube 5. Is a high resistance layer made of alumina fiber cloth and having a higher internal resistance than the conductive material M for the anode.

また、本実施例においては高配向マット9bのマット厚
さ方向繊維と、マット9の長さ方向の繊維(以下、マッ
ト長さ方向繊維という)の割合の測定方法は、第5図に
おいてマット9に樹脂を含浸して固化させた後、マット
9の厚さ方向(即ち固体電解質管に対し放射方向)及び
マット9の長さ方向(即ち固体電解質管の長さ方向と平
行方向)に対応するマット9の各断面に研磨し、光学顕
微鏡でマット9の上記各断面における繊維の断面の数を
測定し、マット9の各断面の単位面積中に存在する繊維
の断面の数を夫々マット9の厚さ方向の繊維の数又は長
さ方向の繊維の数として割合を求めた。そしてその割合
は、[マット厚さ方向繊維/マット長さ方向繊維]を1
0にしているが、2〜20の範囲内のものであればよ
い。さらに、低配向マット9aのマット厚さ方向繊維と
マット長さ方向繊維の割合は[マット厚さ方向繊維/マ
ット長さ方向繊維]を1としているが、1以下の範囲内
のものであればよい。また、本実施例の陽極用導電材M
を構成する高配向マット9bと低配向マット9aの厚さ
の割合は[高配向マットの厚さ(高配向層)/低配向マ
ットの厚さ(低配向層)]を2としているが、1〜10
の範囲内のもであればよい。
Further, in this embodiment, the method for measuring the ratio of the fibers in the mat thickness direction of the highly oriented mat 9b to the fibers in the length direction of the mat 9 (hereinafter referred to as mat length direction fibers) is shown in FIG. After being impregnated with a resin and solidified, it corresponds to the thickness direction of the mat 9 (that is, the radial direction with respect to the solid electrolyte tube) and the length direction of the mat 9 (that is, the direction parallel to the length direction of the solid electrolyte tube). Each cross section of the mat 9 is ground, and the number of cross sections of the fiber in each cross section of the mat 9 is measured by an optical microscope. The ratio was determined as the number of fibers in the thickness direction or the number of fibers in the length direction. And the ratio is [mat thickness direction fiber / mat length direction fiber] 1
Although it is set to 0, it may be in the range of 2 to 20. Furthermore, the ratio of fibers in the mat thickness direction to fibers in the mat length direction of the low orientation mat 9a is [mat thickness direction fiber / mat length direction fiber] being 1, but within the range of 1 or less. Good. In addition, the conductive material M for the anode of this embodiment
The ratio of the thickness of the high-orientation mat 9b to the low-orientation mat 9a constituting the above is [[thickness of high-orientation mat (high orientation layer) / thickness of low-orientation mat (low orientation layer)]], but 1 -10
It may be within the range of.

なお、マット9の構成は多層構造のものでもよく、例え
ば第5図に示すようにマット9の厚さ方向に挿入する鍵
針10の挿入深さをH1〜H3の3段階に調節し、単層
マット9の内部が3層構造となるようにニードルパンチ
を行うことも可能である。
The mat 9 may have a multi-layer structure. For example, as shown in FIG. 5, the insertion depth of the key needle 10 to be inserted in the thickness direction of the mat 9 is adjusted in three steps of H1 to H3. It is also possible to perform needle punching so that the inside of the layer mat 9 has a three-layer structure.

このとき、高配向層9c,中配向層9b,低配向層
9aが構成され、高配向層9cは中配向層9b
りも[マット厚さ方向繊維/マット長さ方向繊維]の割
合が大きくなり、中配向層9bは低配向層9aより
も[マット厚さ方向繊維/マット長さ方向繊維]の割合
が大きくなるように形成されている。さらに、前記各高
配向層9cと同一の高配向マット,中配向層9b
同一の中配向マット,低配向層9aと同一の低配向マ
ットをそれぞれ別体で形成しておき、あとからこれらの
高配向マット,中配向マット,低配向マットを接続する
程度にニードルパンチを施して一体化して構成してもよ
い。
At this time, highly oriented layer 9c -, medium alignment layer 9b -, low orientation layer 9a - is configured, highly oriented layer 9c - Medium alignment layer 9b is - than [Mat thickness direction fiber / mat longitudinal fibers] The middle orientation layer 9b is formed so that the ratio of [mat thickness direction fiber / mat length direction fiber] is higher than that of the low orientation layer 9a . Further, each of the highly oriented layers 9c - the same high orientation matte, medium alignment layer 9b - orientation the same in the mat, low orientation layer 9a - previously formed in another same low orientation mat and respective body, after Therefore, the high orientation mat, the medium orientation mat, and the low orientation mat may be integrated by needle punching to the extent that they are connected.

また、前記マット9の高配向マット9bおよび低配向マ
ット9aはそれぞれ別体で形成しておき、あとからそれ
ぞれのマット9a,9bを接続する程度にニードルパン
チを施して一体化して構成してもよい。
Further, the high-orientation mat 9b and the low-orientation mat 9a of the mat 9 may be separately formed, and may be needle-punched to an extent that the mats 9a and 9b may be connected later to be integrated. Good.

次に、前記マット9の高配向マット9bおよび低配向マ
ット9aの構成割合、各マット9a,9bの厚さ方向お
よび縦方向の繊維の配向割合、配向マットの多層構造、
糸径、焼成温度などの条件を変えて次の3種類のマット
9を製造し、そのマット9によって陽極用導電材Mを形
成した。
Next, the composition ratio of the high-orientation mat 9b and the low-orientation mat 9a of the mat 9, the orientation ratio of the fibers in the thickness direction and the longitudinal direction of each mat 9a, 9b, the multilayer structure of the orientation mat,
The following three types of mats 9 were manufactured by changing the conditions such as yarn diameter and firing temperature, and the conductive material M for anode was formed by the mats 9.

(X)高配向マット、低配向マットをそれぞれ別体で製
造した後に一体化して2層構造にしたマット。
(X) A mat having a two-layer structure in which a high-orientation mat and a low-orientation mat are separately manufactured and then integrated.

[高配向マット] マット厚さ方向繊維/マット長さ方向繊維=10 糸径:9μm 糸真比重:1.76g/cc 素材:ポリアクリロニトリル系 マット焼成温度:2000℃ かさ密度:0.15g/cc [低配向マット] マット厚さ方向繊維/マット長さ方向繊維=1/2 糸径:9μm 糸真比重:1.76g/cc 素材:ポリアクリロニトリル系 マット焼成温度:2000℃ かさ密度:0.12g/cc マットを構成する厚さ割合=高配向マットの厚さ/低配
向マットの厚さ=3 [高抵抗層材料]:アルミナクロス繊維 目付け100g/m2 (Y)高配向マット、中配向マット、低配向マットをそ
れぞれ別体で製造した後に一体化して3層構造にしたマ
ット。
[Highly oriented mat] Mat thickness direction fiber / mat length direction fiber = 10 Thread diameter: 9 μm Thread true specific gravity: 1.76 g / cc Material: Polyacrylonitrile type Mat firing temperature: 2000 ° C. Bulk density: 0.15 g / cc [Low orientation mat] Mat thickness direction fiber / mat length direction fiber = 1/2 Thread diameter: 9 μm Thread true specific gravity: 1.76 g / cc Material: Polyacrylonitrile type Mat firing temperature: 2000 ° C Bulk density: 0.12 g / cc Mat thickness ratio = Highly oriented mat thickness / Low oriented mat thickness = 3 [High-resistivity layer material]: Alumina cloth fiber 100g / m 2 (Y) Highly oriented mat, Medium oriented mat A low-orientation mat is manufactured separately and then integrated into a three-layer structure.

[陽極側高配向マット] マット厚さ方向繊維/マット長さ方向繊維=12 糸径:8μm 糸真比重:1.76g/cc 素材:ポリアクリロニトリル系 マット焼成温度:2000℃ かさ密度:0.15g/cc [中配向マット] マット厚さ方向繊維/マット長さ方向繊維=2 糸径:8μm 糸真比重:1.76g/cc 素材:ポリアクリロニトリル系 マット焼成温度:2000℃ かさ密度:0.13g/cc [固体電解質管側低配向マット] マット厚さ方向繊維/マット長さ方向繊維=1/10 糸径:8μm 糸真比重:1.76g/cc 素材:ポリアクリロニトリル系 マット焼成温度:2000℃ かさ密度:0.1g/cc マットを構成する割合=陽極管側高配向マットの厚さ:
中配向マットの厚さ:固体電解質管側低配向マットの厚
さ=3:2:1 [高抵抗層材料]:アルミナ繊維クロス 目付け80g/m2 (Z)1つのマットに挿入する針の挿入深さを3段階に
行ってニードルパンチい3層構造にしたマット。
[Anode-side highly oriented mat] Mat thickness direction fiber / mat length direction fiber = 12 Thread diameter: 8 μm Thread true specific gravity: 1.76 g / cc Material: Polyacrylonitrile type Mat firing temperature: 2000 ° C. Bulk density: 0.15 g / cc [Mid-oriented mat] Mat thickness direction fiber / mat length direction fiber = 2 Thread diameter: 8 μm Thread true specific gravity: 1.76 g / cc Material: Polyacrylonitrile system Mat firing temperature: 2000 ° C Bulk density: 0.13 g / cc [Solid electrolyte tube side low orientation mat] Mat thickness direction fiber / mat length direction fiber = 1/10 Thread diameter: 8 μm Thread true specific gravity: 1.76 g / cc Material: Polyacrylonitrile system Mat firing temperature: 2000 ° C Bulk density: 0.1 g / cc Proportion of forming mat = Thickness of highly oriented mat on the anode tube side:
Thickness of medium orientation mat: Thickness of low orientation mat on the solid electrolyte tube side = 3: 2: 1 [High resistance layer material]: Alumina fiber cloth Unit weight 80g / m 2 (Z) Insertion of needle to be inserted into one mat A mat with a needle punched three-layer structure with three depths.

糸径:8μm 糸真比重:1.76g/cc 素材:ポリアクリロニトリル系 マット焼成温度:2000℃ [陽極側高配向層] マットの厚さ方向繊維/マットの長さ方向繊維=10 [中配向層] マットの厚さ方向繊維/マットの長さ方向繊維=3 [固体電解質管側低配向層] マットの厚さ方向繊維/マットの長さ方向繊維=1/2 マットを構成する割合=陽極管側高配向層:中配向層:
固体電解質管側低配向層=3:2:1 [高抵抗層材料]:アルミナ繊維クロス 目付け80g/m2 また、前記マット9との特性を比較するため比較例用の
ニードルパンチを厚さ方向に行って単層マット9を製造
した。
Thread diameter: 8 μm Thread true specific gravity: 1.76 g / cc Material: Polyacrylonitrile-based Mat firing temperature: 2000 ° C. [Anode-side highly oriented layer] Mat thickness direction fiber / mat length direction fiber = 10 [Medium orientation layer ] Mat thickness direction fiber / mat length direction fiber = 3 [Solid electrolyte tube side low orientation layer] Mat thickness direction fiber / mat length direction fiber = 1/2 Mat composition ratio = anode tube Side high orientation layer: Medium orientation layer:
Solid electrolyte tube side low orientation layer = 3: 2: 1 [High resistance layer material]: Alumina fiber cloth areal weight 80 g / m 2 Further , in order to compare the characteristics with the mat 9, a needle punch for a comparative example is used in the thickness direction. To produce a single layer mat 9.

(Q)マット厚さ方向繊維:マット長さ方向繊維=2 糸径:8μm 糸真比重:1.76g/cc 素材:ポリアクリロニトリル系 マット焼成温度:2000℃ かさ密度:0.13g/cc [高抵抗層材料]:アルミナ繊維クロス 目付け80g/m2 上記の比較例を含めた4種類のマット9をそれぞれ使用
して前述の筒状の陽極用導電材Mを形成し、前記陽極容
器2と固体電解質管5との間に形成される収納空間に収
納配置し、充放電特性を測定した。
(Q) Mat thickness direction fiber: Mat length direction fiber = 2 Thread diameter: 8 μm Thread true specific gravity: 1.76 g / cc Material: Polyacrylonitrile type Mat firing temperature: 2000 ° C. Bulk density: 0.13 g / cc [High Resistance layer material]: Alumina fiber cloth areal weight 80 g / m 2 The above-mentioned cylindrical anode conductive material M is formed by using each of the four types of mats 9 including the above-mentioned comparative example, and the anode container 2 and the solid material are solid. It was housed and arranged in a housing space formed between the electrolyte tube 5 and the charge / discharge characteristics.

第6図は充放電特性の測定結果を示し、縦方向はナトリ
ウム−硫黄電池の起電力、横方向は陽極用導電材M内の
放電深度をそれぞれ示す。
FIG. 6 shows the measurement results of charge / discharge characteristics. The vertical direction shows the electromotive force of the sodium-sulfur battery, and the horizontal direction shows the discharge depth in the conductive material M for the anode.

この結果から理解できるように、陽極容器2側から固体
電解質管5側に向う程マット厚さ方向繊維が低配向とな
るようにすると、陽極容器2側ほどマット9の内部抵抗
が低くなり、また、固体電解質管5側ほどマット9の内
部抵抗が高くなる。したがって、充電時に絶縁性の硫黄
は内部抵抗の少ない陽極容器2側から析出し、固体電解
質管5の周囲に硫黄が析出して完全充電が困難になるこ
とを防止することができる。さらに、マット9のマット
厚さ方向繊維が固体電解質管5に対し放射方向となって
いるため、固体電解質管5から同一距離に位置した陽極
用導電材Mの内部における活物質反応が均一化して活物
質の利用率が向上して充電回復性が上り、ナトリウム−
硫黄電池を高容量とすることができる。
As can be understood from this result, when the fibers in the mat thickness direction are oriented toward the solid electrolyte tube 5 side from the anode container 2 side, the internal resistance of the mat 9 becomes lower toward the anode container 2 side, and The inner resistance of the mat 9 increases toward the solid electrolyte tube 5 side. Therefore, it is possible to prevent the insulative sulfur from being deposited from the side of the anode container 2 having a small internal resistance during charging and depositing sulfur around the solid electrolyte tube 5 to make complete charging difficult. Furthermore, since the mat thickness direction fibers of the mat 9 are in the radial direction with respect to the solid electrolyte tube 5, the active material reaction inside the conductive material for anode M located at the same distance from the solid electrolyte tube 5 becomes uniform. Utilization rate of active material is improved and charge recovery is improved,
The sulfur battery can have a high capacity.

また、できるだけマット9を多層構造に形成し、陽極容
器2側に行くほどマット9の内部抵抗を低くするように
構成したほうが充電回復特性が向上する。なお、低配向
マット9aおよび高配向マット9bを別体に形成し、そ
の後から一体に構成するよりも、鍵針10を挿入する深
さを調節して単層マット9のニードルパンチを行い、そ
の内部を多層構造にしたものの方が低配向マット9aと
高配向マット9bとの合せ部分に硫黄析出の集中が排除
されるので充放電特性はさらによくなる。
Further, the charge recovery characteristic is improved by forming the mat 9 in a multi-layered structure as much as possible and reducing the internal resistance of the mat 9 toward the anode container 2 side. Rather than forming the low-orientation mat 9a and the high-orientation mat 9b as separate bodies and then integrally forming them, the depth at which the key needle 10 is inserted is adjusted, and needle punching of the single-layer mat 9 is performed. The one having a multi-layered structure inside has a better charge / discharge characteristic because the concentration of sulfur precipitation is eliminated in the combined portion of the low orientation mat 9a and the high orientation mat 9b.

さらに、アルミナ繊維クロスAを固体電解質管5の周囲
に配設したことにより、固体電解質管5と陽極用導電材
Mとの界面に硫黄が析出しないため、内部抵抗の急増に
より完全充電が困難になることを防止し充電回復性の向
上を図ることができる。
Further, by disposing the alumina fiber cloth A around the solid electrolyte tube 5, sulfur does not deposit at the interface between the solid electrolyte tube 5 and the conductive material M for the anode, so that complete charging becomes difficult due to a rapid increase in internal resistance. It is possible to prevent this from occurring and improve the charge recovery property.

本実施例においては、マット9を3枚使用して陽極用導
電材Mを構成したが、2枚または4枚以上使用して陽極
用導電材Mを構成することも可能である。
In this embodiment, three mats 9 are used to form the anode conductive material M, but it is also possible to use two or four or more mats 9 to form the anode conductive material M.

高抵抗層に使用する材料は前記アルミナ繊維クロスに限
るものでなくセラミックス繊維、ガラス繊維、セラミッ
ク粉、ガラス粉、高抵抗カーボンマット、カーボン繊維
とセラミックス繊維の混合体シート、セラミックス粉と
カーボン粉の混合体、セラミックス繊維とカーボン粉の
混合体、セラミック粉とカーボン繊維の混合体等本陽極
電極導電材マットに比較して高抵抗であり、300〜4
00℃の硫黄活物質下で安定なものであれば特に限定し
ない。
The material used for the high resistance layer is not limited to the alumina fiber cloth, but it is not limited to the ceramic fiber, glass fiber, ceramic powder, glass powder, high resistance carbon mat, carbon fiber and ceramic fiber mixture sheet, ceramic powder and carbon powder. A mixture, a mixture of ceramics fibers and carbon powder, a mixture of ceramics powder and carbon fibers, etc., has a higher resistance than that of the anode electrode conductive material mat of 300 to 4
There is no particular limitation as long as it is stable under a sulfur active material at 00 ° C.

なお、この発明は前記実施例に限定されるものではな
く、この発明の趣旨から逸脱しない範囲内で任意に変更
することも可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and can be arbitrarily modified within a range not departing from the spirit of the present invention.

[発明の効果] 以上詳述したように、この発明によれば、陽極容器側に
配置されたマットのマット厚さ方向繊維は高配向とな
り、固体電解質管側に向かうほどその繊維が低配向とな
っているため、マット内部の抵抗が陽極容器側ほど低く
なり、充電時における活物質の析出が陽極容器側から行
われるため、ナトリウム−硫黄電池の充電回復性を向上
させることができるという効果がある。
[Effects of the Invention] As described in detail above, according to the present invention, the fibers arranged in the mat thickness direction of the mat disposed on the anode container side have a high orientation, and the fibers have a lower orientation toward the solid electrolyte tube side. Therefore, the resistance inside the mat becomes lower on the side of the anode container, and since the active material is deposited from the side of the anode container during charging, it is possible to improve the charge recovery of the sodium-sulfur battery. is there.

さらに、高抵抗層を陽極用導電材と固体電解質管との間
に配置したことにより、固体電解質管界面付近における
電気化学反応速度を小さくすることができ、固体電解質
管から離れたマット内から活物質が析出し、充電回復性
をさらに向上させることができる。
Furthermore, by disposing the high resistance layer between the conductive material for the anode and the solid electrolyte tube, the electrochemical reaction rate near the interface of the solid electrolyte tube can be reduced, and the high resistance layer can be activated from within the mat away from the solid electrolyte tube. The substance is deposited, and the charge recovery property can be further improved.

また、マットのマット厚さ方向繊維が固体電解質管に対
し放射方向となっているため、活物質が析出したとき、
円周方向の拡散がよくなるとともに、固体電解質管から
同一距離の陽極用導電材内の活物質反応が均一化される
ので活物質の利用率が向上し、さらには充電回復性が向
上するという効果がある。
Further, since the mat thickness direction fibers of the mat are in a radial direction with respect to the solid electrolyte tube, when the active material is deposited,
The effect that the diffusion rate in the circumferential direction is improved and the active material reaction in the conductive material for the anode at the same distance from the solid electrolyte tube is made uniform so that the utilization rate of the active material is improved and further the charge recovery property is improved. There is.

また、陽極用導電材のマットの製造が従来に比べて容易
で低コストにすることができるという効果がある。
Further, there is an effect that the production of the mat of the conductive material for the anode can be performed easily and at low cost as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のナトリウム−硫黄電池の中央部縦断面
図、第2図は第1図のB−B線断面図、第3図は3枚の
マットにより陽極用導電材を構成した一部拡大斜視図、
第4図(a)はマットの厚さ方向に対し所定の深さに鍵
針を挿入した状態を示す説明図、第4図(b)は第4図
(a)の鍵針を抜いた状態を示す説明図、第4図(c)
はマットの厚さ方向に対し鍵針を挿通した状態を示す説
明図、第4図(d)は第4図(c)の鍵針を抜いた状態
を示す説明図、第5図はニードルパンチにより多層構造
した状態を示す説明図、第6図はナトリウム−硫黄電池
の充放電特性図である。 2……陽極容器、5……固体電解質管、9……マット、
9a……低配向マット、9b……高配向マット、A……
高抵抗層としてのアルミナ繊維クロス、M……陽極用導
電材。
FIG. 1 is a vertical cross-sectional view of a central portion of a sodium-sulfur battery of the present invention, FIG. 2 is a cross-sectional view taken along the line BB of FIG. 1, and FIG. Enlarged perspective view,
FIG. 4 (a) is an explanatory view showing a state where the key needle is inserted to a predetermined depth in the thickness direction of the mat, and FIG. 4 (b) is a state where the key needle of FIG. 4 (a) is removed. Explanatory drawing showing Fig. 4 (c)
Is an explanatory view showing a state in which a key needle is inserted in the thickness direction of the mat, FIG. 4 (d) is an explanatory view showing a state in which the key needle of FIG. 4 (c) is removed, and FIG. 5 is a needle punch. 6 is an explanatory view showing a state in which a multi-layer structure is formed by FIG. 6, and FIG. 2 ... Anode container, 5 ... Solid electrolyte tube, 9 ... Matt,
9a ... Low-orientation mat, 9b ... High-orientation mat, A ...
Alumina fiber cloth as high resistance layer, M ... Conductive material for anode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】陽極活物質の硫黄を含浸する陽極用導電材
を収納した筒状の陽極容器に対し、ナトリウムイオンを
選択的に透過させる機能を有する有底筒状の固体電解質
管を固定し、前記固体電解質管を前記陽極用導電材の中
空部に挿入したナトリウム−硫黄電池において、 前記陽極用導電材は、繊維を積層したマットの厚さ方向
にニードルパンチが施され、そのニードルパンチにて厚
さ方向に配向された繊維が前記固体電解質管に対し放射
方向に配向され、かつ、固体電解質管側のマットの厚さ
方向の繊維が低配向となり、陽極容器側のマットの厚さ
方向の繊維が高配向となるようにし、かつ、前記陽極用
導電材と前記固体電解質管との間には陽極用導電材より
も内部抵抗が高い高抵抗層を設けたことを特徴とするナ
トリウム−硫黄電池。
1. A bottomed cylindrical solid electrolyte tube having a function of selectively permeating sodium ions is fixed to a cylindrical anode container containing a conductive material for an anode impregnated with sulfur as an anode active material. In the sodium-sulfur battery in which the solid electrolyte tube is inserted in the hollow portion of the conductive material for an anode, the conductive material for an anode is needle punched in the thickness direction of a mat in which fibers are laminated, and The fibers oriented in the thickness direction are oriented in the radial direction with respect to the solid electrolyte tube, and the fibers in the thickness direction of the mat on the solid electrolyte tube side have low orientation, and the thickness direction of the mat on the anode container side Sodium is highly oriented, and a high resistance layer having a higher internal resistance than the conductive material for the anode is provided between the conductive material for the anode and the solid electrolyte tube. Sulfur battery.
【請求項2】固体電解質管側に配設される放射方向に繊
維が少なく配向された低配向層において、マット厚さ方
向繊維とマット長さ方向繊維との割合は〔マット厚さ方
向繊維/マット長さ方向繊維〕が1以下とし、陽極容器
側に配設される放射方向に繊維が多く配向された高配向
層において、マット厚さ方向繊維とマット長さ方向繊維
との割合は〔マット厚さ方向繊維/マット長さ方向繊
維〕が2〜20の範囲とし、さらに陽極用導電材の高配
向層と低配向層との厚さの割合は〔高配向層/低配向
層〕が1〜10の範囲にしたことを特徴とする請求項1
記載のナトリウム−硫黄電池。
2. In the low orientation layer, which is disposed on the solid electrolyte tube side and has a small number of fibers oriented in the radial direction, the ratio of the mat thickness direction fibers to the mat length direction fibers is [mat thickness direction fibers / [Mat length direction fiber] is 1 or less, and in the highly oriented layer disposed on the anode container side and having many fibers oriented in the radial direction, the ratio of the mat thickness direction fiber to the mat length direction fiber is [mat The thickness direction fiber / mat length direction fiber] is in the range of 2 to 20, and the thickness ratio between the high orientation layer and the low orientation layer of the conductive material for an anode is [high orientation layer / low orientation layer] is 1 The range is from 10 to 10.
The sodium-sulfur battery described.
JP1281215A 1989-10-27 1989-10-27 Sodium-sulfur battery Expired - Lifetime JPH0665070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1281215A JPH0665070B2 (en) 1989-10-27 1989-10-27 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1281215A JPH0665070B2 (en) 1989-10-27 1989-10-27 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH03145069A JPH03145069A (en) 1991-06-20
JPH0665070B2 true JPH0665070B2 (en) 1994-08-22

Family

ID=17635968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1281215A Expired - Lifetime JPH0665070B2 (en) 1989-10-27 1989-10-27 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH0665070B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4076331B2 (en) 2001-09-20 2008-04-16 日本碍子株式会社 Positive electrode current collector and sodium-sulfur battery using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2052460B (en) * 1979-05-24 1983-01-12 Chloride Silent Power Ltd Carbon fibre cathode
JPS6220259A (en) * 1985-07-18 1987-01-28 Yuasa Battery Co Ltd Sodium-sulfur battery
JP2568622B2 (en) * 1988-03-31 1997-01-08 日本碍子株式会社 Sodium-sulfur battery

Also Published As

Publication number Publication date
JPH03145069A (en) 1991-06-20

Similar Documents

Publication Publication Date Title
US20210288318A1 (en) Ion permeable composite current collectors for metal-ion batteries and cell design using the same
CN1901255B (en) Reticulated and controlled porosity battery structures
US6679926B1 (en) Lithium secondary cell and its producing method
EP1892788A1 (en) All-solid battery element
US20080145749A1 (en) Energy storage device and cell configuration therefor
DE102014116162A1 (en) Multifunctional battery separator
US4224392A (en) Nickel-oxide electrode structure and method of making same
US4357398A (en) Electrochemical cell having cylindrical electrode elements
US4086396A (en) Electrochemical cell with powdered electrically insulative material as a separator
US4306004A (en) Electrode for electrochemical cell
GB2083685A (en) An electrochemical storage cell
US4313259A (en) Method for manufacturing an electrochemical cell
JPH0665070B2 (en) Sodium-sulfur battery
KR102047761B1 (en) Sodium secondary battery and method for manufacturing sodium secondary battery
US4087905A (en) Method of preparing a powdered, electrically insulative separator for use in an electrochemical cell
JP2820376B2 (en) Carbon felt for sodium-sulfur battery and method for producing the same
US4853303A (en) Electrochemical storage cell
JP3352537B2 (en) Sodium-sulfur battery
JPH03105876A (en) Sodium-sulfur battery
US20220238891A1 (en) Electrode and electricity storage device
US20210257627A1 (en) Lithium-ion secondary battery electrode and lithium-ion secondary battery
JP2771398B2 (en) Sodium-sulfur battery
JP2832155B2 (en) Carbon felt for sodium-sulfur battery and method for producing the same
GB2278229A (en) Negative electrode in gas-tight maintenance-free cell or battery
JP2686005B2 (en) Sodium-sulfur battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 16