JPH03145069A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH03145069A
JPH03145069A JP1281215A JP28121589A JPH03145069A JP H03145069 A JPH03145069 A JP H03145069A JP 1281215 A JP1281215 A JP 1281215A JP 28121589 A JP28121589 A JP 28121589A JP H03145069 A JPH03145069 A JP H03145069A
Authority
JP
Japan
Prior art keywords
mat
fibers
anode
solid electrolyte
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1281215A
Other languages
Japanese (ja)
Other versions
JPH0665070B2 (en
Inventor
Koji Sugimoto
杉本 宏次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1281215A priority Critical patent/JPH0665070B2/en
Publication of JPH03145069A publication Critical patent/JPH03145069A/en
Publication of JPH0665070B2 publication Critical patent/JPH0665070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To make even the dispersion of active material in a cathode, reduce the internal resistance therein and improve the recovery of charging by making high the thicknesswise orientation of fibers of a mat disposed on the container side of the cathode while making low the fibers as they come close to the side of solid electrolyte tube. CONSTITUTION:A cathode conductive material M is subjected to needle punching in the thickness direction of a mat 9 in which fibers are multilayered. The fibers are radially oriented to a solid electrolyte tube 5, and the thicknesswise orientation of fibers of the mat 9 on the side of the tube 5 is made low as shown by the numeral 9a, while the thicknesswise orientation of fibers of the mat 9 on the side of container 2 of the cathode is made high as shown by the numeral 9b. The resistance of the low orientation layer 9a in the thickness direction is made high, while the resistance of the high orientation layer 9b in the thickness direction is made low. The speed of electrochemical reaction in the vicinity of the boundary area of a solid electrolyte tube 5 is made small to suppress the deposition of insulative sulfur near the tube 5 which is liable to occur at the final time of charging. It is thus possible to make even the dispersion of active material in the cathode, reduce the internal resistance of the inside of the cathode, and the recovering performance of charging.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はナトリウム−硫黄電池に関し、さらに詳しくは
特にナトリウム−硫黄電池の陽極容器と固体電解質管と
の間に設けられた陽極用導電材に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a sodium-sulfur battery, and more particularly to a conductive material for an anode provided between an anode container and a solid electrolyte tube of a sodium-sulfur battery. It is something.

[従来の技術] 最近、電気自動車用、夜間電力貯蔵用の二次電池として
性能面および経済面の両面において優れ、300〜40
0℃で動作する高温型のナトリウム−硫黄電池の研究開
発が進められている。
[Prior Art] Recently, secondary batteries for electric vehicles and nighttime power storage have been developed which are excellent in both performance and economical aspects.
Research and development is underway on high-temperature sodium-sulfur batteries that operate at 0°C.

すなわち、性能面ではナトリウム−硫黄電池は鉛蓄電池
に比べて理論エネルギー密度が高く、充放電時における
水素や酸素の発生といった副作用もなく、陽極活物質の
利用率も高く、経済面ではナトリウムおよび硫黄が安価
であるという利点を有している。
In other words, in terms of performance, sodium-sulfur batteries have a higher theoretical energy density than lead-acid batteries, have no side effects such as the generation of hydrogen or oxygen during charging and discharging, have a high utilization rate of the positive electrode active material, and are economically superior to sodium and sulfur batteries. has the advantage of being inexpensive.

従来のナトリウム−硫黄電池の陽極用導電材はグラファ
イトマットなどを利用し、その*aの方向がナトリウム
−硫黄電池の長さ方向に多く延びるように形成して使用
されていた。しがし、このようなナトリウム−硫黄電池
においては活物質の拡散性、特に半径方向の拡散性が悪
くなり、陽極用導電材内の不均一反応が進行し、分極抵
抗が増加して抵抗の増加および不均一による充電回復性
の低下を招くという問題があった。
Conventional conductive materials for the anode of sodium-sulfur batteries have been made of graphite mats, etc., and have been formed so that the *a direction extends in the longitudinal direction of the sodium-sulfur battery. However, in such a sodium-sulfur battery, the diffusivity of the active material, especially in the radial direction, deteriorates, and a non-uniform reaction within the conductive material for the anode progresses, increasing the polarization resistance and decreasing the resistance. There was a problem in that charge recovery performance deteriorated due to increase and non-uniformity.

そこで、特開昭52−’121730号公報に示すよう
に、ナトリウム−硫黄電池の充電性能を改良するために
、陽極郡全体に炭素または黒鉛材の中にセラミック繊維
を混入させたものを使用し、放電生成物である多硫化ナ
トリウムの漏れ性を改善して多硫化ナトリウムの移動を
容易にするものが提案されている。
Therefore, as shown in JP-A-52-121730, in order to improve the charging performance of sodium-sulfur batteries, a carbon or graphite material mixed with ceramic fibers was used for the entire anode group. , a method has been proposed that improves the leakage of sodium polysulfide, which is a discharge product, and facilitates the movement of sodium polysulfide.

[発明が解決しようとする課題] ところが、上記前者のナトリウム−硫黄電池は陽極郡全
体を均一層とし、セラミックelk!を陽極郡全体に混
入しているため、陽極部における抵抗が大きくなり過ぎ
、エネルギー効率が低いという問題があった。
[Problems to be Solved by the Invention] However, in the former sodium-sulfur battery, the entire anode group is made of a uniform layer, and the ceramic elk! is mixed into the entire anode group, resulting in an excessively large resistance at the anode section, resulting in a problem of low energy efficiency.

本発明の目的は、ナトリウム−硫黄電池の陽極内部の活
物質の拡散性を均一化し、陽極内部の内部抵抗の低減化
と、充電回復性の向上を図り、さらには硫黄極め製法が
容易で低コスト化が可能なナトリウム−硫黄電池を提供
することにある。
The purpose of the present invention is to equalize the diffusivity of the active material inside the anode of a sodium-sulfur battery, reduce the internal resistance inside the anode, and improve the charge recovery property. The object of the present invention is to provide a sodium-sulfur battery that can be manufactured at low cost.

[課題を解決するための手段] 上記の目的を達成するため、本願第1の発明は、陽極活
物質の硫黄を含浸する陽極用導電材を収納した筒状の陽
極容器に対し、ナトリウムイオンを選択的に透過させる
機能を有する有底筒状の固体電解質管を固定し、前記固
体電解質管を前記陽極用導電材の中空部に挿入したナト
リウム−硫黄電池において、前記陽極用導電材は、繊維
を積層したマットの厚さ方向にニードルパンチが施され
、そのニードルパンチにて厚さ方向に配向された繊維が
前記固体電解質管に対し放射方向に配向され、かつ、固
体電解質管側のマットの厚さ方向の繊維が低配向となり
、陽極容器間のマットの厚さ方向の繊維が高配向となる
ように形成されたことをその要旨とする。
[Means for Solving the Problems] In order to achieve the above object, the first invention of the present application is to impregnate sodium ions into a cylindrical anode container containing a conductive material for an anode impregnated with sulfur as an anode active material. In a sodium-sulfur battery in which a bottomed cylindrical solid electrolyte tube having a function of selectively transmitting light is fixed and the solid electrolyte tube is inserted into a hollow part of the anode conductive material, the anode conductive material is made of fibers. A needle punch is performed in the thickness direction of the laminated mat, and the fibers oriented in the thickness direction by the needle punch are oriented in the radial direction with respect to the solid electrolyte tube, and the fibers of the mat on the solid electrolyte tube side are oriented in the radial direction. The gist is that the fibers in the thickness direction of the mat between the anode containers are formed to have low orientation, and the fibers in the thickness direction of the mat between the anode containers are highly oriented.

第2の発明は、固体電解質管側に配設される放射方向に
繊維が少なく配向された低配向層において、マット厚さ
方向繊維とマット長さ方向繊維との割合は[マット厚さ
方向1111fi/マット長さ方向繊維]が1以下とし
、陽極容器側に配設される放射方向に繊維が多く配向さ
れた高配向層において、マット厚さ方向繊維とマット長
さ方向繊維との割合は[マット厚さ方向繊維/マット長
さ方向11維〕が2〜20の範囲とし・、さらに陽極用
導電材の高配向層と低配向層との厚さの割合は[高配向
層・/低配向層〕が1〜10の範囲にしたことをその要
旨とする。
The second invention provides that in a low orientation layer in which a small number of fibers are oriented in the radial direction, which is disposed on the solid electrolyte tube side, the ratio of mat thickness direction fibers to mat length direction fibers is [mat thickness direction 1111fi / mat longitudinal direction fibers] is 1 or less, and in the highly oriented layer in which many fibers are oriented in the radial direction arranged on the anode container side, the ratio of the mat thickness direction fibers to the mat longitudinal direction fibers is [ The fibers in the mat thickness direction/11 fibers in the length direction of the mat are in the range of 2 to 20, and the ratio of the thickness of the highly oriented layer and the low oriented layer of the conductive material for the anode is [highly oriented layer/low oriented layer]. layer] is in the range of 1 to 10.

第3の発明は、陽極用導電材と前記固体電解質管との間
には陽極用導電材よりも内部抵抗が高い高抵抗層を設け
たことをその要旨とし、高抵抗層に使用する材料はセラ
ミックス繊維、ガラス繊維、セラミック粉、ガラス粉、
高抵抗カーボンマット、カーボン繊維とセラミックス繊
維の混合体シート、セラミックス粉とカーボン粉の混合
体、セラミックス繊維とカーボン粉の混合体、セラミッ
ク粉とカーボン繊維の混合体等本陽l/#8電導材マッ
トに比較して高抵抗であり、300〜400℃の硫黄活
物質下で安定なものであれば特に限定しない。
The gist of the third invention is that a high resistance layer having a higher internal resistance than the anode conductive material is provided between the anode conductive material and the solid electrolyte tube, and the material used for the high resistance layer is Ceramic fiber, glass fiber, ceramic powder, glass powder,
High-resistance carbon mat, carbon fiber and ceramic fiber mixture sheet, ceramic powder and carbon powder mixture, ceramic fiber and carbon powder mixture, ceramic powder and carbon fiber mixture, etc. Benyo 1/#8 conductive materials It is not particularly limited as long as it has higher resistance than matte and is stable under sulfur active material at 300 to 400°C.

[作用] 上記の構成により、第1発明の作用は、低配向層の厚さ
方向の抵抗が高くなり、一方、高配向層の厚さ方向の抵
抗が低くなるため、固体電解質管の界面付近の電気化学
反応速度が小さくなり、充電末期に絶縁性の硫黄が固体
電解質管付近に析出するのが押えられ、充電回復性の向
上が図られる。
[Function] With the above configuration, the effect of the first invention is that the resistance in the thickness direction of the low orientation layer increases, while the resistance in the thickness direction of the high orientation layer decreases, so that the resistance near the interface of the solid electrolyte tube increases. The electrochemical reaction rate is reduced, preventing insulating sulfur from being deposited near the solid electrolyte tube at the end of charging, and improving charge recovery.

第2発明の作用は、高配向層の陽極用導電材内の方から
順により円滑に活物質反応が行われ、大幅に電池内部抵
抗の低減化と充電回復性の向上が図られる。
The effect of the second invention is that the active material reaction is carried out more smoothly starting from the inside of the anode conductive material of the highly oriented layer, and the internal resistance of the battery is significantly reduced and the charge recovery property is improved.

第3発明の作用は、充電末期に絶縁性の硫黄が固体電解
質管と本陽極導電材マットの界面の析出することで内部
抵抗が急増し完全充電が困難になることを防ぎ、界面付
近における電気化学反応速度を小さくして固体電解質管
から離れた陽極導電材内から活物質反応を行わせるので
充電回復性の向上が図られる。
The effect of the third invention is to prevent insulating sulfur from depositing at the interface between the solid electrolyte tube and the present anode conductive material mat at the end of charging, which causes a rapid increase in internal resistance and makes complete charging difficult. Since the chemical reaction rate is reduced and the active material reaction is performed from within the anode conductive material away from the solid electrolyte tube, charge recovery performance can be improved.

[実施例〕 以下、本発明を具体化した一実施例を第1〜6図に基づ
いて説明する。
[Example] Hereinafter, an example embodying the present invention will be described based on FIGS. 1 to 6.

第1図に示すように、ナトリウム−硫黄電池は下部に陽
極端子1を備えた陽極容器2と、同陽極容器2の内部に
収容され、かつポリアクリロニトリル系のグラファイト
繊維をマット状、かつ円筒状に形成してなり陽極活物質
(硫黄)を含浸した陽極用導電部材Mと、前記陽極容器
2の上端部に対し、αアルミナ製の絶縁リング3を介し
て連結され、かつ溶融金属ナトリウムNaを貯留する陰
極容器4と、前記絶縁リング3の内周部に固着され、か
つ陽極活物質であるナトリウムイオンを選択的に透過さ
せる機能を有した下方へ延びる円筒状の袋管を形成する
βアルミナ製の固体電解質管5とからS戒されている。
As shown in FIG. 1, a sodium-sulfur battery includes an anode container 2 with an anode terminal 1 at the bottom thereof, and a mat-like, cylindrical shape of polyacrylonitrile graphite fibers housed inside the anode container 2. An anode conductive member M impregnated with an anode active material (sulfur) is connected to the upper end of the anode container 2 via an insulating ring 3 made of α-alumina, and is injected with molten metal sodium Na. β-alumina which forms a cylindrical bag tube which is fixed to the inner circumference of the cathode container 4 and the insulating ring 3 and extends downward and has the function of selectively transmitting sodium ions, which are the anode active material. The solid electrolyte tube 5 manufactured by the company is subject to S precepts.

前記固体電解質管5の周囲には高抵抗層としてのアルミ
ナ繊維クロスAが配設されている。
An alumina fiber cloth A serving as a high resistance layer is disposed around the solid electrolyte tube 5.

また、陰極容器4の上部蓋の中央にはその陰極容器4を
通じて固体電解質管5底部まで延びた細長い陰極管6が
貫通支持され、その陰極管6の上端部には陰[!端子7
が固着されている。
Further, an elongated cathode tube 6 extending through the cathode container 4 to the bottom of the solid electrolyte tube 5 is supported through the center of the upper lid of the cathode container 4, and a cathode [!] is provided at the upper end of the cathode tube 6. terminal 7
is fixed.

そして、放電時には次のような反応によってナトリウム
イオンが固体電解質管5を透過して陽極容器2および固
体電解質管5で区画形成された陽極用導電材Mの収容空
間に入り、その導電材Mの溶融硫黄と反応し、多硫化ナ
トリウム、特に最終的には三硫化ナトリウムを生成する
During discharge, sodium ions pass through the solid electrolyte tube 5 through the following reaction and enter the housing space for the anode conductive material M defined by the anode container 2 and the solid electrolyte tube 5, and the conductive material M is Reacts with molten sulfur to form sodium polysulfides, especially finally sodium trisulfide.

2 N a + X S = N a * S xまた
、充電時には放電時とは逆の反応が起こりナトリウムお
よび硫黄が生成される。
2 Na + X S = Na * S x Also, during charging, a reaction opposite to that during discharging occurs, and sodium and sulfur are generated.

なお、前記陰極容器4および固体電解質管5内には、は
ぼ全体にわたってその固体電解質管5が破損した場合の
安全対策として、ステンレス製のウィック8が充填され
ている。
The cathode container 4 and the solid electrolyte tube 5 are filled with a stainless steel wick 8 as a safety measure in case the solid electrolyte tube 5 is damaged.

次に、本発明のナトリウム−硫黄電池の特徴的構成を説
明する。
Next, the characteristic structure of the sodium-sulfur battery of the present invention will be explained.

第4図(a)〜(d)に示すように、前述した陽極用導
電材Mはポリアクリロニトリル系繊維を直方体形状に成
形したマット9から構成されており、その厚さ方向に対
し良計10を挿通して二ドルパンチが行われている。す
なわち、ニードルパンチが行われると良計10の凹部1
0aに形成されたエツジ10bにより引っ掛けられたマ
ット9の繊維は良計10の挿入方向と同じ方向、すなわ
ちマット9の厚さ方向に繊維が配向されることになる。
As shown in FIGS. 4(a) to 4(d), the conductive material M for the anode described above is composed of a mat 9 made of polyacrylonitrile fibers molded into a rectangular parallelepiped shape, and the conductive material M is made of polyacrylonitrile fibers formed into a rectangular parallelepiped shape. A two-dollar punch is being performed by inserting the That is, when needle punching is performed, a total of 10 recesses 1
The fibers of the mat 9 hooked by the edge 10b formed at 0a are oriented in the same direction as the insertion direction of the mat 10, that is, in the thickness direction of the mat 9.

また、前記マット9は厚さ方向の繊維(以下、マット厚
さ方向繊維という)が低配向層となる低配向マット9a
と、マット厚さ方向繊維が高配向層となる高配向マット
9bとから構成されている。
Further, the mat 9 has a low orientation mat 9a in which fibers in the thickness direction (hereinafter referred to as mat thickness direction fibers) form a low orientation layer.
and a highly oriented mat 9b in which fibers in the mat thickness direction form a highly oriented layer.

そして、前記低配向マット9aは固体電解質管5側に配
置され、高配向マット9bは陽極容器2Bに配置される
The low orientation mat 9a is placed on the solid electrolyte tube 5 side, and the high orientation mat 9b is placed on the anode container 2B.

前記高配向マット9bおよび低配向マット9aは直方体
形状に形成されたマット9の厚さ方向にニードルパンチ
により挿入する良計10の挿入深さHを調節することに
より形成されている。すなわち、高配向マット9bは第
4図(a)、(b)に示すように良計10をマット9の
深さHまで挿入し、ニードルパンチを数多く行うことに
より形成するとともに、低配向マット9aは第4図(c
)(d)に示すように、良計10がマット9を貫通する
ように挿入し、ニードルパンチを数少なくすることによ
り形成している。
The highly oriented mat 9b and the low oriented mat 9a are formed by adjusting the insertion depth H of a gauge 10 inserted by a needle punch in the thickness direction of the mat 9 formed into a rectangular parallelepiped shape. That is, the highly oriented mat 9b is formed by inserting the good gauge 10 to the depth H of the mat 9 and performing many needle punches as shown in FIGS. 4(a) and 4(b), and the low oriented mat 9a is shown in Figure 4 (c
) As shown in (d), the blade 10 is inserted so as to penetrate the mat 9, and the number of needle punches is reduced.

このように構成された複数枚(本実施例においては3枚
)のマット9を第3図に示すように、断面円弧形状にし
、さらに周方向に配置して筒状の陽極用導電材Mを形成
している。そして、この筒状の陽極用導電材Mを前記陽
極容器2と固体電解質管5との間に形成される収納空間
に収納配置している。
As shown in FIG. 3, the plurality of mats 9 (three in this example) constructed in this manner are made into an arcuate cross section, and are further arranged in the circumferential direction to form a cylindrical anode conductive material M. is forming. The cylindrical anode conductive material M is stored in a storage space formed between the anode container 2 and the solid electrolyte tube 5.

また、本実施例においては高配向マット9bのマット厚
さ方向繊維と、マット9の長さ方向の繊維(以下、マッ
ト長さ方向繊維という)の割合は[マット厚さ方向繊維
/マット長さ方向繊維]を10にしているが、2〜20
の範囲内のものであればよい、さらに、低配向マット9
aのマット厚さ方向繊維とマット長さ方向繊維の割合は
[マット厚さ方向線11/マット長さ方向繊維]を1と
しているが、1以下の範囲内のものであればよい。
In addition, in this example, the ratio of the mat thickness direction fibers of the highly oriented mat 9b to the length direction fibers of the mat 9 (hereinafter referred to as mat length direction fibers) is [mat thickness direction fibers/mat length direction fibers]. directional fiber] is set to 10, but 2 to 20
In addition, low orientation mat 9
The ratio of mat thickness direction fibers to mat length direction fibers in a is set to [mat thickness direction line 11/mat length direction fibers] to be 1, but it may be within a range of 1 or less.

また、本実施例の陽極用導電材Mを構成する高配向マッ
ト9bと低配向マット9aの厚さの割合は[高配向マッ
トの厚さ(高配向層)/低配向マットの厚さ(低配向層
)]を2としているが、1〜10の範囲内のもであれば
よい。
Further, the ratio of the thickness of the highly oriented mat 9b and the low oriented mat 9a constituting the anode conductive material M of this example is [thickness of the highly oriented mat (highly oriented layer)/thickness of the low oriented mat (thickness of the low oriented mat) Alignment layer)] is set to 2, but it may be within the range of 1 to 10.

なお、マット9の構成は多層構造のものでもよく、例え
ば第5図に示すようにマット9の厚さ方向に挿入する良
計10の挿入深さをH1〜H3の3段階に調節し、単層
マット9の内部が3層構造となるようにニードルパンチ
を行うことも可能である。
Note that the structure of the mat 9 may be a multilayer structure, for example, as shown in FIG. It is also possible to perform needle punching so that the inside of the layer mat 9 has a three-layer structure.

このとき、高配向Nl9cm、中配r&[!19b−低
配向層9a−が構成され、高配向層9cmは中配向層9
b”よりも[マット厚さ方向ta維/マット長さ方向繊
維]の割合が大きくなり、中配向層9b−は低配向層9
a−よりも[マット厚さ方向m維/マット長さ方向繊維
]の割合が大きくなるように形成されている。さらに、
前記各高配向層9c“と同一の高配向マット、中配向層
9b−と同一の中配向マット、低配向層9a″と同一の
低配向マットをそれぞれ別体で形成しておき、あとから
これらの高配向マット、中配向マット、低配向マットを
接続する程度にニードルパンチを施!−て一体化して構
成してもよい。
At this time, highly oriented Nl9cm, medium oriented r&[! 19b-low orientation layer 9a- is constituted, high orientation layer 9cm is medium orientation layer 9
The ratio of [ta fibers in the mat thickness direction/fibers in the mat length direction] is larger than that of the medium orientation layer 9b'' than in the low orientation layer 9b''.
It is formed so that the ratio of [m fibers in the mat thickness direction/fibers in the length direction of the mat] is larger than that in a-. moreover,
A high orientation mat that is the same as each of the high orientation layers 9c'', a medium orientation mat that is the same as the medium orientation layer 9b-, and a low orientation mat that is the same as the low orientation layer 9a'' are formed separately, and these mats are later added. Needle punch to the extent that the high orientation mat, medium orientation mat, and low orientation mat are connected! - may be integrated into one structure.

また、前記マット9の高配向マット9bおよび低配向マ
ット9aはそれぞれ別体で形成しておき、あとからそれ
ぞれのマット9a、9bを接続する程度にニードルパン
チを施して一体化して′#4戒してもよい。
Further, the high orientation mat 9b and the low orientation mat 9a of the mat 9 are formed separately, and then needle punched to the extent that the respective mats 9a and 9b are connected and integrated. You may.

次に、前記マット9の高配向マット9bおよび低配向マ
ット9aの構成割合、各マット9a、9bの厚さ方向お
゛よび縦方向の繊維の配向割合、配向マットの多層構造
、糸径、焼成温度などの条件を変えて次の3種類のマッ
ト9を製造し、そのマット9によって陽極用導電材Mを
形成した。
Next, the composition ratio of the highly oriented mat 9b and the low oriented mat 9a of the mat 9, the orientation ratio of the fibers in the thickness direction and the longitudinal direction of each mat 9a, 9b, the multilayer structure of the oriented mat, the yarn diameter, the firing The following three types of mats 9 were manufactured by changing conditions such as temperature, and the conductive material M for an anode was formed using the mats 9.

(X)高配向マット、低配向マットをそれぞれ別体で製
造した後に一体化して2層構造にしたマット。
(X) A mat in which a highly oriented mat and a low oriented mat are produced separately and then integrated to form a two-layer structure.

[高配向マット] マット厚さ方向繊維/マット長さ方向*維=10 糸径:9μm 糸真比重:1.76g/cc 素材;ポリアクリロニトリル系 マット焼成温度82000℃ かさ密度:0.15g/cc [低配向マット] マット厚さ方向繊維/マット長さ方向1m維=1/2 糸径:9μm 糸真比!l:1゜76g/cc 素材:ポリアクリロニトリル系 マット焼成温度: 2000℃ かさ密度:0.12g/cc マットを構成する厚さ割合=高配向マットの厚さ/低配
向マットの厚さ=3 [高抵抗層材料]:アルミナクロスlan目付け100
g/m2 (Y)高配向マット、中配向マット、低配向マットをそ
れぞれ別体で製造した後に一体化して3層構造にしたマ
ット。
[Highly oriented mat] Mat thickness direction fibers/mat length direction * fibers = 10 Thread diameter: 9 μm Thread true specific gravity: 1.76 g/cc Material: Polyacrylonitrile mat Firing temperature 82000°C Bulk density: 0.15 g/cc [Low oriented mat] Mat thickness direction fiber/mat length direction 1m fiber = 1/2 Thread diameter: 9μm Thread true ratio! l: 1°76 g/cc Material: Polyacrylonitrile mat Firing temperature: 2000°C Bulk density: 0.12 g/cc Thickness ratio of mat = Highly oriented mat thickness/Low oriented mat thickness = 3 [ High resistance layer material]: Alumina cloth LAN basis weight 100
g/m2 (Y) A mat in which a highly oriented mat, a medium oriented mat, and a low oriented mat are manufactured separately and then integrated into a three-layer structure.

[陽極側高配向マット] マット厚さ方向繊維/マット長さ方向繊維=12 糸径:8μm 糸真比重:1.76g/cc 素材:ポリアクリロニトリル系 マット焼成温度: 2000℃ かさ密度:0.15g/cc [中配向マット] マット厚さ方向繊維/マット厚さ方向繊維=2 糸径:8μm 糸真比重:1.76g/cc 素材:ポリアクリロニトリル系 マット焼成温度: 2000℃ かさ密度:0.13g/cc [固体電解質管側低配向マット〕 マット厚さ方向繊11/マプト長さ方向繊維=1/10 糸径:8μm 糸真北jt: 1.76g/cc 素材:ポリアクリロニトリル系 マット焼成温度: 2000℃ かさ密度:0.1g/cc マットを構成する割合=qJi管側高配向マットの厚さ
:中配向マットの厚さ:固体電解質管側低配向マットの
厚さ=3:2:1 [高抵抗層材料]:アルミナ繊繊維クロ日日け80g/
m” (z)1つのマットに挿入する針の挿入深さを3段階に
行ってニードルパンチい3PIl槽造にしたマット。
[Highly oriented mat on anode side] Mat thickness direction fiber/mat length direction fiber = 12 Thread diameter: 8 μm Thread true specific gravity: 1.76 g/cc Material: Polyacrylonitrile mat Firing temperature: 2000°C Bulk density: 0.15 g /cc [Medium oriented mat] Mat thickness direction fiber/mat thickness direction fiber = 2 Thread diameter: 8 μm Thread true specific gravity: 1.76 g/cc Material: Polyacrylonitrile mat Firing temperature: 2000°C Bulk density: 0.13 g /cc [Solid electrolyte tube side low orientation mat] Mat thickness direction fiber 11/Maputo length direction fiber = 1/10 Thread diameter: 8 μm Thread true north jt: 1.76 g/cc Material: Polyacrylonitrile mat firing temperature: 2000°C Bulk density: 0.1 g/cc Proportion of mat = qJi Thickness of highly oriented mat on tube side: Thickness of medium oriented mat: Thickness of low oriented mat on solid electrolyte tube side = 3:2:1 [ High resistance layer material]: Alumina fiber black shade 80g/
m” (z) A mat that has a needle-punched 3PIl tank structure by setting the insertion depth of the needle into one mat in three stages.

糸径二8μm 糸真比重: 1.76g/cc 素材:ポリアクリロニトリル系 マット焼成温度82000℃ [陽極側高配向層] マットの厚さ方内職11/マットの長さ方向繊維=10 [中配向層コ マットの厚さ方向繊維/マットの長さ方向繊維=3 [固体電解質管側低配向層コ マットの厚さ方向繊維/マヅトの長さ方向繊維=172 マットを構成する割合=陽極管測高配向層:中配向N:
固体電解質管側低配向層=3:2:1[高抵抗層材料]
::アルミナ維クロス目付(す80g/m’ また、前記マット9との特性を比較するため比較例用の
ニードルパンチを厚さ方向に行って単層マット9をa造
した。
Thread diameter: 28 μm Thread true specific gravity: 1.76 g/cc Material: Polyacrylonitrile mat Firing temperature: 82,000°C [Highly oriented layer on anode side] Thickness of mat: 11/Longitudinal fiber of mat: 10 [Medium oriented layer] Thickness fiber of COMAT/Longitudinal fiber of mat = 3 [Solid electrolyte tube side low orientation layer Thickness fiber of COMAT/Longitudinal fiber of MADUT = 172 Proportion of mat = Anode tube high orientation layer : Medium orientation N:
Solid electrolyte tube side low orientation layer = 3:2:1 [high resistance layer material]
:: Alumina fiber cloth basis weight (80 g/m') In addition, in order to compare the characteristics with the mat 9 described above, a single layer mat 9 was made by needle punching in the thickness direction as a comparative example.

(Q)マット厚さ方向繊1i:マット長さ方向mu=2 糸径:8μm 糸真比重: 1.76g/cc 素材:ポリアクリロニトリル系 マット焼成温度: 2000℃ かさ密度:0.13g/cc [高抵抗層材料]::アルミナ維クロス目付け80g/
m2 上記の比較例を含めた4種類のマット9をそれぞれ使用
して前述の筒状の陽極用導電材Mを形威し、前記陽極容
器2と固体電解質管5との間に形成される収納空間に収
納配置し、充放電特性を測定した。
(Q) Mat thickness direction fiber 1i: Mat length direction mu = 2 Thread diameter: 8 μm Thread true specific gravity: 1.76 g/cc Material: Polyacrylonitrile mat Firing temperature: 2000°C Bulk density: 0.13 g/cc [ High resistance layer material]: Alumina fiber cloth basis weight 80g/
m2 The above-mentioned cylindrical anode conductive material M is formed using four types of mats 9 including the above-mentioned comparative example, and the storage space is formed between the anode container 2 and the solid electrolyte tube 5. The battery was placed in a space and its charge/discharge characteristics were measured.

第6図は充放t#性の測定結果を示し、縦方向はナトリ
ウム−硫黄電池の起電力、横方向は陽極用導電材M内の
放電深度をそれぞれ示す。
FIG. 6 shows the measurement results of charging/discharging t# characteristics, where the vertical direction shows the electromotive force of the sodium-sulfur battery, and the horizontal direction shows the depth of discharge in the conductive material M for the anode.

この結果から理解できるように、陽極容器2ff!!1
から固体電解質1w5開に向う程マット厚さ方向繊維が
低配向となるようにすると、陽極容器2側はどマット9
の内部抵抗が低くなり、また、固体電解質’[511m
はどマット9の内部抵抗が高くなる。
As can be understood from this result, the anode container is 2ff! ! 1
If the fibers in the mat thickness direction are made to become less oriented as the solid electrolyte 1w5 is opened, the mat 9 on the anode container 2 side
The internal resistance of solid electrolyte' [511m
The internal resistance of the mat 9 increases.

したがって、充電時に絶縁性の硫黄は内部抵抗の少ない
陽極容器2側から析出−1固体電解質管5の周囲に硫黄
が析出して完全充電が困難になることを助止することが
できる。さらに、マット9のマット厚さ方向繊維が固体
電解質管5に対し放射方向となっているため、固体電解
質管5から同一距離に位置した陽極用導電材Mの内部に
おける活物質反応が均一化して活物質の利用率が向上し
て充電回復性が上り、ナトリウム−硫黄電池を高容量と
することができる。
Therefore, during charging, insulating sulfur is deposited from the anode container 2 side with low internal resistance, and it is possible to prevent sulfur from being deposited around the -1 solid electrolyte tube 5, which makes complete charging difficult. Furthermore, since the fibers in the mat thickness direction of the mat 9 are oriented in the radial direction with respect to the solid electrolyte tube 5, the active material reaction inside the anode conductive material M located at the same distance from the solid electrolyte tube 5 is made uniform. The utilization rate of the active material is improved, the charge recovery property is improved, and the sodium-sulfur battery can have a high capacity.

また、できるだけマット9を多層構造に形成し。Further, the mat 9 is formed to have a multilayer structure as much as possible.

陽極容器2側に行くほどマット9の内部抵抗を低くする
ように構成したほうが充電回復特性が向上する。なお、
低配向マット9aおよび高配向マ・y)9bを別体に形
成し、その後から一体にII戒するよりも、良計10を
挿入する深さを調節して単層マット9のニードルパンチ
を行い、その内部を多N構造にしたものの方が低配向マ
ット9aと高配向マット9bとの合せ部分に硫黄析出の
集中が排除されるので充放電特性はさらによくなる。
If the internal resistance of the mat 9 is made lower toward the anode container 2 side, the charge recovery characteristics will be improved. In addition,
Rather than forming the low-orientation mat 9a and the high-orientation mat 9a and 9b separately and then forming them together, the single-layer mat 9 is needle-punched by adjusting the depth to which the good measure 10 is inserted. If the interior thereof has a multi-N structure, the concentration of sulfur precipitation at the joint portion of the low-orientation mat 9a and the high-orientation mat 9b is eliminated, so that the charge-discharge characteristics are even better.

さらに、アルミナ繊維クロスAを固体電解質管5の周囲
に配設したことにより、(111体電解質管5と陽極用
導電材Mとの界面に硫黄が析出しないため、内部抵抗の
急増により完全充電が困難になることを防止し充電回復
性の向上を図ることができる。
Furthermore, by arranging the alumina fiber cloth A around the solid electrolyte tube 5, sulfur does not precipitate at the interface between the 111-body electrolyte tube 5 and the conductive material M for the anode, so a sudden increase in internal resistance prevents complete charging. It is possible to prevent this from becoming difficult and improve charge recovery performance.

本実施例においては、マット9を3枚使用して陽極用導
電材Mを構成したが、2枚または4枚以上使用して陽極
用導電材Mを構成することも可能である。
In this embodiment, three mats 9 are used to construct the conductive material M for the anode, but it is also possible to construct the conductive material M for the anode by using two or four or more mats.

なお、この発明は前記実施例に限定されるものではなく
、この発明の趣旨から逸脱しない範囲内で任意に変更す
ることも可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and may be modified as desired without departing from the spirit of the present invention.

[発明の効果] 以上詳述したように、この発明によれば、陽極容器側に
配置されたマットのマット厚さ方向繊維は高配向となり
、固体電解質管側に向かうほどその繊維が低配向となっ
ているため、マット内部の抵抗が陽極容器側はど低くな
り、充電時における活物質の析出が陽極容器側から行わ
れるため、ナトリウム−硫黄電池の充電回復性を向上さ
せることができるという効果がある。
[Effects of the Invention] As detailed above, according to the present invention, the fibers in the mat thickness direction of the mat disposed on the anode container side are highly oriented, and the fibers become less oriented toward the solid electrolyte tube side. As a result, the resistance inside the mat is lower on the anode container side, and the active material is deposited from the anode container side during charging, which has the effect of improving the charge recovery performance of sodium-sulfur batteries. There is.

また、マットのマット厚さ方向繊維が固体電解質管に対
し放射方向となっているため、活物質が析出したとき、
円周方向の拡散がよくなるとともに、固体電解質管から
同一距離の陽極用導電材内の活物質反応が均一化される
ので活物質の利用率が向上し、さらには充電回復性が向
上するという効果がある。
In addition, since the mat thickness direction fibers of the mat are radial to the solid electrolyte tube, when the active material is deposited,
In addition to improving the diffusion in the circumferential direction, the active material reaction within the anode conductive material at the same distance from the solid electrolyte tube is made more uniform, which improves the utilization rate of the active material and further improves charge recovery. There is.

さらに、高抵抗層を陽極用導電材と固体電解質管との間
に配置したことにより、固体電解質管界面付近における
電気化学反応速度を小さくすることができ、固体電解質
管から離れたマット内から活物質が析出し、充電回復性
をさらに向上させることができる。
Furthermore, by placing a high-resistance layer between the conductive material for the anode and the solid electrolyte tube, the electrochemical reaction rate near the solid electrolyte tube interface can be reduced, allowing activation to occur from within the mat away from the solid electrolyte tube. The substance is precipitated, and the charge recovery property can be further improved.

また、陽極用導電材のマットの製造が従来に比べて容易
で低コストにすることができるという効果がある。
Further, there is an effect that the mat of the conductive material for the anode can be manufactured more easily and at lower cost than in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のナトリウム−硫黄電池の中央部縦断面
図、第2図は第1図のB−BIN断面図、第3図は3枚
のマットにより陽極用導電材を構成した一部拡大斜視図
、第4図(a)はマ・ントの厚さ方向に対し所定の深さ
に良計を挿入した状態を示す説明図、第4図(b)は第
4図(a)の良計を抜いた状態を示す説明図、第4図(
c)はマ・yトの厚さ方向に対し良計を挿通した状態を
示す説明図、第4図(d)は第4図(c)の良計を抜い
た状態を示す説明図、第5図はニードルパンチにより多
層構造した状態を示す説明図、第6図はナトリウム−硫
黄電池の充放電特性図である。 2・・・陽極容器、5・・・固体電解質管、9・・・マ
ット、9a・・・低配向マット、9b・・・高配向マッ
ト、A・・・高抵抗層としてのアルミナ繊維クロス、M
・・・陽極用導電材。
Figure 1 is a vertical sectional view of the central part of the sodium-sulfur battery of the present invention, Figure 2 is a sectional view of B-BIN in Figure 1, and Figure 3 is a part of the conductive material for the anode made up of three mats. An enlarged perspective view, FIG. 4(a) is an explanatory view showing a state in which the gauge is inserted at a predetermined depth in the thickness direction of the mantle, and FIG. 4(b) is an illustration of the state shown in FIG. 4(a). An explanatory diagram showing the state in which good plans have been removed, Figure 4 (
c) is an explanatory diagram showing a state in which a good gauge is inserted in the thickness direction of the ma/y. Fig. 4 (d) is an explanatory diagram showing a state in which a good gauge is removed from Fig. FIG. 5 is an explanatory diagram showing a multilayer structure formed by needle punching, and FIG. 6 is a diagram showing the charge/discharge characteristics of a sodium-sulfur battery. 2... Anode container, 5... Solid electrolyte tube, 9... Mat, 9a... Low orientation mat, 9b... Highly oriented mat, A... Alumina fiber cloth as a high resistance layer. M
...Conductive material for anode.

Claims (1)

【特許請求の範囲】 1、陽極活物質の硫黄を含浸する陽極用導電材を収納し
た筒状の陽極容器に対し、ナトリウムイオンを選択的に
透過させる機能を有する有底筒状の固体電解質管を固定
し、前記固体電解質管を前記陽極用導電材の中空部に挿
入したナトリウム−硫黄電池において、 前記陽極用導電材は、繊維を積層したマットの厚さ方向
にニードルパンチが施され、そのニードルパンチにて厚
さ方向に配向された繊維が前記固体電解質管に対し放射
方向に配向され、かつ、固体電解質管側のマットの厚さ
方向の繊維が低配向となり、陽極容器側のマットの厚さ
方向の繊維が高配向となるように形成されたことを特徴
とするナトリウム−硫黄電池。 2、固体電解質管側に配設される放射方向に繊維が少な
く配向された低配向層において、マット厚さ方向繊維と
マット長さ方向繊維との割合は[マット厚さ方向繊維/
マット長さ方向繊維]が1以下とし、陽極容器側に配設
される放射方向に繊維が多く配向された高配向層におい
て、マット厚さ方向繊維とマット長さ方向繊維との割合
は[マット厚さ方向繊維/マット長さ方向繊維]が2〜
20の範囲とし、さらに陽極用導電材の高配向層と低配
向層との厚さの割合は[高配向層/低配向層]が1〜1
0の範囲にしたことを特徴とする請求項1記載のナトリ
ウム−硫黄電池。 3、陽極用導電材と前記固体電解質管との間には陽極用
導電材よりも内部抵抗が高い高抵抗層を設けたことを特
徴とする請求項1また2記載のナトリウム−硫黄電池。
[Scope of Claims] 1. A bottomed cylindrical solid electrolyte tube that has the function of selectively transmitting sodium ions to a cylindrical anode container containing a conductive material for an anode impregnated with sulfur as an anode active material. In the sodium-sulfur battery in which the solid electrolyte tube is inserted into the hollow part of the conductive material for the anode, the conductive material for the anode is needle punched in the thickness direction of the mat made of laminated fibers, and the solid electrolyte tube is inserted into the hollow part of the conductive material for the anode. The fibers oriented in the thickness direction by needle punching are oriented in the radial direction with respect to the solid electrolyte tube, and the fibers in the thickness direction of the mat on the solid electrolyte tube side are less oriented, so that the fibers of the mat on the anode container side are oriented in the radial direction. A sodium-sulfur battery characterized in that the fibers are highly oriented in the thickness direction. 2. In the low orientation layer in which fewer fibers are oriented in the radial direction, which is disposed on the solid electrolyte tube side, the ratio of the mat thickness direction fibers to the mat length direction fibers is [mat thickness direction fibers/
In the highly oriented layer in which many fibers are oriented in the radial direction and arranged on the anode container side, the ratio of the mat thickness direction fibers to the mat length direction fibers is set to 1 or less. Thickness direction fiber/mat length direction fiber] is 2~
20, and the thickness ratio of the highly oriented layer and the low oriented layer of the conductive material for the anode is [highly oriented layer/lowly oriented layer] from 1 to 1.
2. The sodium-sulfur battery according to claim 1, wherein the sodium-sulfur battery is in the range of 0. 3. The sodium-sulfur battery according to claim 1 or 2, wherein a high resistance layer having an internal resistance higher than that of the anode conductive material is provided between the anode conductive material and the solid electrolyte tube.
JP1281215A 1989-10-27 1989-10-27 Sodium-sulfur battery Expired - Lifetime JPH0665070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1281215A JPH0665070B2 (en) 1989-10-27 1989-10-27 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1281215A JPH0665070B2 (en) 1989-10-27 1989-10-27 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH03145069A true JPH03145069A (en) 1991-06-20
JPH0665070B2 JPH0665070B2 (en) 1994-08-22

Family

ID=17635968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1281215A Expired - Lifetime JPH0665070B2 (en) 1989-10-27 1989-10-27 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH0665070B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902842B2 (en) 2001-09-20 2005-06-07 Ngk Insulators, Ltd. Current collector of positive electrode and sodium-sulfur battery using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635374A (en) * 1979-05-24 1981-04-08 Chloride Silent Power Ltd Sodiummsulfur battery* cathode structure thereof and method of manufacturing same
JPS6220259A (en) * 1985-07-18 1987-01-28 Yuasa Battery Co Ltd Sodium-sulfur battery
JPH01253171A (en) * 1988-03-31 1989-10-09 Ngk Insulators Ltd Sodium-sulfur battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635374A (en) * 1979-05-24 1981-04-08 Chloride Silent Power Ltd Sodiummsulfur battery* cathode structure thereof and method of manufacturing same
JPS6220259A (en) * 1985-07-18 1987-01-28 Yuasa Battery Co Ltd Sodium-sulfur battery
JPH01253171A (en) * 1988-03-31 1989-10-09 Ngk Insulators Ltd Sodium-sulfur battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902842B2 (en) 2001-09-20 2005-06-07 Ngk Insulators, Ltd. Current collector of positive electrode and sodium-sulfur battery using the same

Also Published As

Publication number Publication date
JPH0665070B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US5741608A (en) Multi-layer type nonaqueous electrolyte secondary cell
US9252411B2 (en) Multifunction battery separator
US8110303B2 (en) Non-aqueous secondary battery and its control method
JP7038951B2 (en) Negative electrode active material and negative electrode for all-solid-state battery containing it
US4078125A (en) Energy density iron-silver battery
KR20090064021A (en) Stack/folding-typed electrode assembly containing safety member and process for preparation of the same
JPS60182670A (en) Rechangeable battery
US20230411603A1 (en) Cathode active material coated with oxide-based solid electrolyte and sulfide-based solid electrolyte, and all-solid-state battery including same
US4357398A (en) Electrochemical cell having cylindrical electrode elements
US11258122B2 (en) Metal-air battery
US20090233170A1 (en) Energy storage device and method
KR101773103B1 (en) Electrode, a method for preparing the same, electrode prepared using the same and secondary battery containing the same
KR102208717B1 (en) Cylindrical Battery Cell Comprising Bottom Safety Vent
CA2532333A1 (en) Nonaqueous secondary cell and method for controlling the same
JPH03145069A (en) Sodium-sulfur battery
US20220302442A1 (en) Method for Manufacturing Electrode on Which Resistance Layer is Formed
JP2820376B2 (en) Carbon felt for sodium-sulfur battery and method for producing the same
JPH08287953A (en) Battery
US5932370A (en) Group of winding electrodes
KR102209675B1 (en) Electrode with pattern and secondary battery comprising the same
JP2919269B2 (en) Method for producing carbon felt for sodium-sulfur battery
JP3352537B2 (en) Sodium-sulfur battery
JP2832155B2 (en) Carbon felt for sodium-sulfur battery and method for producing the same
JPH03105876A (en) Sodium-sulfur battery
EP4033635A1 (en) Jig for charging/discharging battery cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 16