JPH0664990A - Production of metallized ceramic substrate - Google Patents

Production of metallized ceramic substrate

Info

Publication number
JPH0664990A
JPH0664990A JP22178192A JP22178192A JPH0664990A JP H0664990 A JPH0664990 A JP H0664990A JP 22178192 A JP22178192 A JP 22178192A JP 22178192 A JP22178192 A JP 22178192A JP H0664990 A JPH0664990 A JP H0664990A
Authority
JP
Japan
Prior art keywords
ceramic substrate
organic particles
metal film
metallized ceramic
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22178192A
Other languages
Japanese (ja)
Inventor
Yasushi Yoshii
靖 吉井
Noboru Yamaguchi
昇 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP22178192A priority Critical patent/JPH0664990A/en
Publication of JPH0664990A publication Critical patent/JPH0664990A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Abstract

PURPOSE:To provide a method for producing a metallized ceramic substrate in which the metallized ceramic substrate capable of avoiding the occurrence of blister produced in a part of the metallic film due to heating in the subsequent step performed after producing the metallized ceramic substrate can stably be produced. CONSTITUTION:This objective method for producing a metallized ceramic substrate comprises forming a metallic film containing organic particles with a plating bath containing the organic particles dispersed therein and then heat- treating the resultant film at a higher temperature than the boiling point of the organic particles in forming the metallic film on the surface of the ceramic substrate with the plating bath.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、セラミック配線板や
放熱板などの作製に使われるメタライズドセラミック基
板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metallized ceramic substrate used for producing a ceramic wiring board, a heat dissipation plate and the like.

【0002】[0002]

【従来の技術】セラミック配線板では、普通、セラミッ
ク基板の表面に導電性ペーストをスクリーン印刷機を用
いて所定のパターンで印刷して導体回路を形成する方
法、すなわち、いわゆる厚膜法が利用されている。しか
しながら、厚膜法の場合、導体回路の膜厚の制御が難し
く、得られる導体回路の電気的特性や機械的特性が十分
でなかっり、精度が余り良くなくて回路を微細化するこ
とが難しかったりという問題がある。
2. Description of the Related Art Generally, a ceramic wiring board uses a so-called thick film method in which a conductive circuit is formed by printing a conductive paste on a surface of a ceramic substrate in a predetermined pattern using a screen printing machine. ing. However, in the case of the thick film method, it is difficult to control the film thickness of the conductor circuit, the electrical characteristics and mechanical characteristics of the obtained conductor circuit are not sufficient, and the precision is not so good that it is difficult to miniaturize the circuit. There is a problem of

【0003】そのため、導体回路の高精度化・微細化が
図れるメタライズドセラミック基板、すなわちセラミッ
ク基板の表面に無電解メッキ等の方法で金属膜が形成さ
れてなるセラミック基板の利用が検討され、実用にも供
されている。メタライズドセラミック基板の場合、高精
度の微細なパターン化が可能な写真法を利用して所定の
パターンの導体回路形成ができる上、出来た導体回路は
実質的に金属製であるため抵抗値も低い。
Therefore, the use of a metallized ceramic substrate in which the precision and miniaturization of the conductor circuit can be achieved, that is, a ceramic substrate in which a metal film is formed on the surface of the ceramic substrate by a method such as electroless plating, has been studied and put to practical use. Is also provided. In the case of a metallized ceramic substrate, a conductor circuit having a predetermined pattern can be formed by using a photographic method capable of highly precise fine patterning, and the resistance value is also low because the conductor circuit is made of metal. .

【0004】ただ、上のメタライズドセラミック基板に
は、金属膜とセラミック基板の密着性(接着力の強さ)
が十分でないという問題がある。メタライズドセラミッ
ク基板を使って配線板を作製する場合、回路形成や電子
部品搭載等の工程などで様々な目的で加熱処理が施され
るのであるが、これらの加熱処理の際、金属膜にフクレ
(局部的剥離)が生じ、金属膜とセラミック基板との間
の接着状態が不良となるのである。
However, in the above metallized ceramic substrate, the adhesion between the metal film and the ceramic substrate (adhesive strength)
Is not enough. When a wiring board is manufactured using a metallized ceramic substrate, heat treatment is performed for various purposes in processes such as circuit formation and electronic component mounting.However, during these heat treatments, blisters ( Local peeling) occurs, and the adhesion state between the metal film and the ceramic substrate becomes poor.

【0005】この金属膜に生じるフクレは、メッキ法で
金属膜を析出成長させる過程で膜中等にメッキ液成分が
抱き込まれることに起因している。抱き込まれたメッキ
液成分が、その後の加熱処理でガス化した際に抜け出な
いで体積膨張を起こしてフクレを生じるのである。この
金属膜のフクレを防止する方策として、特開平1−16
4786号公報では、金属膜をガスが逃げ出せる隙間の
ある結晶構造のものとすることが提案されている。しか
しながら、この方策は現実的ではない。
The blisters generated on the metal film are due to the inclusion of the plating solution component in the film or the like during the process of depositing and growing the metal film by the plating method. The entrapped plating liquid component does not escape when it is gasified in the subsequent heat treatment and causes volume expansion to generate blisters. As a measure for preventing the blistering of the metal film, Japanese Patent Application Laid-Open No. 1-16
Japanese Patent No. 4786 proposes that the metal film has a crystal structure with a gap through which gas can escape. However, this measure is not practical.

【0006】ひとつは、ガスが逃げ出せる隙間のある結
晶構造の金属膜を安定して作製することが難しいからで
ある。メッキの不老物である蓄積塩の量で金属膜の結晶
構造が変わり安定させることが難しいのである。もうひ
とつは、金属膜が厚くなると内部のガスがうまく逃げ出
せないからである。金属膜の結晶構造における隙間は非
常に狭くて金属膜が厚いとガスが抜け難くなるのであ
る。
One is that it is difficult to stably produce a metal film having a crystal structure with a gap through which gas can escape. It is difficult to stabilize the crystal structure of the metal film because the crystal structure of the metal film changes depending on the amount of accumulated salt, which is a plating aged substance. The other is that if the metal film becomes thicker, the gas inside cannot escape well. The gap in the crystal structure of the metal film is very narrow, and if the metal film is thick, it becomes difficult for gas to escape.

【0007】[0007]

【発明が解決しようとする課題】この発明は、上記事情
に鑑み、メタライズドセラミック基板の製造後に行われ
る後工程での加熱処理で金属膜の一部にふくれが生じる
ことが回避可能なメタライズドセラミック基板を安定し
て製造できる方法を提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention is a metallized ceramic substrate capable of avoiding blistering on a part of a metal film due to a heat treatment in a post process performed after the production of the metallized ceramic substrate. It is an object of the present invention to provide a method capable of producing a stable product.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するた
め、この発明にかかるメタライズドセラミック基板の製
造方法では、セラミック基板の表面にメッキ法を用いて
金属膜を形成する場合において、有機系粒子を分散させ
たメッキ浴で前記セラミック基板の表面に前記有機系粒
子を含有する金属膜を形成し、その後、前記有機系粒子
の沸点以上の温度で加熱処理するようにしている。
In order to solve the above-mentioned problems, in the method for manufacturing a metallized ceramic substrate according to the present invention, when a metal film is formed on the surface of the ceramic substrate by using a plating method, organic particles are used. A metal film containing the organic particles is formed on the surface of the ceramic substrate with the dispersed plating bath, and then heat treatment is performed at a temperature equal to or higher than the boiling point of the organic particles.

【0009】以下、この発明を具体的に説明する。この
発明で用いるセラミック基板自体の材質としては、アル
ミナ、フォルステライト、ステアタイト、ジルコニア、
ムライト、コージェライト、チタニア、チタン酸バリウ
ム、チタン酸カルシウムなどの酸化物系のセラミックが
主に使用されるが、炭化ケイ素などの炭化物系のセラミ
ック、窒化アルミニウムなどの窒化物系のセラミックが
使用されてもよく、複数種のセラミックが併用されても
よい。
The present invention will be specifically described below. The material of the ceramic substrate itself used in the present invention includes alumina, forsterite, steatite, zirconia,
Oxide-based ceramics such as mullite, cordierite, titania, barium titanate, and calcium titanate are mainly used, but carbide-based ceramics such as silicon carbide and nitride-based ceramics such as aluminum nitride are used. Alternatively, plural kinds of ceramics may be used in combination.

【0010】セラミック基板は表面の導体層の密着力が
高まるように、アンカー効果を発揮する粗面化処理が予
め施されていることが好ましい。粗面化処理としては、
サンドブラスト等を用いる機械的な粗面化処理や粗面化
処理剤等のエッチングによる化学的な粗面化処理があ
る。粗面化処理剤には、例えば、リン酸、ホウ酸、H
F、アルカリ金属化合物等の溶液、融液などがある。
The ceramic substrate is preferably preliminarily subjected to a surface roughening treatment which exhibits an anchor effect so that the adhesion of the conductor layer on the surface is enhanced. As roughening treatment,
There are mechanical surface roughening treatment using sandblasting and chemical surface roughening treatment by etching with a surface roughening agent. Examples of the surface-roughening agent include phosphoric acid, boric acid, and H.
Examples include F, solutions of alkali metal compounds, melts, and the like.

【0011】この発明で用いるメッキ法には、無電解メ
ッキの他に、電解メッキ法を用いるようにしてもよい。
また、金属膜を無電解メッキで形成する場合、セラミッ
ク基板の表面に活性化処理として触媒を付与することが
好ましい。触媒の付与方法としては、例えば、触媒がP
dである場合、センシタイジング−アクチベーション
法、キャタリスト−アクセレーション法等があるが、触
媒の種類や付与方法は、これら例示のものに限らず、無
電解メッキ膜の析出に寄与するものであればよい。
As the plating method used in the present invention, electrolytic plating may be used in addition to electroless plating.
When the metal film is formed by electroless plating, it is preferable to apply a catalyst as an activation treatment on the surface of the ceramic substrate. As a method of applying the catalyst, for example, the catalyst is P
In the case of d, there are sensitizing-activation method, catalyst-acceleration method, etc., but the kind and applying method of the catalyst are not limited to these examples, and they contribute to the deposition of the electroless plating film. I wish I had it.

【0012】この発明で使われる無電解メッキ液として
は、例えば、Cu(II),EDTA,NaOH(pH
調節用),HCHOを基本成分とし、必要に応じて、メ
ッキ液の分解を抑制する安定剤、メッキ速度を向上させ
る促進剤、メッキ皮膜の状態をよくする改良剤等の添加
剤を加えたメッキ液などが挙げられるが、これらに限ら
ないことは言うまでもない。
The electroless plating solution used in the present invention is, for example, Cu (II), EDTA, NaOH (pH
(For control), HCHO as a basic component, and if necessary, additives such as stabilizers that suppress the decomposition of the plating solution, accelerators that improve the plating rate, and modifiers that improve the state of the plating film are added. Examples include liquids, but needless to say, they are not limited to these.

【0013】この発明の場合、有機系粒子を分散させた
無電解(あるいは電解)メッキ浴でセラミック基板のメ
ッキを行うため、有機系粒子は、メッキ液に対して不溶
性、不活性、非触媒性であって低沸点のものが好まし
い。有機系粒子の具体的な材質としては、ナフタリン、
アントラセン、ナフタセン等があり、特定のものに限定
されないが、400℃以下の沸点のものが好ましい。
In the case of the present invention, since the ceramic substrate is plated in an electroless (or electrolytic) plating bath in which organic particles are dispersed, the organic particles are insoluble, inactive, and non-catalytic in the plating solution. However, those having a low boiling point are preferable. Specific materials for the organic particles include naphthalene,
There are anthracene, naphthacene and the like, which are not limited to specific ones, but those having a boiling point of 400 ° C. or less are preferable.

【0014】この有機系粒子は、粒径の細かいものが良
く、限定するわけではないが、平均粒径10μm以下の
粒子が好ましい。有機系粒子のメッキ液への添加量も、
特に限定するわけではないが、普通、重量百分率で5〜
50%の範囲とする。5%未満では金属膜のフクレの発
生を防止する効果が十分でなくなる傾向があり、50%
を越すと有機系粒子をメッキ液中に均一に分散させるこ
とが難しくなる。
The organic particles preferably have a small particle size and are not limited, but particles having an average particle size of 10 μm or less are preferable. The amount of organic particles added to the plating solution is also
Although not particularly limited, it is usually 5 to 5 by weight.
The range is 50%. If it is less than 5%, the effect of preventing blistering of the metal film tends to be insufficient, and 50%
If it exceeds the range, it becomes difficult to uniformly disperse the organic particles in the plating solution.

【0015】なお、有機系粒子のメッキ液中への分散方
法としては、例えば、メッキ液を循環させる方法やメッ
キ液を機械的に攪拌させる方法などがあるが、特定の方
法に限らない。また、有機系粒子をメッキ液中に均一に
分散させるために、必要に応じて界面活性剤等の添加剤
を加えてもよい。この発明の場合、有機系粒子を分散さ
せたメッキ浴でセラミック基板の表面に前記有機系粒子
を含有する金属膜を形成した後、有機系粒子の沸点以上
の温度で加熱処理する。この加熱処理で有機系粒子が金
属膜から取り除かれ跡は隙間となって金属膜がポーラス
な状態になり、メタライズドセラミック基板が得られる
こととなる。
As a method of dispersing the organic particles in the plating solution, for example, there is a method of circulating the plating solution or a method of mechanically stirring the plating solution, but it is not limited to a specific method. Further, in order to uniformly disperse the organic particles in the plating solution, an additive such as a surfactant may be added if necessary. In the case of the present invention, a metal film containing the organic particles is formed on the surface of the ceramic substrate in a plating bath in which the organic particles are dispersed, and then heat treatment is performed at a temperature equal to or higher than the boiling point of the organic particles. By this heat treatment, the organic particles are removed from the metal film, and the traces become gaps, so that the metal film becomes porous and a metallized ceramic substrate is obtained.

【0016】金属膜の隙間の量や大きさは、含有させる
有機系粒子の粒径や含有量に主として依存しており、有
機系粒子の粒径や含有量を調節することで隙間の量や大
きさをコントロールすることが出来る。有機系粒子を除
去用の加熱処理は、加熱温度:400℃以下、加熱時
間:10分以上の条件で行うことが好ましい。400℃
を越える温度だと、有機系粒子が金属膜から取り除かれ
て隙間が出来る前に、メッキ液成分(ガス源)がガス化
してしまい、フクレの発生を防止できない。また、加熱
時間が10分未満であると、十分に有機系粒子を取り除
けず、フクレを引き起こすガスを取り除けるのに必要な
だけの隙間が形成できない傾向が強まる。
The amount and size of the gap of the metal film mainly depend on the particle size and the content of the organic particles to be contained, and the amount of the gap and the size can be adjusted by adjusting the particle size and the content of the organic particles. You can control the size. The heat treatment for removing the organic particles is preferably performed under conditions of a heating temperature of 400 ° C. or lower and a heating time of 10 minutes or longer. 400 ° C
If the temperature exceeds 1, the plating solution component (gas source) is gasified before the organic particles are removed from the metal film and a gap is formed, and it is impossible to prevent the generation of blisters. Further, if the heating time is less than 10 minutes, the organic particles cannot be sufficiently removed, and there is a strong tendency that the gaps necessary to remove the gas causing blisters cannot be formed.

【0017】この発明のメタライズドセラミック基板
は、有機系粒子を除去用の加熱処理を終えた段階のもの
であってもよい。金属膜に十分な隙間があるため、後の
熱処理でメッキ液成分がうまく抜けてくれる。これの
他、この発明のメタライズドセラミック基板は、さら
に、以下のように、積極的にメッキ液成分を抜いたり、
さらに、金属膜の緻密化を行った段階のものであっても
よい。
The metallized ceramic substrate of the present invention may be in a stage after the heat treatment for removing the organic particles. Since there is a sufficient gap in the metal film, the plating solution components will come out well in the subsequent heat treatment. In addition to this, the metallized ceramic substrate of the present invention further has the following features:
Further, it may be at a stage where the metal film is densified.

【0018】有機系粒子を除去用の加熱処理により得た
メタライズドセラミック基板において、金属膜の導電性
が不十分な場合には、例えば次のような加熱処理を続い
て行い、メッキ液成分を除去したり、さらに、ポーラス
な金属膜の緻密化を図るようにしてもよい。すなわち、
有機系粒子を除去した後、メタライズドセラミック基板
を、750mmHg以下の減圧下で400〜800℃の
範囲で10〜30分間加熱して、先ずセラミック基板の
表面近傍や金属膜中のメッキ液成分を蒸散させて逃がし
ておき、続いて、窒素ガス雰囲気下で800〜1000
℃で90分以上加熱することにより金属膜を再結晶さ
せ、金属膜の緻密度を高めて導電性を向上させるのであ
る。
In the metallized ceramic substrate obtained by the heat treatment for removing the organic particles, when the conductivity of the metal film is insufficient, for example, the following heat treatment is carried out to remove the plating solution component. Alternatively, the porous metal film may be densified. That is,
After removing the organic particles, the metallized ceramic substrate is heated under a reduced pressure of 750 mmHg or less in the range of 400 to 800 ° C. for 10 to 30 minutes to evaporate the plating solution components near the surface of the ceramic substrate and in the metal film. Let it escape, and then 800 to 1000 in a nitrogen gas atmosphere.
By heating at 90 ° C. for 90 minutes or more, the metal film is recrystallized, the density of the metal film is increased, and the conductivity is improved.

【0019】[0019]

【作用】この発明のメタライズドセラミック基板の製造
方法の場合、セラミック基板の表面に有機系粒子を含む
金属膜を形成しておいて、この有機系粒子の沸点以上の
温度で加熱処理して有機系粒子を離脱させ、金属膜が十
分な隙間のある(ポーラスな)状態とする。その結果、
セラミック基板の表面近傍や金属膜中のメッキ液成分
(ガス源)を隙間から放出させられるようになり、フク
レの発生を十分に防止することが出来る。
In the method of manufacturing a metallized ceramic substrate of the present invention, a metal film containing organic particles is formed on the surface of the ceramic substrate, and heat treatment is performed at a temperature higher than the boiling point of the organic particles. The particles are detached so that the metal film has a sufficient gap (porous). as a result,
The plating solution component (gas source) in the vicinity of the surface of the ceramic substrate or in the metal film can be discharged from the gap, and the occurrence of blisters can be sufficiently prevented.

【0020】また、隙間は、結晶構造と無関係の有機系
粒子の抜け出た跡であって、金属膜に十分な隙間を常に
作れ、結果として、メタライズドセラミック基板を安定
して製造できる。
Further, the gap is a trace of organic particles irrelevant to the crystal structure, and a sufficient gap can always be formed in the metal film, and as a result, the metallized ceramic substrate can be stably manufactured.

【0021】[0021]

【実施例】以下、この発明の実施例を説明する。勿論、
この発明は、下記の実施例に限らない。 −実施例1− セラミック基板の表面に熱リン酸による化学的な粗面化
を施した後、パラジウムを核付けし、硫酸銅、EDT
A、ホルマリン、水酸化ナトリウムを基本成分として表
1に示す割合で含み、平均粒径1μmのナフタリンを5
重量%分散させた無電解銅メッキ浴でメッキを施した。
メッキの際、メッキ浴をエアー攪拌させるようにした。
セラミック基板の表面にはナフタリン粒子を含有した厚
み30μmの銅膜が形成された。
Embodiments of the present invention will be described below. Of course,
The present invention is not limited to the embodiments described below. -Example 1-After chemically roughening the surface of a ceramic substrate with hot phosphoric acid, palladium is nucleated, and copper sulfate and EDT are used.
A, formalin and sodium hydroxide as basic components in the proportions shown in Table 1 and 5 naphthalene having an average particle size of 1 μm
Plating was performed in an electroless copper plating bath having a weight% dispersed therein.
During plating, the plating bath was agitated with air.
A 30 μm-thick copper film containing naphthalene particles was formed on the surface of the ceramic substrate.

【0022】その後、銅膜を形成したセラミック基板
を、電気炉に入れ、350℃,30分間、加熱処理し、
ナフタリン粒子を除去することにより、銅膜をポーラス
な状態とした。続いて、10mmHgに減圧した電気炉
の中で500℃,30分の加熱処理を行い、銅膜中に内
蔵されたメッキ液成分をガスにして取り除いてから、さ
らに、電気炉を使い、窒素雰囲気中、900℃、90分
間、加熱処理し、銅膜を緻密化した。
Then, the ceramic substrate on which the copper film is formed is placed in an electric furnace and heat-treated at 350 ° C. for 30 minutes,
The copper film was made porous by removing the naphthalene particles. Then, heat treatment is performed at 500 ° C. for 30 minutes in an electric furnace depressurized to 10 mmHg to remove the plating solution components contained in the copper film as a gas, and then the electric furnace is used to remove nitrogen atmosphere. The copper film was densified by heating at 900 ° C. for 90 minutes.

【0023】−実施例2− 有機系粒子に平均粒径1μmのアントラセン粒子を用い
るようにした他は、実施例1と同様にして、アントラセ
ン粒子の除去を行い、その後、銅膜の緻密化を行った。 −実施例3− 有機系粒子に平均粒径5μmのナフタリン粒子を用いる
ようにした他は、実施例1と同様にして、ナフタリン粒
子の除去を行い、その後、銅膜の緻密化を行った。
Example 2 The anthracene particles were removed in the same manner as in Example 1 except that the organic particles used were anthracene particles having an average particle size of 1 μm, and then the copper film was densified. went. -Example 3-The naphthalene particles were removed in the same manner as in Example 1 except that naphthalene particles having an average particle diameter of 5 µm were used as the organic particles, and then the copper film was densified.

【0024】−実施例4− 有機系粒子に平均粒径10μmのナフタリン粒子を用い
るようにした他は、実施例1と同様にして、ナフタリン
粒子の除去を行い、その後、銅膜の緻密化を行った。 −実施例5− メッキ液へのナフタリン粒子の分散量が30重量%であ
る他は、実施例1と同様にして、ナフタリン粒子の除去
を行い、その後、銅膜の緻密化を行った。
Example 4 The naphthalene particles were removed in the same manner as in Example 1 except that the naphthalene particles having an average particle size of 10 μm were used as the organic particles, and then the copper film was densified. went. -Example 5-The naphthalene particles were removed in the same manner as in Example 1 except that the amount of the naphthalene particles dispersed in the plating solution was 30% by weight, and then the copper film was densified.

【0025】−実施例6− メッキ液へのナフタリン粒子の分散量が50重量%であ
る他は、実施例1と同様にして、ナフタリン粒子の除去
を行い、その後、銅膜の緻密化を行った。 −実施例7− 表1にみるように、メッキ液に比重が1.10の蓄積塩
を含むメッキ液を使い、これに、平均粒径1μmのナフ
タリン粒子を5重量%分散させるようにした他は、実施
例1と同様にして、ナフタリン粒子の除去を行い、その
後、銅膜の緻密化を行った。
Example 6 The naphthalene particles were removed in the same manner as in Example 1 except that the dispersion amount of the naphthalene particles in the plating solution was 50% by weight, and then the copper film was densified. It was -Example 7- As shown in Table 1, a plating solution containing an accumulated salt having a specific gravity of 1.10 was used, and 5 wt% of naphthalene particles having an average particle size of 1 µm were dispersed therein. In the same manner as in Example 1, the naphthalene particles were removed, and then the copper film was densified.

【0026】−比較例1− 表1に示すメッキ液を用いてナフタリン粒子を分散させ
ずに無電解メッキを行いメタライズドセラミック基板を
得た。 −比較例2− 表1に示す組成で比重が1.10の蓄積塩を含むメッキ
液を使うとともに、ナフタリン粒子を分散させずに無電
解メッキを行いメタライズドセラミック基板を得た。
-Comparative Example 1- Using the plating solutions shown in Table 1, electroless plating was carried out without dispersing the naphthalene particles to obtain metallized ceramic substrates. -Comparative Example 2- A metallized ceramic substrate was obtained by performing electroless plating without dispersing naphthalene particles while using a plating solution having a composition shown in Table 1 and a specific gravity of 1.10.

【0027】[0027]

【表1】 [Table 1]

【0028】実施例および比較例で得られたメタライズ
ドセラミック基板について、銅膜に関して、耐熱性およ
び体積抵抗率を調べた。耐熱性については、窒素雰囲気
にした電気炉中で950℃にて10分間、加熱し、銅膜
にフクレが発生している(耐熱性不良)か、いない(耐
熱性良好)を調べるようにした。銅膜の体積抵抗率は、
JIS−C2525により測定した。測定結果を有機系
粒子の粒径等と共に表2に示す。
With respect to the metallized ceramic substrates obtained in Examples and Comparative Examples, heat resistance and volume resistivity of the copper film were examined. Regarding heat resistance, heating was performed at 950 ° C. for 10 minutes in an electric furnace in a nitrogen atmosphere, and it was examined whether blistering occurred in the copper film (poor heat resistance) or not (good heat resistance). . The volume resistivity of the copper film is
It was measured according to JIS-C2525. The measurement results are shown in Table 2 together with the particle size of the organic particles.

【0029】[0029]

【表2】 [Table 2]

【0030】表2に示す測定結果にみるように、実施例
の場合、銅膜が30μmと厚くとも十分な耐熱性があ
り、金属膜中への有機粒子の分散および加熱除去による
隙間形成が、非常に効果的であることがよく分かる。ま
た、銅膜の体積抵抗率に関しても、従来のものと余りか
わらず、十分に実用の範囲にあることも分かる。
As can be seen from the measurement results shown in Table 2, in the case of the embodiment, even if the copper film is as thick as 30 μm, there is sufficient heat resistance, and the formation of gaps by dispersion and heating removal of the organic particles in the metal film, It turns out that it is very effective. Further, it can be seen that the volume resistivity of the copper film is not much different from the conventional one, and is sufficiently within the practical range.

【0031】[0031]

【発明の効果】この発明の製造方法で得られるメタライ
ズドセラミック基板は、セラミック基板の表面に有機系
粒子を含む金属膜を形成しておいて、この有機系粒子の
沸点以上の温度で加熱処理して有機系粒子を離脱させ、
金属膜を十分な隙間のある(ポーラスな)状態とするた
め、セラミック基板の表面近傍や金属膜中のメッキ液成
分(ガス源)を隙間から放出させられ、金属膜のフクレ
の発生を十分に防止することが出来るようになり、さら
に、隙間は、結晶構造と無関係の有機系粒子の抜け出た
跡であって、金属膜に十分に隙間を常に作り出せるた
め、結果的に金属膜にフクレが生じないメタライズドセ
ラミック基板を安定して製造できることになる。
The metallized ceramic substrate obtained by the manufacturing method of the present invention is formed by forming a metal film containing organic particles on the surface of the ceramic substrate and heat-treating it at a temperature not lower than the boiling point of the organic particles. Release the organic particles,
Since the metal film is in a state with a sufficient gap (porous), the plating solution component (gas source) in the vicinity of the surface of the ceramic substrate or in the metal film can be discharged from the gap, and the blistering of the metal film is sufficiently generated. In addition, the gap is a trace of organic particles that have nothing to do with the crystal structure, and a sufficient gap can always be created in the metal film, resulting in blistering in the metal film. It is possible to stably manufacture a metallized ceramic substrate that does not have metalized ceramics.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミック基板の表面にメッキ法を用い
て金属膜を形成するようにするメタライズドセラミック
基板の製造方法において、有機系粒子を分散させたメッ
キ浴で前記セラミック基板の表面に前記有機系粒子を含
有する金属膜を形成し、その後、前記有機系粒子の沸点
以上の温度で加熱処理することを特徴とするメタライズ
ドセラミック基板の製造方法。
1. A method for producing a metallized ceramic substrate, wherein a metal film is formed on the surface of a ceramic substrate by a plating method, wherein the organic system is formed on the surface of the ceramic substrate with a plating bath in which organic particles are dispersed. A method for producing a metallized ceramic substrate, comprising forming a metal film containing particles, and then performing heat treatment at a temperature equal to or higher than the boiling point of the organic particles.
【請求項2】 メッキ法が無電解メッキである請求項1
記載のメタライズドセラミック基板の製造方法。
2. The electroless plating is used as the plating method.
A method for producing the metallized ceramic substrate described.
JP22178192A 1992-08-20 1992-08-20 Production of metallized ceramic substrate Pending JPH0664990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22178192A JPH0664990A (en) 1992-08-20 1992-08-20 Production of metallized ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22178192A JPH0664990A (en) 1992-08-20 1992-08-20 Production of metallized ceramic substrate

Publications (1)

Publication Number Publication Date
JPH0664990A true JPH0664990A (en) 1994-03-08

Family

ID=16772106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22178192A Pending JPH0664990A (en) 1992-08-20 1992-08-20 Production of metallized ceramic substrate

Country Status (1)

Country Link
JP (1) JPH0664990A (en)

Similar Documents

Publication Publication Date Title
KR900005313B1 (en) Method for roughening ceramic substrate surface
JPH05251849A (en) Manufacture of copper metalized ceramic board
JPH0664990A (en) Production of metallized ceramic substrate
JP3355832B2 (en) Circuit pattern forming method and its paste
JPH09184076A (en) Manufacture of aluminum nitride metallized substrate
JPH0426560B2 (en)
JPH08167768A (en) Forming method for circuit pattern, and paste used therefor
JP3203771B2 (en) Method for manufacturing copper metallized ceramic substrate
US4888208A (en) Ceramic substrate for printed circuits and production thereof
JPS61151081A (en) Manufacture of ceramic wire distribution substrate
JPH05160551A (en) Method of manufacturing electronic part mounting aluminum nitride board
JPS61140195A (en) Making of ceramic wiring board
US4842899A (en) Process for forming metallic film on inorganic material
JP3152089B2 (en) Manufacturing method of ceramic wiring board
JPH06169150A (en) Ceramic wiring board and manufacture thereof
JPH10107394A (en) Ceramic wiring board
WO1982002063A1 (en) Method for chemical copper plating and bath to perform the method
JPH0553758B2 (en)
JPS63117485A (en) Ceramic printed wiring board
JPH07235754A (en) Fine pattern forming method and paste
JPS6335482A (en) Metallization of ceramic surface
JPH0692762A (en) Production of metallized ceramic substrate
JPH0434625B2 (en)
JPH0533555B2 (en)
JPS6335484A (en) Surface roughening method for ceramics