JPH0664940B2 - Flexible and vibration-resistant flexible conductor - Google Patents

Flexible and vibration-resistant flexible conductor

Info

Publication number
JPH0664940B2
JPH0664940B2 JP63248888A JP24888888A JPH0664940B2 JP H0664940 B2 JPH0664940 B2 JP H0664940B2 JP 63248888 A JP63248888 A JP 63248888A JP 24888888 A JP24888888 A JP 24888888A JP H0664940 B2 JPH0664940 B2 JP H0664940B2
Authority
JP
Japan
Prior art keywords
weight
wire
copper
copper alloy
child
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63248888A
Other languages
Japanese (ja)
Other versions
JPH0298012A (en
Inventor
佐次郎 清水
兼造 井手
敬三 浅尾
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP63248888A priority Critical patent/JPH0664940B2/en
Publication of JPH0298012A publication Critical patent/JPH0298012A/en
Publication of JPH0664940B2 publication Critical patent/JPH0664940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電流容量が大きくかつ耐屈曲性、耐振動性に
優れる可撓導体に関する。
Description: TECHNICAL FIELD The present invention relates to a flexible conductor having a large current capacity and excellent bending resistance and vibration resistance.

[従来の技術と解決しようとする課題] 例えば、工業用ロボットを利用したスポット溶接機の電
力供給用リード線は、溶接の度に極めて大きい電流が流
され、併せて衝撃的(電気力学的)振動が生ずる。また
ロボットが作動する毎にリード線は振り廻され、加熱下
で繰返し屈曲される。したがってこのように使用される
リード線は可撓導体である。
[Problems to be Solved by Conventional Techniques] For example, a lead wire for power supply of a spot welding machine using an industrial robot is shocked (electrodynamically) due to an extremely large current being applied each time welding is performed. Vibration occurs. In addition, the lead wire is swung around each time the robot operates, and is repeatedly bent under heating. The lead wire thus used is thus a flexible conductor.

この可撓導体は、通常、軟銅線よりなる素線を集合撚り
し、この集合撚線を同心撚りして複合撚線(子撚)と
し、この複合撚線をさらに同心撚りして複複合撚線とし
たものからなり、例えば第4図のごとき断面構造をなし
ている。
This flexible conductor is usually made by collectively twisting strands of annealed copper wire, concentrically twisting this collective twisted wire into a composite twisted wire (child twist), and further twisting this composite twisted wire into a multiple composite twisted wire. It is composed of lines, and has a sectional structure as shown in FIG. 4, for example.

上記可撓導体の使用状況を観察すると、繰返し屈曲や衝
撃を受けている間に複複合撚線の素線は互いに接する部
分で擦られて摩耗断線が生じる。一部の素線が断線する
と、導体の抵抗が大きくなり、その部分が過熱して更に
断線し易くなって悪循環を繰返し、断線が進行して行
く。
When the usage of the flexible conductor is observed, the strands of the composite multi-strand wire are rubbed at the portions in contact with each other during repeated bending and impact, and wear breakage occurs. When a part of the wire breaks, the resistance of the conductor increases, the part is overheated, and the wire breaks more easily, which repeats a vicious circle and the wire breaks.

この断線は、複複合撚りされた最外層の子撚(2c′)とそ
の下層の子撚(2b′)とが接する部分で最も顕著に現わ
れ、特に最外層の子撚(2c′)よりもその下層の子撚(2
b′)における素線断線が顕著である。各子撚(2a′)(2
b′)(2c′)の素線に純軟銅線を用いた第4図の複複合撚
線の耐用テストによると、最外層の子撚(2c′)と接する
下層の子撚(2b′)の中でも外層部分の集合撚線(1d′)の
素線の断線が特に顕著であった。
This disconnection is most noticeable at the portion where the outermost layer twisted (2c ′) and the lower layer twisted (2b ′), which are double-composite twists, contact each other, and more particularly than the outermost layer twisted (2c ′). The child twist (2
The wire breakage in b ') is remarkable. Each child twist (2a ') (2
b ′) (2c ′) strands are made of pure annealed copper wire. According to the durability test of the compound composite stranded wire shown in FIG. 4, the outermost layer twisted layer (2c ′) and the lower layer twisted layer (2b ′) Among them, the breakage of the strand of the gathered stranded wire (1d ′) in the outer layer part was particularly remarkable.

したがってこの種の可撓導体としては、その使用上、加
熱下での耐屈曲性および耐振動性を向上させて前記の素
線断線を防止することが望まれる。
Therefore, it is desirable for this type of flexible conductor to improve the bending resistance and vibration resistance under heating to prevent the wire breakage.

そのため、上記の観察結果等から、最外層の子撚とその
下層の子撚の撚方向を同一にして互いに接する素線がク
ロスしないようにしたものが提案(実願昭63−879
06号)されたが、この場合素線がクロスする従来品に
比して断線が生じ難くなるものの、充分に満足できる効
果は得られないものであった。
Therefore, from the above observation results, it is proposed that the outermost layer and the lower layer are twisted in the same twist direction so that the wires in contact with each other do not cross each other (Japanese Utility Model Application No. 63-879).
No. 06), but in this case, the wire breakage is less likely to occur as compared with the conventional product in which the strands cross, but a sufficiently satisfactory effect cannot be obtained.

そこで本発明者等は、上記の摩耗断線の防止について、
さらに種々の研究、検討を重ねている過程において、同
一金属線同士、特に純軟銅線同士が接している場合より
も、異種金属線同士が接してい場合のほうが、摩擦係数
が小さくて素線の擦れ等による摩耗断線が著しく少なく
なることを知見するに至った。
Therefore, the inventors of the present invention, for the prevention of the above wear disconnection,
Furthermore, in the process of conducting various studies and studies, the friction coefficient is smaller when the dissimilar metal wires are in contact with each other than when the same metal wires are in contact with each other, especially when the pure annealed copper wires are in contact with each other. It has been found that wear disconnection due to rubbing or the like is significantly reduced.

これに基づいて、純銅素線を用いた子撚と、別記銅合金
の素線を用いた子撚とを接触させるようにして、屈曲、
振動を与えて摩耗テストを行なったところ、耐摩耗性が
大きく向上することが判った。
Based on this, the twisting using a pure copper wire and the twisting using a wire of a copper alloy as described above are brought into contact with each other, and bending,
When a wear test was conducted by applying vibration, it was found that the wear resistance was greatly improved.

[課題を解決するための手段] 本発明は、上記知見に基いてなしたものであって、複複
合撚線における最も断線が生じ易い子撚、つまり最外層
の子撚と接する下層の子撚の素線に、優れた導電性と耐
熱性を有し、かつ繰返し曲げ強度や引張り強度等の機械
的特性に優れる下記銅合金の軟化線を用いることとし、
これにより導電性を損うことなく耐屈曲、耐振動性を向
上させ、素線の摩耗断線防止にきわめて効果のある可撓
導体を得るものである。
[Means for Solving the Problems] The present invention has been made based on the above findings, and is a child twist in a composite composite twisted wire in which breakage is most likely to occur, that is, a child twist of the lower layer in contact with the child twist of the outermost layer. The strand of, having excellent conductivity and heat resistance, and using a softening wire of the following copper alloy having excellent mechanical properties such as repeated bending strength and tensile strength,
As a result, it is possible to obtain a flexible conductor which is improved in bending resistance and vibration resistance without impairing conductivity, and is extremely effective in preventing abrasion and breakage of the wire.

本発明の第1は、集合撚線を同心撚りした複合撚線を子
撚とし、この子撚を更に同心撚りして複複合撚線とした
可撓導体において、その最外層を構成する子撚の素線を
純軟銅線とし、最外層の子撚と接する下層の子撚の素線
に、下記銅合金(a)(b)(c)(d)のいずれか一つの軟化線と
したものである。
The first aspect of the present invention is to use a composite twisted wire obtained by concentrically twisting a collective twisted wire as a child twist and further concentrically twisting the child twisted wire into a multiple composite twisted wire, which is the outermost layer of a flexible conductor. No. 1 is a pure annealed copper wire, and one of the following copper alloys (a) (b) (c) (d) is a softened wire in the lower twisted element wire that contacts the outermost layer child twist Is.

その銅合金の一つ(a)は、Feを0.02〜1重量%、Pを
Feに対して15〜80重量%、およびPbを0.05〜0.5重
量%含有し、残部が銅から成る。
One of the copper alloys (a) contains 0.02 to 1% by weight of Fe, 15 to 80% by weight of P with respect to Fe, and 0.05 to 0.5% by weight of Pb, and the balance is copper.

この銅合金において、主として銅合金の機械的強度の向
上のために添加されるFeの含有量を0.02〜1重量%と
したのは、0.02重量%未満では繰返し屈曲強度、引張り
強度および耐熱性を改善する効果が少なく、他方1重量
%を越えると銅合金の導電性の低下が大きくなるからで
ある。またPの含有量はFe含量の15〜80重量%を含有
させることがFeの添加による上記特性を更に高め、ま
たFeの添加により生じる導電性の低下を抑制するのに
効果的であり、前記範囲の下限量未満ではPの添加によ
る効果が発揮されず、逆に前記上限量を越えてのPの添
加は導電性をかえって失うことになる。またPbの含有
量を0.01〜0.5重量%としたのは、0.01重量%未満では
前記繰返し屈曲強度、引張り強度および耐熱性を改善す
る効果が少なく、逆に0.5重量%を越えると導電性の低
下が大きくなるためである。
In this copper alloy, the content of Fe added to improve the mechanical strength of the copper alloy is set to 0.02 to 1% by weight. When the content of Fe is less than 0.02% by weight, repeated bending strength, tensile strength and heat resistance are improved. This is because there is little improvement effect, and on the other hand, when it exceeds 1% by weight, the decrease in conductivity of the copper alloy becomes large. In addition, it is effective that the content of P is 15 to 80% by weight of the Fe content in order to further enhance the above characteristics due to the addition of Fe and to suppress the decrease in conductivity caused by the addition of Fe. If the amount is less than the lower limit of the range, the effect due to the addition of P is not exerted, and conversely, if the amount of P exceeds the upper limit, the conductivity is lost. Further, the content of Pb is set to 0.01 to 0.5% by weight because when it is less than 0.01% by weight, the effect of improving the above-mentioned repeated bending strength, tensile strength and heat resistance is small, and when it exceeds 0.5% by weight, the conductivity decreases. Because it becomes larger.

このような銅合金は、本出願人等が提案している特願昭
59−186126号に開示されたものであって、同号
明細書に記載のごとく良好な導電性を有するとともに、
繰返し屈曲強度、引張り強度、耐熱性等の性能に優れて
いる。
Such a copper alloy is disclosed in Japanese Patent Application No. 59-186126 proposed by the present applicants, and has good conductivity as described in the specification of the same patent, and
Excellent performance such as repeated bending strength, tensile strength and heat resistance.

また、本発明において選択的に用いられる他の一つの銅
合金(b)は、Feを0.02〜1重量%、PをFeに対して1
5〜80重量%、Sbを0.05〜0.5重量%含有し、残部が銅
から成るものである。
Another copper alloy (b) selectively used in the present invention is 0.02 to 1% by weight of Fe, and P is 1 to Fe.
It contains 5 to 80% by weight, 0.05 to 0.5% by weight of Sb, and the balance is copper.

この銅合金において、Feの含有量を0.02〜1重量%と
し、さらにPの含有量をFe含量に対して15〜80重量%
としたのは、上記銅合金(a)の場合と同様の理由によ
る。またSbの含有量を0.05〜0.5重量%としたのは、
やはり0.01重量%未満では繰返し屈曲強度、引張り強
度、耐熱性を改善する効果が少なくなり、逆に0.5重量
%を越えると導電性の低下が大きくなるためである。
In this copper alloy, the Fe content is 0.02 to 1% by weight, and the P content is 15 to 80% by weight with respect to the Fe content.
The reason is the same as in the case of the copper alloy (a). Further, the content of Sb is set to 0.05 to 0.5% by weight,
Again, if it is less than 0.01% by weight, the effect of improving the repeated bending strength, tensile strength and heat resistance will be small, and conversely if it exceeds 0.5% by weight, the conductivity will be greatly reduced.

この銅合金は、本出願人等の提案に係る特願昭59−1
86127号に開示されたものであって、同号明細書に
記載のごとく良好な導電性を有するとともに、繰返し屈
曲強度、引張り強度、耐熱性等の性能に優れている。
This copper alloy is disclosed in Japanese Patent Application No. Sho 59-1 proposed by the present applicant.
It has been disclosed in Japanese Patent No. 86127 and has good conductivity as described in the specification, and has excellent performances such as repeated bending strength, tensile strength and heat resistance.

また、本発明において選択的に用いられるさらに他の一
つの銅合金(c)は、Feを0.02〜1重量%、PをFeに
対して15〜80重量%含有し、更にInを含有するととも
に、Sn、PbおよびSbのうち少なくとも1種以上の
物質を含有し、そのInを含む合計含有量が0.01〜0.5
重量%とされるとともに、Inと一種以上含有される他
の物質各々の含有量が0.006重量%以上とされ、残部が
銅から成るものである。
Still another copper alloy (c) selectively used in the present invention contains 0.02 to 1% by weight of Fe, 15 to 80% by weight of P with respect to Fe, and further contains In. , Sn, Pb and Sb containing at least one or more substances, and the total content including In is 0.01 to 0.5.
The content of each of In and one or more other substances is 0.006% by weight or more, and the balance is copper.

この銅合金において、Feの含有量を0.002〜1重量%
とし、さらにPの含有量をFe含有量に対して15〜80重
量%としたのは、上記銅合金(a)の場合と同様の理由に
よる。そして、上記のFe含有によるくりのかえし屈曲
強度、引張り強度、耐熱性の向上、P含有による導電性
の維持をより効率良くなすためにInを、さらにSn、
Pb、Sbの1種以上を含有させており、特にInの含
有により安定した繰返し屈曲強度が得られるようにして
いる。InとSn、Pb、Sbの1種以上との合計含有
量が、0.01重量%未満の場合には、耐熱性の改善が充分
に行なわれず、一方、0.5重量%を越えると高導電性を
維持できない。またIn、Sn、PbおよびSbのいず
れかの含有量が、0.006重量%未満の場合にも、耐熱性
が充分に改善されないことになる。
In this copper alloy, the Fe content is 0.002 to 1% by weight.
The reason why the P content is 15 to 80% by weight with respect to the Fe content is the same as in the case of the copper alloy (a). Further, in order to more efficiently improve the repetitive bending strength, tensile strength and heat resistance due to the above-mentioned Fe content and to maintain the conductivity more efficiently due to the P-containing content, further In, Sn,
One or more kinds of Pb and Sb are contained, and particularly by containing In, stable repeated bending strength is obtained. If the total content of In and one or more of Sn, Pb and Sb is less than 0.01% by weight, the heat resistance is not sufficiently improved, while if it exceeds 0.5% by weight, high conductivity is maintained. Can not. Further, even if the content of any one of In, Sn, Pb and Sb is less than 0.006% by weight, the heat resistance will not be sufficiently improved.

この銅合金は、本出願人等の提案に係る特願昭59−1
98101号に開示されたものであって、同号明細書に
記載のごとく良好な導電性を有するとともに、繰返し屈
曲強度、引張り強度、耐熱性等の性能に優れている。
This copper alloy is disclosed in Japanese Patent Application No. Sho 59-1 proposed by the present applicant.
No. 98101, which has good conductivity as described in the specification, and has excellent performances such as repeated bending strength, tensile strength and heat resistance.

さらに、本発明において選択的に用いられる他のもう一
つの銅合金(b)は、Feを0.02〜0.7重量%、PをFeに
対して15〜80重量%、およびIn、Sn、Pb、Sbの
群から選択される2種とZrとを合計量で0.01〜0.5重
量%含有し、残部が銅から成る。
Further, another copper alloy (b) which is selectively used in the present invention is 0.02 to 0.7% by weight of Fe, 15 to 80% by weight of P relative to Fe, and In, Sn, Pb, Sb. It contains 0.01 to 0.5% by weight of Zr and two kinds selected from the group, and the balance is copper.

この銅合金において、Feの含有量を0.02〜0.7重量%
としたのは、その含有量が0.7重量%を越えると導電性
の低下が大きくなり、一方0.02重量%未満では繰返し曲
げ強度、引張り強度および耐熱性を改善する効果が少な
くなるからである。またFeの添加に上記特性をさらに
向上させるのに役立つPの含有量を、Fe含量の15〜80
重量%としたのは、前記範囲の下限量未満ではPの添加
効果が発揮されず、一方前記上限量を越えると銅合金の
導電性をかえって失うことになるためである。このPの
好ましい含有量はFeの約28重量%である。
In this copper alloy, the Fe content is 0.02 to 0.7% by weight.
The reason for this is that if the content exceeds 0.7% by weight, the decrease in conductivity becomes large, while if it is less than 0.02% by weight, the effect of improving cyclic bending strength, tensile strength and heat resistance becomes small. In addition, the content of P, which is useful for further improving the above-mentioned characteristics when Fe is added, is set to 15 to 80% of the Fe content.
The reason for setting the content by weight is that if the amount is less than the lower limit of the above range, the effect of adding P is not exhibited, whereas if it exceeds the upper limit, the conductivity of the copper alloy is rather lost. The preferred content of P is about 28% by weight of Fe.

またIn、Sn、PbおよびSbの群から選択される2
種の金属とZrとを銅合金に含有させるもので、Zrは
銅合金の耐熱性を高める効果を有し、これに前記各金属
の2種を添加して共存させるとその効果が一層高くな
る。銅合金におけるZrと前記2種の金属との含有量は
それらの合計で0.01〜0.5重量%であって、この合計含
有量が0.01重量%未満では耐熱性改善の効果が少なく、
一方、0.5重量%を越えると銅合金の導電性を維持し得
なくなる。
2 selected from the group of In, Sn, Pb and Sb
A metal alloy containing Zr and Zr is contained in a copper alloy. Zr has the effect of increasing the heat resistance of the copper alloy. If two kinds of each of the above metals are added to the copper alloy and coexist, the effect is further enhanced. . The total content of Zr and the two metals in the copper alloy is 0.01 to 0.5% by weight. If the total content is less than 0.01% by weight, the effect of improving heat resistance is small,
On the other hand, if it exceeds 0.5% by weight, the conductivity of the copper alloy cannot be maintained.

前記の銅合金は、本出願人等が提案している特願昭61
−58794号に開示されたものであって、同号明細書
の記載のごとく耐熱性に優れるとともに導電性、繰返し
屈曲強度、引張り強度、さらに伸び等の特性が向上して
いる。
The above-mentioned copper alloy is disclosed in Japanese Patent Application No.
It is disclosed in JP-A-58794, and as described in the specification, it has excellent heat resistance and has improved properties such as conductivity, repeated bending strength, tensile strength, and elongation.

そして、本発明の第2は、最外層の子撚と接する下層の
子撚の中でも外層部分の集合撚線の素線断線が顕著であ
ること、また前記銅合金のコスト等を考慮してなしたも
のであって、前記同様の複複合撚線による可撓導体にお
いて、その最外層を構成する子撚の素線を純軟銅線と
し、最外層の子撚と接する下層の子撚の外層部分の集合
撚線の素線を上記した銅合金(a)(b)(c)(d)のいずれか一
つの軟化線とし、他の集合撚線の素線を純軟銅線とした
ことを特徴とする。
A second aspect of the present invention is that the strand break of the aggregated twisted wire in the outer layer portion is remarkable among the child twists of the lower layer in contact with the child twist of the outermost layer, and the cost of the copper alloy is considered. In the flexible conductor by the same complex composite twisted wire as described above, the element wire of the child twist forming the outermost layer is a pure annealed copper wire, and the outer layer part of the child twist of the lower layer in contact with the child twist of the outermost layer. Characterized in that the strands of the assembled stranded wire of (1) is a softened wire of any one of the above copper alloys (a) (b) (c) (d), and the strands of other assembled stranded wires are pure soft copper wires. And

[作用] 上記の本発明の第1の可撓導体によれば、複複合撚線の
最外層の子撚の素線を純軟銅線とし、これと接する下層
の子撚の素線を上述した銅合金の軟化線としたことによ
り、素線の摩耗断線が顕著な最外層の子撚とその下層の
子撚との接触部分においては異種金属線同士の接触とな
り、そのため同一の金属線同士の場合よりも摩擦係数が
小さくなって、耐摩耗性が大幅に向上し、摩耗断線がき
わめて生じ難いものである。しかしてこれが、断線の生
じ易い下層(第1層)の子撚の素線に、導電性、耐熱
性、繰返し屈曲強度や引張り強度等の特性に優れる銅合
金の軟化線を用いていることと相俟って、素線の摩耗断
線防止の効果を高め、断線発生率を大幅に減少できる。
[Operation] According to the above-mentioned first flexible conductor of the present invention, the outermost layer of the child-twisted element wire of the composite composite stranded wire is a pure annealed copper wire, and the lower-layer child-twisted element wire in contact with this is described above. By using a softened wire of copper alloy, dissimilar metal wires contact each other at the contact portion between the outermost layer child twist and the lower layer child twist in which the wear breakage of the strand is remarkable The friction coefficient is smaller than in the case, the wear resistance is greatly improved, and the wear disconnection is extremely unlikely to occur. However, this is because the lower layer (first layer) of the twisted element wire, which is apt to be broken, uses a softened wire of a copper alloy having excellent properties such as conductivity, heat resistance, repeated bending strength and tensile strength. Together, the effect of preventing wire wear and wire breakage can be enhanced, and the rate of wire breakage can be greatly reduced.

また上記の第2の発明によるときは、最外層の子撚と接
する下層の子撚のうち、最も摩耗断線の生じ易い外層部
分の集合撚線の素線を前記銅合金の軟化線とし、他の集
合撚線の素線を純軟銅線としているので、この子撚と最
外層の子撚との接触部分が異種金属線同士の接触とな
り、前記と同様にこの部分での摩擦断線が生じ難くなる
ことに加え、前記外層部分の集合撚線と中心部の集合撚
線との接触部分でも異種金属線同士の接触となって、こ
の接触部分での摩耗および断線も生じ難くなる。しかも
前記外層部分以外の集合撚線の素線を純軟銅線としたこ
とで、可撓導体全体としての可撓性も問題がない。
Further, according to the second aspect of the invention, among the child twists of the lower layer in contact with the child twists of the outermost layer, the strands of the gathered twisted wires in the outer layer portion that are most likely to cause abrasion breakage are the softened wires of the copper alloy, and Since the strands of the assembled stranded wire of are made of pure annealed copper wire, the contact portion between this child twist and the outermost child twist becomes a contact between different metal wires, and like the above, frictional disconnection is unlikely to occur in this part. In addition to the above, dissimilar metal wires also come into contact with each other at the contact portion between the gathered twisted wire in the outer layer portion and the gathered twisted wire in the central portion, and abrasion and disconnection at this contact portion hardly occur. Moreover, since the strands of the assembled stranded wire other than the outer layer portion are pure annealed copper wires, there is no problem in the flexibility of the flexible conductor as a whole.

[実施例] 次に本考案の実施例を図面に基いて説明する。[Embodiment] Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は第1の本発明に係る複複合撚線よりなる可撓導
体の断面構造を示している。図において、(1)は直径
0.26mmの素線26本を集合撚りした集合撚線、(2)
は前記集合撚線(1)7本を同心撚りした複合撚線であ
る。複複合撚りの可撓導体(3)は、1本の複合撚線(2)を
中心層の子撚(2a)とし、その外側の第1層の子撚(2b)と
して6本の複合撚線(2)を、さらにその外側の第2層の
子撚(2c)として12本の複合撚線(2)をそれぞれ配して
同心撚りしてなる。
FIG. 1 shows a cross-sectional structure of a flexible conductor made of a complex composite stranded wire according to the first aspect of the present invention. In the figure, (1) is a set stranded wire in which 26 strands having a diameter of 0.26 mm are set and stranded, (2)
Is a composite twisted wire obtained by concentrically twisting the seven twisted wires (1). The flexible conductor (3) of the multiple composite twists has one composite twisted wire (2) as the child twist (2a) of the center layer, and six compound twists as the child twist (2b) of the outer first layer. The wire (2) is further concentrically twisted by arranging twelve composite twisted wires (2) as the second layer child twist (2c) on the outer side thereof.

前記第1層の子撚(2c)と最外層の子撚(2b)とは従来同様
に互いに反対方向の同心撚りする場合のほか、両層の子
撚(2c)(2b)を共に同じ方向に同心撚りする場合がある。
後者の場合、子撚(2c)(2b)の素線同士が撚り方向に沿っ
て接触することとなり、従来の素線が互いにクロスして
接触する可撓導体のように局部的に強く接触せず、その
ため後述の異種金属線同士の接触による摩耗断線防止の
効果が一層大きくなる。
The first layer child twist (2c) and the outermost layer child twist (2b) are concentric twists in opposite directions as in the conventional case, and both layer child twists (2c) and (2b) are in the same direction. There may be concentric twists.
In the latter case, the strands of the child strands (2c) and (2b) come into contact with each other along the twisting direction, and the conventional strands are strongly contacted locally like flexible conductors that cross each other and come into contact. Therefore, the effect of preventing wear and disconnection due to contact between different types of metal wires, which will be described later, is further enhanced.

そして、前記構造の可撓導体において、最外層の子撚(2
c)を構成する素線に純軟銅線を用い、この子撚(2c)と接
する下層の子撚(2b)を構成する素線に、上述した銅合金
(a)(b)(c)(d)、すなわち特願昭59−186126号明
細書、特願昭59−186127号明細書、特願昭59
−198101号明細書さらに特願昭59−19810
1号明細書に記載の銅合金のいずれか一つの軟化線を用
いて構成している。そのため、最外層とその下層の子撚
(2c)(2b)同士の接触部分が異種金属線同士の接触とな
り、この部分の摩擦係数が小さくて摩耗断線が生じ難い
ものとなっている。なお、図面においては、銅合金の軟
化線を用いた部分にのみハッチングを入れて示す。中心
層の子撚(2a)を構成する素線を、第1層の子撚(2b)と同
様に前記銅合金とすることもできるが、耐用試験の結
果、中心層の子撚(2a)の素線に純軟銅線を用いるほう
が、中心層と第1層の子撚(2a)(2b)の接触部分が異種金
属線同士の接触となって、かえって素線の摩耗断線が少
なくなり、かつ可撓性が低下することもなく、また軟銅
線に比して高価な銅合金の使用量が少なくなるため、実
施上より好適である。
Then, in the flexible conductor having the above structure, the outermost layer child twist (2
c) using pure annealed copper wire for the wire, and the lower twisted wire (2b) in contact with this twisted wire (2c), the above-mentioned copper alloy
(a) (b) (c) (d), that is, Japanese Patent Application Nos. 59-186126, 59-186127 and 59
-198101 Specification and Japanese Patent Application No. 59-19810
The softening wire is one of the copper alloys described in No. 1 specification. Therefore, the outermost layer and the lower layer are twisted
(2c) and (2b) are in contact with each other, and dissimilar metal wires are in contact with each other, and the friction coefficient of this portion is small, so that abrasion disconnection hardly occurs. In the drawings, hatching is shown only in the portion using the softening line of the copper alloy. The strands constituting the core twist (2a) of the center layer can be the same copper alloy as the core twist (2b) of the first layer, but as a result of the durability test, the core twist (2a) If pure annealed copper wire is used as the element wire, the contact portion between the center layer and the child twist (2a) (2b) of the first layer becomes contact between dissimilar metal wires, and the wear breakage of the element wire is reduced. In addition, the flexibility is not deteriorated, and the amount of expensive copper alloy used is smaller than that of annealed copper wire, which is more preferable in practice.

第2図は本発明の第2の可撓導体の断面構造を示してお
り、上記と同様の複複合撚線による可撓導体において、
最外層の子撚(2c)と接する下層(第1層)の複合撚線
(2)による子撚(2b)のうち、摩耗断線の生じ易い外層部
分の集合撚線(1d)の素線を上記した銅合金の軟化線と
し、これ以外の集合撚線、図の場合中心部分の集合撚線
(1e)の素線を最外層の子撚(2c)と同様の純軟銅線として
いる。図においては、銅合金の軟化線よりなる集合撚線
の部分にのみハッチングを入れて示している。
FIG. 2 shows a sectional structure of a second flexible conductor of the present invention.
Lower layer (first layer) composite stranded wire in contact with the outermost child strand (2c)
Of the twisted wires (2b) according to (2), the strands of the assembled stranded wire (1d) in the outer layer portion where wear breakage is likely to occur are the above-mentioned copper alloy softened wires, and other assembled stranded wires, mainly in the case of the figure Part stranded wire
The element wire of (1e) is a pure annealed copper wire similar to the outermost layer of the twisted wire (2c). In the figure, hatching is shown only in the portion of the gathered stranded wire made of a softened wire of a copper alloy.

この場合も、最外層の子撚(2c)とその下層の子撚(2b)と
の接触部分においては異種金属線同士の接触となるため
に、この部分での摩耗断線が生じ難くなっており、また
銅合金の使用量も少ない。
In this case as well, since the dissimilar metal wires come into contact with each other at the contact portion between the outermost layer twist (2c) and the lower layer twist (2b), abrasion disconnection is less likely to occur at this portion. Also, the amount of copper alloy used is small.

なお、中心層の子撚(2a)については、上記と同様に前記
銅合金の軟化線とする場合と、純軟銅線にする場合とが
ある。
Regarding the twist (2a) of the center layer, there are cases of softening wire of the copper alloy and cases of pure soft copper wire as in the above.

上記の可撓導体(3)は、従来と同様に、例えば第3図に
示すように両端部に接続端子(4)が固着されるととも
に、両端子間に絶縁外筒(5)が被せられて冷却水を流通
可能に水密に保持され、溶接ロボットの電力供給用のリ
ード線等に使用される。
As in the conventional case, the flexible conductor (3) has the connection terminals (4) fixed to both ends as shown in FIG. 3, and the insulating outer cylinder (5) is covered between the terminals. The cooling water is kept watertight so that it can be circulated, and is used as a lead wire for supplying power to the welding robot.

(効果の確認試験) 上記第1図に示す実施例の可撓導体、および第2図に示
す実施例の可撓導体と、第4図に示す可撓導体(素線全
てが純軟銅線よりなるもの)について、それぞれ最外層
(第2層)の子撚とその下層(第1層)の子撚との撚り
方向を交叉方向にして同心撚りしたもの(A)と、同じ
方向にして同心撚りしたもの(B)とについて、それぞ
れ同じ条件で、溶接ロボットに試用し、スポット溶接の
耐用回数の比較を行ない、摩耗断線状況を観察したとこ
ろ、次のような結果となった。実施例において、銅合金
として上記(a)(b)(c)(d)のいずれを用いた場合にも、ほ
とんど同様の結果が得られた。
(Effect Confirmation Test) The flexible conductor of the embodiment shown in FIG. 1 and the flexible conductor of the embodiment shown in FIG. 2 and the flexible conductor shown in FIG. 4 (all strands are made of pure annealed copper wire). Of the outermost layer (the second layer) and the lower layer (the first layer) of the twisted yarns, which are concentric and concentric with each other. The twisted product (B) was tested by a welding robot under the same conditions, the durability of spot welding was compared, and the wear disconnection condition was observed. The results were as follows. In Examples, almost the same results were obtained when any of the above (a) (b) (c) (d) was used as the copper alloy.

試供品 撚方向 スポット回数 第1図の実施例 A 40〜50万回 同 B 60万回以上 第2図の実施例 A 30〜40万回 同 B 50万回以上 第4図(従来品)A 約10万回 同 (比較例)B 30〜40万回 前記から明らかなように、従来品は約10万スポットで
摩耗断線が生じ、その断線率は接続端子に近い両端部分
で25%〜35%にもなったが、本発明の場合、いずれ
も従来品に比して3〜6倍、あるいはそれ以上ものスポ
ット回数の使用に耐え、しかもその断線率は両端部分で
も10%以下となり、特に最外層とその下層の子撚の撚
り方向を同方向にした場合、摩耗断線が一層生じ難くな
った。
Samples Twisting direction Number of spots Example of Figure 1 A 40 to 500,000 times Same as B 600,000 times or more Example of Figure 2 A 300 to 400,000 times Same as B 500,000 times or more Figure 4 (Conventional product) A Approximately 100,000 times (Comparative Example) B 300 to 400,000 times As is apparent from the above, the conventional product suffers wear disconnection at about 100,000 spots, and its disconnection rate is 25% to 35% at both ends near the connection terminal. However, in the case of the present invention, each of them withstands the use of the spot number of 3 to 6 times or more as compared with the conventional product, and the disconnection rate becomes 10% or less at both end portions. When the outermost layer and the lower layer were twisted in the same twist direction, abrasion breakage was more difficult to occur.

[発明の効果] 上記したように、本発明によれば、導電性を損うことな
く耐屈曲、耐振動特性を従来品に比して著しく向上で
き、溶接ロボットの給電用のリード線等として使用する
この種の可撓導体として、長期に渡って摩耗断線を防止
し得てその耐久性を非常に高めることができる。しかも
最外層と接する下層の子撚の素線にのみ銅合金を用いる
ため、比較的高価な銅合金の使用量も少なくて済む。殊
に最外層の子撚と接する下層の子撚のうち、最も摩耗断
線の生じ易い外層部分の集合撚線の素線を銅合金の軟化
線とし、他の集合撚線の素線を純軟銅線とした場合に
は、前記銅合金の使用量が一層少なく、コスト安価に製
造、提供できる。
[Advantages of the Invention] As described above, according to the present invention, the bending resistance and the vibration resistance can be remarkably improved as compared with the conventional products without impairing the conductivity, and as a lead wire for power supply of a welding robot or the like. As a flexible conductor of this kind to be used, it is possible to prevent wear disconnection for a long period of time and to greatly enhance its durability. Moreover, since the copper alloy is used only for the lower twisted strands that are in contact with the outermost layer, the amount of relatively expensive copper alloy used can be small. Especially, of the lower layer twists that are in contact with the outermost layer twists, the strands of the outer strands that are most prone to wear breakage are the softened strands of copper alloy, and the strands of the other strands are pure soft copper. In the case of a wire, the amount of the copper alloy used is much smaller, and the wire can be manufactured and provided at low cost.

【図面の簡単な説明】 第1図は本発明の可撓導体の実施例を示す断面構造の略
示図、第2図は本発明の他の例を示す断面構造の略示
図、第3図は可撓導体を接続端子に接続した使用状態を
示す平面図、第4図は従来の可撓導体の断面構造の略示
図である。 (1)…集合撚線、(1d)…外層部分の集合撚線、(1e)…中
心部分の集合撚線、(2)…複合撚線、(2a)(2b)(2c)…各
層の子撚、(3)…可撓導体。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a sectional structure showing an embodiment of a flexible conductor of the present invention, FIG. 2 is a schematic view of a sectional structure showing another example of the present invention, and FIG. FIG. 4 is a plan view showing a usage state in which a flexible conductor is connected to a connection terminal, and FIG. 4 is a schematic view of a cross-sectional structure of a conventional flexible conductor. (1) ... Assembled stranded wire, (1d) ... Assembled stranded wire in outer layer part, (1e) ... Assembled stranded wire in central part, (2) ... Composite stranded wire, (2a) (2b) (2c) ... Each layer Child twist, (3) ... Flexible conductor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 徹 大阪府東大阪市岩田町2丁目3番1号 タ ツタ電線株式会社内 (56)参考文献 実開 昭60−164710(JP,U) 実開 昭63−108113(JP,U) 伸銅技術研究会誌Vol.16,1977 165〜176頁 金属便覧622頁 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toru Matsui 2-3-1, Iwata-cho, Higashi-Osaka City, Osaka Prefecture Tatsuta Electric Wire Co., Ltd. (56) References: 60-164710 Kai 63-108113 (JP, U) Copper Technology Research Journal Vol. 16, 1977 pp. 165-176 Metal Handbook p. 622

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】集合撚線を同心撚りした複合撚線を子撚と
し、この子撚を更に同心撚りして複複合撚線とした可撓
導体において、その最外層を構成する子撚の素線を純軟
銅線とし、最外層の子撚と接する下層の子撚の素線を下
記(a),(b),(c),(d)のいずれか一つの銅合金の軟化線と
したことを特徴とする耐屈曲、耐振動可撓導体。 (a)Feを0.02〜1重量%、PをFeに対して15〜80重
量%、Pbを0.05〜0.5重量%含有し、残部が銅からな
る銅合金。 (b)Feを0.02〜1重量%、PをFeに対して15〜80重
量%、Sbを0.05〜0.5重量%含有し、残部が銅から成
る銅合金。 (c)Feを0.02〜1重量%、PをFeに対して15〜80重
量%含有し、更にInを含有するとともに、Sn、Pb
及びSbのうちの少なくとも1種以上の物質を含有し、
そのInを含む合計含有量が0.01〜0.5重量%とされる
とともに、Inと一種以上含有される他の物質各々の含
有量が0.006重量%以上とされ、残部が銅から成る銅合
金。 (d)Feを0.02〜0.7重量%、PをFeに対して15〜80重
量%、およびIn、Sn、Pb、Sbからなる群から選
択される2種とZrとを合計量で0.01〜0.5重量%含有
し、残部が銅から成る銅合金。
1. A flexible conductor having a composite twisted wire obtained by concentrically twisting a set twisted wire as a child twist, and further concentrically twisting the child twisted wire into a double composite twisted wire, a child twist element constituting an outermost layer thereof. The wire is a pure annealed copper wire, and the element wire of the lower layer twisted wire that is in contact with the outermost layer child twist is a softened wire of any one of the following (a), (b), (c), and (d). A flexible conductor which is resistant to bending and vibration. (a) A copper alloy containing 0.02 to 1% by weight of Fe, 15 to 80% by weight of P with respect to Fe, 0.05 to 0.5% by weight of Pb, and the balance being copper. (b) A copper alloy containing 0.02 to 1% by weight of Fe, 15 to 80% by weight of P with respect to Fe, 0.05 to 0.5% by weight of Sb, and the balance being copper. (c) 0.02 to 1% by weight of Fe, 15 to 80% by weight of P relative to Fe, further containing In, Sn, Pb
And containing at least one substance of Sb,
A copper alloy in which the total content including In is 0.01 to 0.5% by weight, the content of each of In and one or more other substances is 0.006% by weight or more, and the balance is copper. (d) 0.02 to 0.7% by weight of Fe, 15 to 80% by weight of P with respect to Fe, and 0.01 to 0.5 of two kinds selected from the group consisting of In, Sn, Pb and Sb and Zr in a total amount. A copper alloy containing wt% and the balance being copper.
【請求項2】集合撚線を同心撚りした複合撚線を子撚と
し、この子撚を更に同心撚りして複複合撚線とした可撓
導体において、最外層を構成する子撚の素線を純軟銅線
とし、最外層の子撚と接する下層の子撚の外層部分の集
合撚線の素線を下記(a),(b),(c),(d)のいずれか一つの
銅合金の軟化線とし、他の集合撚線の素線を純軟銅線と
したことを特徴とする耐屈曲、耐振動可撓導体。 (a)Feを0.02〜1重量%、PをFeに対して15〜80重
量%、Pbを0.05〜0.5重量%含有し、残部が銅から成
る銅合金。 (b)Feを0.02〜1重量%、PをFeに対して15〜80重
量%、Sbを0.05〜0.5重量%含有し、残部が銅から成
る銅合金。 (c)Feを0.02〜1重量%、PをFeに対して15〜80重
量%含有し、更にInを含有するとともに、Sn、Pb
及びSbのうちの少なくとも1種以上の物質を含有し、
そのInを含む合計含有量が0.01〜0.5重量%とされる
とともに、Inと一種以上含有される他の物質各々の含
有量が0.006重量%以上とされ、残部が銅から成る銅合
金。 (d)Feを0.02〜0.7重量%、PをFeに対して15〜80重
量%、およびIn、Sn、Pb、Sbからなる群から選
択される2種とZrとを合計量で0.01〜0.5重量%含有
し、残部が銅から成る銅合金。
2. A flexible conductor comprising a composite twisted wire obtained by concentrically twisting a gathered twisted wire as a child twist, and further concentrically twisting the child twisted wire into a composite twisted wire, which is an outermost layer of a child twisted wire. Is a pure annealed copper wire, and the strand of the aggregated twisted wire in the outer layer part of the lower layer of the child twisting layer that is in contact with the outermost layer of the twisted wire is one of the following (a), (b), (c), (d) copper A flexible conductor which is resistant to bending and vibration, characterized in that it is a softened alloy wire and the other twisted strands are pure annealed copper wires. (a) A copper alloy containing 0.02 to 1% by weight of Fe, 15 to 80% by weight of P with respect to Fe, 0.05 to 0.5% by weight of Pb, and the balance being copper. (b) A copper alloy containing 0.02 to 1% by weight of Fe, 15 to 80% by weight of P with respect to Fe, 0.05 to 0.5% by weight of Sb, and the balance being copper. (c) 0.02 to 1% by weight of Fe, 15 to 80% by weight of P relative to Fe, further containing In, Sn, Pb
And containing at least one substance of Sb,
A copper alloy in which the total content of In is 0.01 to 0.5% by weight, the content of each of In and one or more other substances is 0.006% by weight or more, and the balance is copper. (d) 0.02 to 0.7% by weight of Fe, 15 to 80% by weight of P relative to Fe, and 0.01 to 0.5 in total of Zr and two kinds selected from the group consisting of In, Sn, Pb, and Sb. A copper alloy containing wt% and the balance being copper.
JP63248888A 1988-09-30 1988-09-30 Flexible and vibration-resistant flexible conductor Expired - Lifetime JPH0664940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248888A JPH0664940B2 (en) 1988-09-30 1988-09-30 Flexible and vibration-resistant flexible conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248888A JPH0664940B2 (en) 1988-09-30 1988-09-30 Flexible and vibration-resistant flexible conductor

Publications (2)

Publication Number Publication Date
JPH0298012A JPH0298012A (en) 1990-04-10
JPH0664940B2 true JPH0664940B2 (en) 1994-08-22

Family

ID=17184937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248888A Expired - Lifetime JPH0664940B2 (en) 1988-09-30 1988-09-30 Flexible and vibration-resistant flexible conductor

Country Status (1)

Country Link
JP (1) JPH0664940B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523337U (en) * 1991-09-09 1993-03-26 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coated robot cable
JPH0553045U (en) * 1991-12-20 1993-07-13 タツタ電線株式会社 Flexible cable
JP5875386B2 (en) * 2012-01-25 2016-03-02 太陽ケーブルテック株式会社 Movable cable

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164710U (en) * 1984-04-12 1985-11-01 株式会社 潤工社 flat cable
JPS6164835A (en) * 1984-09-04 1986-04-03 Nippon Mining Co Ltd Copper alloy having high strength, heat resistance and electric conductivity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
伸銅技術研究会誌Vol.16,1977165〜176頁
金属便覧622頁

Also Published As

Publication number Publication date
JPH0298012A (en) 1990-04-10

Similar Documents

Publication Publication Date Title
JP2018186071A (en) Metal/carbon nanotube composite material wire
JPH04138616A (en) Electric wire conductor for harness
US6049042A (en) Electrical cables and methods of making same
JP4170497B2 (en) Wire conductor for harness
JPH0664940B2 (en) Flexible and vibration-resistant flexible conductor
JP2709178B2 (en) Wire conductor for harness
JPH0664938B2 (en) Flexible and vibration-resistant flexible conductor
JPH0664939B2 (en) Flexible and vibration-resistant flexible conductor
JPH0580084B2 (en)
JPH0580085B2 (en)
JPH0580083B2 (en)
JPH02148513A (en) Flexible, vibration resistant bendable conductor
JPS6129133Y2 (en)
JPH0298010A (en) Flexure failure-resistant, vibration-proof flexible conductor
JPS61161610A (en) Shield structure for flexible cable
JPH02117014A (en) Anti-bending and anti-vibration flexible conductor
JPH02142017A (en) Bending-and vibration-resistant flexible conductor
JPH02142016A (en) Bending-and vibration-resistant flexible conductor
RU204344U1 (en) ONBOARD AIRCRAFT ELECTRIC WIRE
JPH02123617A (en) Bending-proof, oscillation proof flexible conductor
JP3355434B2 (en) Flat cable for mobile machinery
JPH02148514A (en) Flexible, vibration resistant bendable conductor
JPS6346984Y2 (en)
JPH0638331Y2 (en) Resistance welding cable
JPH082885Y2 (en) Water cooled cable